Polarization Measurements in ATLAS and CMS

Erik Bachmann, on behalf of the ATLAS and CMS Collaborations LHC EW WG General Meeting, 11 July 2024

Motivation

- Longitudinal polarization of electroweak gauge bosons is a direct consequence of the EWSB
- Important test of the Higgs mechanism
- Particularly interesting: **longitudinal VBS**

Vector boson polarization

What is vector boson polarization?

- Alignment of a particle's spin with its momentum
- Helicity: $h = \vec{S} \cdot \frac{\vec{p}}{|\vec{p}|}$
 - \circ **Transverse** polarization (T): (anti-)aligned ($h = \pm 1$)
 - **Longitudinal** polarization (0/L): orthogonal (h = 0)
- Helicity is not Lorentz-invariant
 - reference-frame needs to be defined for all polarization measurements

How to measure vector boson polarization?

- Parity violation in weak interactions → effects on decay products
- Analytical distribution of **decay angle** is known at born-level
- In practise: **polarized templates**

$$rac{\mathrm{d}\sigma}{\mathrm{d}X} = f_L rac{\mathrm{d}\sigma_L}{\mathrm{d}X} + f_R rac{\mathrm{d}\sigma_R}{\mathrm{d}X} + f_0 rac{\mathrm{d}\sigma_0}{\mathrm{d}X} igg(+f_{\mathrm{int.}} rac{\mathrm{d}\sigma_{\mathrm{int.}}}{\mathrm{d}X}igg)$$

Polarized templates

Monte-Carlo event generators

- Several generators available:
 - Phantom: 2 \rightarrow 6 proceses at LO+PS [A. Ballestrero et al. 2008, 2017]
 - MG5_aMC@NLO: arbitrary processes at LO+PS, multi-jet merging [D. Buarque Franzosi et al. 2020]
 - Sherpa: arbitrary processes at nLO QCD + PS, multi-jet merging [M. Hoppe et al. 2023]
 - POWHEG BOX RES: diboson processes at NLO QCD + PS [G. Pelliccioli, G. Zanderighi 2023]
- Only Madgraph used so far by the collaborations

Fixed-order calculations

• fixed-order calculations show large, polarization-dependent NLO corrections

Process	LO	NLO	NLO EW	NNLO
pp → WW	Х	Х	Х	Х
pp → ZZ	Х	Х	Х	
pp → WZ	Х	Х	Х	
pol. VBS	Х	Х		

[R. Poncelet, 1st COMETA General Meeting]

Polarization measurements in WZ

Analysis target

- Singly-polarized states:
 - \circ W-polarization: W_LZ, W_RZ, W_0Z
 - \circ Z-polarization: WZ_L, WZ_R, WZ₀

Reference frame: laboratory frame

Polarized templates

• Reweighting of inclusive Powheg NLO-QCD sample using generator-level $\cos \theta_V$ distribution

Region	N_ℓ	$p_{\rm T}\{\ell_{Z1}, \ell_{Z2}, \ell_{\rm W}, \ell_4\}$	N _{OSSF}	$ M(\ell_{Z1},\ell_{Z2})-m_Z $	$p_{\mathrm{T}}^{\mathrm{miss}}$	N _{b tag}	$\min(M(\ell\ell'))$	$M(\ell_{Z1},\ell_{Z2},\ell_W)$
SR	=3	>{25, 10, 25,} GeV	≥ 1	< 15 GeV	>30GeV	=0	$>4\mathrm{GeV}$	>100 GeV
CR-ZZ	=4	>{25, 10, 25, 10} GeV	≥ 1	< 15 GeV	—	=0	$>4\mathrm{GeV}$	>100 GeV
CR-tīZ	=3	>{25, 10, 25,} GeV	≥ 1	< 15 GeV	> 30 GeV	>0	$>4\mathrm{GeV}$	>100 GeV
CR-conv	=3	>{25, 10, 25,} GeV	≥ 1		$\leq 30 \text{GeV}$	=0	$>4\mathrm{GeV}$	<100 GeV

Statistical Analysis

- Cut-based event selection
- CR for ZZ, top and photon conversion
- $\cos \theta_V$ fitted separately for W and Z in charge-inclusive and charged (W^+Z/W^-Z) channels
- free parameters: $\mu, f_0, f_L f_R$

First observation of longitudinally polarized W-bosons in WZ: 5.6 σ (4.3 σ)

Significance for longitudinally polarized Z-bosons way above five standard deviations

Category	Observable	Observed	POWHEG expected	MATRIX expected
W inclusivo	f_0	$0.322\substack{+0.080\\-0.077}$	$0.2470\substack{+0.0003\\-0.0003}$	$0.248\substack{+0.003\\-0.003}$
w, menusive	f_{LR}	$0.183\substack{+0.032\\-0.032}$	$0.209\substack{+0.002\\-0.002}$	$0.210\substack{+0.006\\-0.006}$
W plue	f_0	$0.358\substack{+0.100\\-0.096}$	$0.2294\substack{+0.0003\\-0.0003}$	$0.237^{+0.004}_{-0.004}$
w, plus	$f_{\rm LR}$	$0.288\substack{+0.041\\-0.042}$	$0.305^{+0.003}_{-0.003}$	$0.293^{+0.007}_{-0.007}$
W, minus	f_0	$0.361\substack{+0.118 \\ -0.128}$	$0.2782\substack{+0.0007\\-0.0007}$	$0.268\substack{+0.005\\-0.005}$
	$f_{\rm LR}$	$0.010\substack{+0.055 \\ -0.049}$	$0.056\substack{+0.002\\-0.002}$	$0.076\substack{+0.007\\-0.007}$
Z, inclusive	f_0	$0.245\substack{+0.024\\-0.024}$	$0.2583\substack{+0.0003\\-0.0003}$	$0.253\substack{+0.003\\-0.003}$
	$f_{\rm LR}$	$-0.038\substack{+0.078\\-0.078}$	$-0.116\substack{+0.002\\-0.002}$	$-0.120\substack{+0.006\\-0.006}$
Z, plus	f_0	$0.236\substack{+0.030\\-0.030}$	$0.2710\substack{+0.0003\\-0.0003}$	$0.263^{+0.004}_{-0.004}$
	f_{LR}	$0.039\substack{+0.101\\-0.101}$	$-0.073\substack{+0.003\\-0.003}$	$-0.083\substack{+0.007\\-0.007}$
7 minus	f_0	$0.266\substack{+0.037\\-0.037}$	$0.2392\substack{+0.0005\\-0.0005}$	$0.238\substack{+0.004\\-0.004}$
Σ , mmus	$f_{\rm LR}$	$-0.164\substack{+0.121\\-0.121}$	$-0.179\substack{+0.003\\-0.003}$	$-0.178\substack{+0.007\\-0.007}$

JHEP 07 (2022) 032

Analysis target

- Joint-polarization states W_0Z_0 , W_TZ_0 , W_0Z_T , W_TZ_T
- Singly-polarized states

Reference frame: WZ rest frame

 \rightarrow minimizes correlation between 00 and TT modes

Polarization templates

in 0,1j@LO merged setup

• Events generated with MadGraph 2.7.3 + Pythia 8 observed bias in extracted polarization fractions, up to 50% of fraction value!

Joint-polarization measurement in WZ

Templates Challenge: multiple reweighting methods to obtain templates at NLO-QCD Full phase-space reweighting of Powheg NLO-QCD with DNN [arXiv:1907.08209]

- - Ο
 - \circ factorization assumption: $p_{
 m NLO}(ec{x},i,j) \propto p_{0,1j@
 m LO}(ec{x}) \cdot p(i,j|ec{x}) \cdot p_{0,1j@
 m LO} o {
 m NLO}(ec{x})$ MadGraph 0,1j@LO: $p_{0,1j@LO}(ec{x},i,j) \propto p_{0,1j@LO}(ec{x}) \cdot p(i,j|ec{x})$ • Powheg NLO-QCD: $p_{ ext{NLO}}(ec{x}) \propto p_{0,1 ext{i@LO}}(ec{x}) ~~ \cdot p_{0,1 ext{i@LO}
 ightarrow ext{NLO}}(ec{x})$

\rightarrow learn $p(i, j | \vec{x})$ by discriminating (i, j) polarization against sum of polarizations

• **Binned reweighting of DNN score** based on polarized fixed-order NLO-QCD calculations (MoCaNLO) [A. Denner, G. Pelliccioli, arXiv:2010.07149] used to assess modelling uncertainties

Joint-polarization measurement in WZ

Statistical Analysis

- Free parameters: $\mu, f_{00}, f_{T0}, f_{TT}$
- DNN multiclass classifier trained on MadGraph 0,1j@LO polarized samples \circ inputs: $p_{T}^{\ell_{W}^{W}}, p_{T}^{\ell_{1}^{Z}}, p_{T}^{\ell_{2}^{Z}}, E_{T}^{\text{miss}}, |y_{Z} - y_{\ell_{W}}|, \Delta\phi(l^{W}, \nu), \Delta\phi(\ell_{1}^{Z}, \ell_{2}^{Z}), p_{T}^{WZ}$
- $p_{00}^{\rm DNN}$ distribution fitted in four decay angle categories to separate 0T and T0 states
- Statistical uncertainties at the same level as systematic uncertainties
 - Modelling uncertainty on DNN reweighting and choice of templates
 - QCD scale
 - $^{\circ}\,$ Jets / $E_{
 m T}^{
 m miss}$ reconstruction, calibration

Joint-polarization measurement in WZ

Phys. Lett. B 843 (2023) 137895

First observation of simultaneous pairproduction of longitudinally-polarised VB • significance of 7.1 σ (6.2 σ) for f_{00} • significance for f_{T0} and $f_{TT} > 5\sigma$

2
3
3
4

Single boson polarization in WZ

- Measured f_0 and $f_L f_R$ for W and Z bosons in charge inclusive and both charged final states
- Polarization templates of $\cos \theta_V^*$ from analytical reweighting of Powheg NLO-QCD

• Spin correlation: measured $R_c = \frac{f_{00}}{f_0^W f_0^Z} = 1.54 \pm 0.35$ (SM: 1.3)

	Data	f_0 Powheg+Pythia
W in W^+Z	0.23 ± 0.05	$0.2044\ \pm\ 0.0024$
W in W^-Z	0.19 ± 0.05	$0.217 \hspace{0.1in} \pm \hspace{0.1in} 0.004$
W in $W^{\pm}Z$	0.21 ± 0.04	$0.2094~\pm~0.0016$
Z in W^+Z	$0.223~\pm~0.025$	$0.1971\ \pm\ 0.0019$
$Z \text{ in } W^- Z$	$0.241 ~\pm~ 0.029$	$0.2065~\pm~0.0023$
$Z \text{ in } W^{\pm} Z$	$0.231 ~\pm~ 0.019$	$0.2009~\pm~0.0014$
	e	0
	$f_{ m L}$	$-f_{\mathrm{R}}$
	$f_{\rm L}$ Data	$-f_{\rm R}$ Powheg+Pythia
W in W^+Z	$\begin{array}{c} f_{\rm L} \\ \\ Data \\ \hline 0.071 \ \pm \ 0.023 \end{array}$	$-f_{\rm R}$ POWHEG+PYTHIA 0.0990 ± 0.0015
$ \frac{W \text{ in } W^+ Z}{W \text{ in } W^- Z} $	$\begin{array}{c} f_{\rm L} \\ \\ \hline 0.071 \ \pm \ 0.023 \\ 0.026 \ \pm \ 0.027 \end{array}$	$-f_{\rm R}$ POWHEG+PYTHIA 0.0990 ± 0.0015 -0.0491 ± 0.0020
$W \text{ in } W^+ Z$ $W \text{ in } W^- Z$ $W \text{ in } W^\pm Z$	$\begin{array}{c} f_{\rm L} \\ \\ \hline 0.071 \ \pm \ 0.023 \\ 0.026 \ \pm \ 0.027 \\ 0.059 \ \pm \ 0.016 \end{array}$	$-f_{\rm R}$ POWHEG+PYTHIA 0.0990 ± 0.0015 -0.0491 ± 0.0020 0.0390 ± 0.0011
$W \text{ in } W^+ Z$ $W \text{ in } W^- Z$ $W \text{ in } W^\pm Z$ $Z \text{ in } W^+ Z$	$\begin{array}{c} f_{\rm L} \\ Data \\ \hline 0.071 \ \pm \ 0.023 \\ 0.026 \ \pm \ 0.027 \\ 0.059 \ \pm \ 0.016 \\ -0.20 \ \pm \ 0.10 \end{array}$	$\begin{array}{r} - f_{\rm R} \\ {\rm POWHEG+PYTHIA} \\ \hline 0.0990 \ \pm \ 0.0015 \\ -0.0491 \ \pm \ 0.0020 \\ 0.0390 \ \pm \ 0.0011 \\ -0.217 \ \pm \ 0.006 \end{array}$
$W \text{ in } W^+ Z$ $W \text{ in } W^- Z$ $W \text{ in } W^\pm Z$ $Z \text{ in } W^+ Z$ $Z \text{ in } W^- Z$	$\begin{array}{c} f_{\rm L} \\ & \\ 0.071 \ \pm \ 0.023 \\ 0.026 \ \pm \ 0.027 \\ 0.059 \ \pm \ 0.016 \\ -0.20 \ \pm \ 0.10 \\ 0.10 \ \pm \ 0.13 \end{array}$	$\begin{array}{r} -f_{\rm R} \\ {\rm POWHEG+PYTHIA} \\ \hline 0.0990 \ \pm \ 0.0015 \\ -0.0491 \ \pm \ 0.0020 \\ 0.0390 \ \pm \ 0.0011 \\ -0.217 \ \pm \ 0.006 \\ 0.092 \ \pm \ 0.007 \end{array}$

Analysis target

- Joint-polarization states at high $p_T^Z: W_0Z_0, W_TZ_0, W_0Z_T, W_TZ_T$ first measurement to probe the energy dependence of polarization fractions
- Radiation Amplitude Zero (RAZ) effect in WZ production

00-enhanced signal regions

- Cuts on p_T^Z to increase 00-fraction \longrightarrow up to 23%!
- Cut on p_T^{WZ} to reduce jet activity → more LO-like phase space

		Signal regions
	00-enhanced region 1	00-enriched region 2
Pass inclusive WZ event selection	\checkmark	\checkmark
Transverse momentum of the Z boson (p_T^Z)	[100, 200] GeV	> 200 GeV
Transverse momentum of the WZ system (p_T^{WZ})		< 70 GeV

	Predicti	ion
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
f_{00}	0.152 ± 0.006	0.234 ± 0.007
f_{0T}	0.120 ± 0.002	0.062 ± 0.002
f_{T0}	0.109 ± 0.001	0.058 ± 0.001
f_{TT}	0.619 ± 0.007	0.646 ± 0.008

Energy dependence of WZ polarization fractions

Polarization modelling

- MadGraph LO+0,1j
- Uncertainties from NLO QCD+EW fixed-order calculations (G. Pelliccioli, Duc Ninh Le)

Discriminant variable • Dedicated BDTs trained in each p_T^Z bin to discriminate W_0Z_0 vs rest

Training variable	D
$\Delta Y(\ell_W Z)$	R
p_T^{WZ}	T
$p_T(\ell_W)$	T
$p_T(\ell_2^Z)$	T
$E_T^{mi\bar{s}\bar{s}}$	Ν
$\cos \theta_{\ell_Z}$	C
$\cos heta_{\ell_W}$	C

Statistical analysis

- 2 fit configurations
 - \circ 3 parameters: μ , f_{00} , $f_{T0} + f_{0T}$
 - \circ 2 parameters: μ , f_{00}
- Dominated by statistical uncertainties
- NLO QCD uncertainties subleading

Definition

- Rapidity difference between the W lepton and Z boson
- Transverse momentum of the WZ system
- ransverse momentum of the W lepton
- Transverse momentum of the subleading Z lepton
- Aissing transverse momentum
- Cosine of the angle of the Z lepton in the WZ rest frame w.r.t the z-axis
- Cosine of the angle of the W lepton in the WZ rest frame w.r.t. the z-axis

Energy dependence of WZ polarization fractions

5 sigma observation for f_{00} in $100 < p_{\rm T}^Z \leq 200\, GeV$ region

 $\begin{array}{l} \mbox{Evidence for } f_{00} \mbox{ in } \mathbf{p}_{\mathrm{T}}^{\mathrm{Z}} > 200 \mbox{ GeV} \\ \mbox{region for 2 parameter fit} \end{array}$

 f_{00} f_{XX} f_{00} obs (exp) sig.

<u>3 parameter fit</u>

Measurement		
$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
$0.19 \pm _{0.03}^{0.03} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$0.13 \pm_{0.08}^{0.09} (\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$	
$0.18 \pm_{0.08}^{0.07} (\text{stat}) \pm_{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$	
$0.63 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$	
5.2 (4.3) σ	1.6 (2.5) σ	

2 parameter fit

Measurement			
$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		
$0.17 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.02}^{0.01} (\text{syst})$	$0.16 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.03}^{0.02} (\text{syst})$		
$0.83 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.01}^{0.02} (\text{syst})$	$0.84 \pm_{0.05}^{0.05} (\text{stat}) \pm_{0.02}^{0.03} (\text{syst})$		
7.7 (6.9) σ	3.2 (4.2) <i>σ</i>		

RAZ effect in WZ

Radiation Amplitude Zero effect

- At LO: TT cross-section drops to zero when $\cos \theta_V$ approaches zero \rightarrow observable as dip in $\Delta Y(WZ)$ and $\Delta Y(\ell_WZ)$
- Diluted by NLO QCD effects
 - \rightarrow reduce jet activity with p_T^{WZ} cuts

RAZ effect in WZ

Depth variable to quantify dip

Measure depth using unfolded TT-only distributions for different $p_{\rm T}^{WZ}$ cuts

Polarization measurements in ZZ

Analysis target: joint-polarization states $Z_L Z_L$ and $Z_T Z_X$

Reference frame: ZZ rest frame

Discriminant variable

• BDT trained to separate $Z_L Z_L$ from $Z_T Z_X$ \circ inputs: $\cos \theta_1$, $\cos \theta_3$, $\cos \theta^*_{Z_1}$, $\Delta \phi^*_{\ell_1 \ell_2}$, $\Delta \phi^*_{\ell_3 \ell_4}$

<u>JHEP 12 (2023) 107</u>

Templates challenge

- MadGraph 2.7.3 + Pythia 8 for polarized QCD qq → ZZ+0,1,2j and EWK qq → ZZjj
- Reweight QCD samples based on polarized NLO QCD+EW corrections (MoCaNLO):

1.
$$k_{\text{pol}} = \frac{\text{MoCaNLO}_{\text{pol}}^{\text{parton}}}{\text{MG}_012\text{jLO}_{\text{pol}}^{\text{particle}}} \times \frac{\text{Sh}_N\text{LO}_{\text{inc}}^{\text{parton}}}{\text{MoCaNLO}_{\text{inc}}^{\text{parton}}}$$

as a function of $\cos \theta_1$ or $|\Delta Y_{ZZ}|$
2. $N_{\text{int}}^{\text{reco}} = \frac{\text{MoCaNLO}_{\text{inc}}^{\text{parton}} - \sum_{\text{pol}} \text{MoCaNLO}_{\text{pol}}^{\text{parton}}}{\text{MoCaNLO}_{\text{inc}}^{\text{parton}}} \times \text{Sh}_N\text{LO}_{\text{inc}}^{\text{reco}}$
as a function of $\cos \theta_1$ or $|\Delta Y_{ZZ}|$
3. $k_{\text{res}} = \frac{\text{Sh}_N\text{LO}_{\text{inc}}^{\text{reco}} - N_{\text{int}}^{\text{reco}}}{\sum_{\text{pol}} N_{\text{pol}}}$
as a function of $\cos \theta_{Z_1}^*$ and $\Delta \phi_{\ell_1 \ell_2}^*$
JHEP 12 (2023) 107

ZZ+0,1,2j and EWK $qq \rightarrow ZZjj$ CD+EW corrections (MoCaNLO): [JHEP10 (2021) 097]

Templates challenge

• Polarized templates for gg-loop induced ZZ from inclusive ggZZ sample (Sherpa 2.2.2) and **polarized leading order calculation** (MoCaNLO)

Statistical analysis

- Free parameters: $\mu_{LL}, \, \mu_{LT} + \mu_{TL} + \mu_{TT}$
- Evidence for doubly-longitudinal ZZ with 4.3 σ (3.8 σ)
- Measured cross-section in agreement with SM prediction: $\circ \sigma^{\rm obs.}_{\rm Z_L Z_L} = 2.45 \pm 0.56 ({
 m stat.}) \pm 0.21 ({
 m syst.}) \,{
 m fb}$

$$\circ~\sigma^{
m pred.}_{
m Z_LZ_L} = 2.10 \pm 0.09~{
m fb}$$

Contribution Total	Relative uncertainty [%] 24
Data statistical uncertainty	23
Total systematic uncertainty	8.8
MC statistical uncertainty	1.7
Theoretical systematic uncertainties	
$q\bar{q} \rightarrow ZZ$ interference modelling	6.9
NLO reweighting observable choice for $q\bar{q} \rightarrow ZZ$	3.7
PDF, α_s and parton shower for $q\bar{q} \rightarrow ZZ$	2.2
NLO reweighting non-closure	1.0
QCD scale for $q\bar{q} \rightarrow ZZ$	0.2
NLO EW corrections for $q\bar{q} \rightarrow ZZ$	0.2
$gg \rightarrow ZZ$ modelling	1.4

Measurement limited by statistical power

Theoretical systematics dominated by reweighting uncertainties!

Polarization measurements in same-sign WW Vector Boson Scattering

Analysis target

- Joint-polarization: $W_L^{\pm}W_L^{\pm}, W_T^{\pm}W_T^{\pm}$
- Singly-polarized states: $W_L^{\pm}W_X^{\pm}, W_T^{\pm}W_X^{\pm}$

Reference frame

- WW rest frame
- Initial state parton-parton rest frame

Analysis strategy

- Cut-based SR selection, leveraging VBS topology
- CRs to constrain WZ, nonprompt lepton, tZq and ZZ backgrounds

le		Requirement		
ns		Exactly 2 same-sign leptons, $p_T > 25/20 \text{ GeV}$		
		> 50 GeV		
$m_{\rm Z}$		>15 GeV (ee)		
		$>20\mathrm{GeV}$		
		> 30 GeV		
k v	eto	Required		
$z_\ell^*)$		<0.75		
		>500 GeV		
		>2.5		
		137 fb ⁻¹ (13 TeV)		
еV	1.5	-CMS Other bkg.		
Q	F	$-W_LW_L$ Bkg. unc		
ts /	Ē	$-W_LW_T = W^-W^- = 1$		
'n	-	$-W_TW_T$		
Ч	1	Nonprompt		
	X	tVx		
	4			
	0.5			
	0.0			
	_			
⋝	1.4 F			
NSI	1.2			
ata	1	•···•		
	0.8			
	500	0 1000 1500 2000 2500 3000 m _{ii} [GeV]		
E. I	Bach	nmann 11 July 2024 LHC EW WG meeting		

25

Discriminant variable

- Inclusive BDT: $W^{\pm}W^{\pm}$ vs bkg.
- Two signal BDTs per frame: $\circ W_L^{\pm} W_L^{\pm}$ vs $W_T^{\pm} W_X^{\pm}$ $\circ W_L^\pm W_X^\pm$ vs $W_T^\pm W_T^\pm$

Polarization modelling

- pol. MadGraph LO
- NLO QCD+EW corrections from inclusive fixed-order calculations

Statistical Analysis

- One fit per signal hypothesis
 - $\circ W_L^{\pm}W_L^{\pm}$ and $W_T^{\pm}W_X^{\pm}$: Inclusive BDT × "LL vs TX" BDT (5x5 bins) $\circ W_L^{\pm} W_L^{\pm}$ and $W_T^{\pm} W_X^{\pm}$: Inclusive BDT \times "LX vs TT" BDT (5x5 bins)
- Free parameters: μ_{LL} , $\mu_{LT} + \mu_{TL} + \mu_{TT}$ / μ_{TT} , $\mu_{LL} + \mu_{LT} + \mu_{TL}$

Phys. Lett. B 812 (2020) 136018

WW-frame

- Significance for $W_L^{\pm}W_X^{\pm}$ production of 2.3 σ (3.1 σ)
- 95% CL upper limit on $W_L^{\pm}W_L^{\pm}$: 1.17 (0.88) fb

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W^{\pm}_L W^{\pm}_L$	$0.32\substack{+0.42 \\ -0.40}$	0.44 ± 0.05
$\mathrm{W}_X^{\pm}\mathrm{W}_\mathrm{T}^{\pm}$	$3.06\substack{+0.51\\-0.48}$	3.13 ± 0.35
$\mathrm{W}_{\mathrm{L}}^{\pm}\mathrm{W}_{X}^{\pm}$	$1.20\substack{+0.56\\-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21

pp-frame

- Significance for $W_L^{\pm}W_X^{\pm}$ production of 2.6 σ (2.9 σ)
- 95% CL upper limit on $W_L^{\pm}W_L^{\pm}$: 1.06 (0.85) fb

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_\mathrm{L}$	$0.24\substack{+0.40 \\ -0.37}$	0.28 ± 0.03
$\mathrm{W}_X^{\pm}\mathrm{W}_\mathrm{T}^{\pm}$	$3.25_{-0.48}^{+0.50}$	3.32 ± 0.37
$\mathrm{W}_{\mathrm{L}}^{\pm}\mathrm{W}_{X}^{\pm}$	$1.40^{+0.60}_{-0.57}$	1.71 ± 0.19
$W_T^{ ilde{\pm}}W_T^{ ilde{\pm}}$	$2.03\substack{+0.51\\-0.50}$	1.89 ± 0.21

Measurement strongly dominated by statistical uncertainties!

Conclusion

Summary

- Weak boson polarization is a useful tool to probe the inner workings of the EWSB
 - look for physics beyond the Standard Model \bigcirc
- First observation of joint-longitudinally polarized VB in WZ, evidence in ZZ, with Run 2 dataset
 - Modelling of polarization templates is the main systematic uncertainty
 - Interference contribution may not be negligible
 - \rightarrow Careful selection of observables, decorrelation from ϕ_V^* , and / or interference templates necessary

Outlook

- Recent advancements in Monte-Carlo generators:
 - Over Powheg-Box-Res+Pythia: inclusive VV @NLO QCD+PS [G. Pelliccioli, G. Zanderighi 2023]
 - Sherpa 3: arbitrary processes @nLO QCD+PS, multi-jet merging, interference templates [M. Hoppe, M. Schönherr, F. Siegert 2023]
 - o polarized gluon-loop induced processes via UFO model [M. Javurkova et al. 2024]
- Recent interest in **semi-leptonic decay channels** higher statistical power, but larger backgrounds
- New developments in machine learning techniques o first steps towards a polarization tagger: "Amplitude-assisted tagging" [arXiv:2306.07726]
- Study of BSM sensitivity in polarized analyses • EFT via UFO models should be possible in MadGraph and Sherpa

Outlook

• Projections for measurement of joint-longitudinal $W_L^{\pm}W_L^{\pm}$ at the HL-LHC presented in the <u>Yellow Report</u>

presented before

Open questions

- Interpretation of template-based polarization measurements o inherently model-dependent --> alternative approach?
 - in the meantime: as many polarization fractions as possible!
- Best reference frame to use
 - agreed-upon standard choice not yet defined
- Optimal definition of polarised-boson signals clear guidelines for the experiments are needed

Join the COMETA COST action!

Funded by the European Union

https://www.cost.eu/actions/CA22130/

Yields

Process	eee	eeµ	μμe	μμμ	Inclusive
Nonprompt	19 ± 8	48 ± 16	45 ± 15	143 ± 39	255 ± 46
ZZ	42.9 ± 1.4	73 ± 7	188 ± 6	363 ± 10	668 ± 15
$X\gamma$	25 ± 3	5.5 ± 0.9	98 ± 10	33 ± 4	161 ± 11
tīX	12.6 ± 1.3	24 ± 3	47 ± 5	98 ± 11	181 ± 13
VVV	8 ± 3	14 ± 6	30 ± 12	60 ± 24	111 ± 28
VH	3.1 ± 0.6	8.7 ± 1.6	19 ± 4	37 ± 7	68 ± 8
tZq	11.2 ± 1.9	21 ± 4	45 ± 8	88 ± 16	165 ± 19
WZ EWK	8.5 ± 1.3	16 ± 2	35 ± 5	72 ± 11	132 ± 12
Total background	130 ± 10	211 ± 20	507 ± 26	894 ± 54	1741 ± 64
WZ	561 ± 15	1122 ± 24	2328 ± 39	4974 ± 82	8985 ± 95
Total expected	691 ± 18	1333 ± 28	2835 ± 43	5868 ± 89	10726 ± 95
Observed	739	1286	2849	5855	10729

Uncertainties

Source	Combined	eee	eeµ
Electron efficiency	0.6	3.2	1.8
Muon efficiency	1.2		0.5
Electron energy scale	0.1	0.3	0.1
Muon energy scale	0.1	0.0	0.0
Trigger efficiency	0.7	0.7	0.8
Jet energy scale	0.9	0.8	0.7
b tagging	1.6	1.8	1.7
Pileup	0.9	1.0	1.2
ISR	0.2	0.2	0.2
Nonprompt normalization	0.6	0.7	0.8
Nonprompt shape	1.0	1.2	1.0
VVV normalization	0.5	0.6	0.5
VH normalization	0.2	0.1	0.2
WZ EWK normalization	0.2	0.2	0.2
ZZ normalization	0.3	0.3	0.3
ttZ normalization	0.3	0.4	0.4
tZq normalization	0.4	0.4	0.4
$X\gamma$ normalization	0.2	0.5	0.1
Total systematic uncertainties	2.8	4.3	3.7
Integrated luminosity	2.1	2.2	2.2
Statistical uncertainty	1.5	5.0	3.4
PDF+scale	0.9	0.9	0.9

μµe	μμμ
0.9	
1.0	1.5
0.1	0.0
0.1	0.1
0.7	0.7
1.0	0.9
1.8	1.6
0.8	0.7
0.2	0.2
0.6	0.7
0.9	0.9
0.5	0.5
0.2	0.2
0.2	0.2
0.3	0.3
0.4	0.3
0.4	0.4
0.5	0.1
3.0	3.0
2.1	2.1
2.5	2.0
0.9	0.9

Object selection

Muon object selection							
Selection	Baseline selection	Z selection	W selection				
$p_{\rm T} > 5 { m GeV}$	\checkmark	\checkmark	\checkmark				
$ \eta < 2.7$	\checkmark	\checkmark	\checkmark				
Loose quality	\checkmark	\checkmark	\checkmark				
$ d_0^{\rm BL}/\sigma(d_0^{\rm BL}) < 3 \ (for \ \eta < 2.5 \ only)$	\checkmark	\checkmark	\checkmark				
$ \Delta z_0^{\text{BL}} \sin \theta < 0.5 \text{ mm} (for \eta < 2.5 \text{ only})$	\checkmark	\checkmark	\checkmark				
PflowLoose_FixedRad isolation	\checkmark	\checkmark	\checkmark				
μ -jet Overlap Removal		\checkmark	\checkmark				
$p_{\rm T} > 15 { m GeV}$		\checkmark	\checkmark				
$ \eta < 2.5$		\checkmark	\checkmark				
Medium quality		\checkmark	\checkmark				
$p_T > 20 \text{ GeV}$			\checkmark				
Tight quality			\checkmark				
PflowTight_FixedRad isolation			\checkmark				

Selection

 $p_{\rm T} > 5 \,{\rm GeV}$ Electron objec $|\eta^{\rm cluster}| < 2.47$ LooseLH+BLay $|d_0^{\rm BL}/\sigma(d_0^{\rm BL})|$ $|\Delta z_0^{\rm BL}\sin\theta| < 1$ Loose_VarRag

e-to-jets overla $p_T > 15 \text{ GeV}$ Exclude 1.37 MediumLH ide HighPtCaloO

 $p_T > 20 \text{ GeV}$ TightLH iden Tight_VarRa Unambiguous DFCommonAdd

Electron object selection							
	Baseline selection	Z selection	W selection				
	\checkmark	\checkmark	√				
ct quality	\checkmark	\checkmark	\checkmark				
$ 7, \eta < 2.5$	\checkmark	\checkmark	\checkmark				
ayer identification	\checkmark	\checkmark	\checkmark				
< 5	\checkmark	\checkmark	\checkmark				
: 0.5 mm	\checkmark	\checkmark	\checkmark				
ad isolation	\checkmark	\checkmark	\checkmark				
to- <i>e</i> overlap removal	\checkmark	\checkmark	\checkmark				
ap removal		\checkmark	√				
		\checkmark	\checkmark				
$< \eta^{\text{cluster}} < 1.52$		\checkmark	\checkmark				
entification		\checkmark	\checkmark				
Only isolation		\checkmark	\checkmark				
,			√				
ntification			\checkmark				
ad isolation			\checkmark				
author			\checkmark				
$dAmbiguity \leq 0$			\checkmark				

Event selection

	Inclusive event selection
Event cleaning	Reject LAr, Tile and SCT corrupted events and incomplete even
Primary vertex	Hard scattering vertex with at least two tracks
Trigger 2015	HLT_e24_lhmedium_L1EM20VH HLT_e60_lhmedium
mgger 2015	HLT_mu20_iloose_L1MU15 HLT_mu50
Trigger 2016, 2018	HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmediu
111ggel 2010–2018	HLT_mu26_ivarmedium HLT_mu50
ZZ veto	Less than 4 baseline leptons
N leptons	Exactly three leptons passing the Z lepton selection
Leading lepton $p_{\rm T}$	$p_{\rm T}^{\rm lead} > 25 \text{ GeV}$ (in 2015) or $p_{\rm T}^{\rm lead} > 27 \text{ GeV}$ (in 2016)
Z leptons	Two same flavor oppositely charged leptons passing Z-lepton set
Mass window	$ M_{\ell\ell} - M_Z < 10 \text{ GeV}$
W lepton	Remaining lepton passes W-lepton selection
W transverse mass	$m_{\rm T}^W > 30 { m GeV}$

nts

HLT_e120_lhloose

um_nod0 || HLT_e140_lhloose_nod0

election

Yields

	Signal	Region			
	Pre-fit	Post-fit			
WZ in τ	620 + 60	630 + 60		ZZ Contr	ol Region
ZZ	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Pre-fit	Post-fit
$t\bar{t} + V$	$870 ~\pm~ 130$	$820~\pm~120$	WZ unpol.	35.6 ± 1.9	35.6 ± 1.9
Misid. leptons	1170 ± 230	1010 ± 220	ZZ	2030 ± 150	$2290 \pm \ 50$
Others	800 ± 90	$780~\pm~90$	$t\bar{t} + V$	153 ± 23	143 ± 21
W_0Z_0	920 ± 40	$1190~\pm~160$	Misid. leptons	14 ± 4	15 ± 4
$W_0 Z_{\mathrm{T}}$	2670 ± 50	$1900 ~\pm~ 500$	Others	32 ± 8	33 ± 8
$W_{\mathrm{T}}Z_{0}$	2670 ± 60	3100 ± 400	Total MC	2260 ± 150	2510 ± 50
$W_{\mathrm{T}}Z_{\mathrm{T}}$	10200 ± 230	10900 ± 600			
Total MC	$21400~\pm~500$	$21950~\pm~170$	Data		2554
Data		21936			

Predicted and measured fractions

	Data			•			£
	Data	I OWHEG+I YIHIA	NLO QOD			Data	J_0
		$W^{\pm}Z$				Data	POWHEG+PYTHIA
£	0.067 0.010	0.0500 0.0000	0.059 0.009		W in W^+Z	0.23 ± 0.05	0.2044 ± 0.0024
J_{00}	0.007 ± 0.010	0.0590 ± 0.0009	0.058 ± 0.002		W in W^-Z	0.19 ± 0.05	0.217 ± 0.004
$J_{0\mathrm{T}}$	0.110 ± 0.029	0.1515 ± 0.0017	0.159 ± 0.003		W in $W^{\pm}Z$	0.21 + 0.04	0.2094 ± 0.0016
$f_{\rm T0}$	0.179 ± 0.023	0.1465 ± 0.0017	0.149 ± 0.003		$7 \approx W^{+} Z$	0.21 ± 0.04	0.2034 ± 0.0010
$f_{\rm TT}$	0.644 ± 0.032	0.6431 ± 0.0021	0.628 ± 0.004		$Z \ln W^+ Z$	0.223 ± 0.025	0.1971 ± 0.0019
		W^+Z			Z in W Z	0.241 ± 0.029	0.2065 ± 0.0023
		VV Z			$Z \text{ in } W^{\pm} Z$	0.231 ± 0.019	0.2009 ± 0.0014
f_{00}	0.072 ± 0.016	0.0583 ± 0.0012	0.057 ± 0.002			•	
$f_{0\mathrm{T}}$	0.119 ± 0.034	0.1484 ± 0.0022	0.155 ± 0.003			f_{T}	$-f_{\rm P}$
$f_{\rm T0}$	0.152 ± 0.033	0.1461 ± 0.0022	0.147 ± 0.003			Data	POWHEG+PYTHIA
$f_{\rm TT}$	0.66 ± 0.04	0.6472 ± 0.0026	0.635 ± 0.004				
		117 - 7			W in W^+Z	0.071 ± 0.023	0.0990 ± 0.0015
		W Z			W in W^-Z	0.026 ± 0.027	-0.0491 ± 0.0020
f_{00}	0.063 ± 0.016	0.0600 ± 0.0014	0.059 ± 0.002		$W \text{ in } W^{\pm} Z$	0.059 ± 0.016	$0.0390~\pm~0.0011$
$f_{0\mathrm{T}}$	0.11 ± 0.04	0.1560 ± 0.0027	0.166 ± 0.003		$Z \text{ in } W^+ Z$	-0.20 ± 0.10	-0.217 ± 0.006
$f_{\rm T0}$	0.21 ± 0.04	0.1470 ± 0.0027	0.152 ± 0.003		Z in W^-Z	0.10 ± 0.13	0.092 ± 0.007
$f_{\rm TT}$	0.62 ± 0.05	$0.6370~\pm~0.0033$	0.618 ± 0.004		Z in $W^{\pm}Z$	-0.10 ± 0.08	-0.092 ± 0.005

Uncertainties

	f_{00}	$f_{0\mathrm{T}}$	$f_{\rm T0}$	$f_{\rm TT}$		W^{\pm} i	in $W^{\pm}Z$	Z in	$W^{\pm}Z$
Relative unce	rtainty	[%]				f_0	$f_{\rm L} - f_{\rm R}$	f_0	$f_{\rm L} - f_{\rm R}$
e energy scale and id. efficiency	0.34	0.6	0.8	0.31	Relative u	Incertain	ty [%]		
μ energy scale and id. efficiency	0.8	0.23	0.23	0.13	e energy scale and id. efficiency	1.4	0.8	1.3	0.7
$E_{\rm T}^{\rm miss}$ and jets	3.3	1.3	1.2	0.4	μ energy scale and id. efficiency	2.1	5	0.8	0.5
Pile-up	0.6	0.17	0.4	0.15	$E_{\rm T}^{\rm miss}$ and jets	1.9	2.8	0.28	3.0
Misidentified lepton background	2.3	1.6	0.8	0.26	Pile-up	1.4	4	1.2	3.1
ZZ background	0.9	0.17	0.32	0.07	Misidentified lepton background	3.4	0.8	1.6	1.2
Other backgrounds	3.0	1.6	1.3	0.4	ZZ background	0.7	0.6	0.6	2.5
	0 5	1 0	0.00	0.5	Other backgrounds	0.9	1.3	0.7	1.3
Parton Distribution Function	0.5	1.8	0.09	0.5	Parton Distribution Function	0.5	2.9	0.05	0.5
QCD scale	0.19	8	0.9	2.0	QCD scale	6	6	0.22	5
Modelling	9	4	2.9	1.2	Modelling	12	3.1	2.2	19
Total systematic uncertainty	14	15	8	4	Total systematic uncertainty	14	11	3.5	21
Luminosity	0.35	0.24	0.15	0.05	Luminosity	0.25	0.09	0.06	0.19
Statistical uncertainty	13	10	12	3.0	Statistical uncertainty	13	40	9	90
Total	19	18	14	5	Total	19	40	10	90

Event selection

	Inclusive WZ event selection
Event cleaning	Reject LAr, Tile and SCT corrupted events and inco
Primary vertex	Hard scattering vertex with at least two tracks
Triggers in 2015	HLT_e24_lhmedium_L1EM20VH HLT_e60_lh
mggers m 2015	HLT_mu20_iloose_L1MU15 HLT_mu50
Triggers in 2016 2018	HLT_e26_lhtight_nod0_ivarloose HLT_e
111ggers III 2010–2018	HLT_mu26_ivarmedium HLT_mu50
ZZ veto	Less than 4 baseline leptons
N leptons	Exactly three leptons passing the Z lepton selection
Leading lepton p_{T}	$p_{\rm T}^{\rm lead} > 25 \text{ GeV}$ (in 2015) or $p_{\rm T}^{\rm lead} > 27 \text{ GeV}$ (in 201
Z leptons	Two same flavor oppositely charged leptons passing
Z lepton invariant mass	$ m_{\ell\ell} - M_Z < 10 \text{ GeV}$
W lepton	Remaining lepton passes the W-lepton selection
W transverse mass	$m_{\rm T}^W > 30 { m GeV}$
ΔR	$\Delta R(\ell_Z^-, \ell_Z^+) > 0.2, \Delta R(\ell_Z, \ell_W) > 0.3$

Signal regions

Signur regions						
	Radiation Amplitude Zero	00-enhanced region 1	00-enriched region 2			
Pass inclusive WZ event selection	\checkmark	\checkmark	\checkmark			
Transverse momentum of the Z boson (p_T^Z)	-	[100, 200] GeV	> 200 GeV			
Transverse momentum of the WZ system (p_T^{WZ})	< 20, 40, 70 GeV		< 70 GeV			

omplete events

medium || HLT_e120_lhloose

60_lhmedium_nod0 || HLT_e140_lhloose_nod0

n 16-2018) g the Z-lepton selection

Yields

Process	$100 < p_T^Z$	≤ 200 GeV	$p_T^Z > 200 \text{ GeV}$		
	Pre-fit	Post-fit	Pre-fit	Post-fit	
W_0Z_0	222 ± 5	290 ± 60	47.6 ± 1.5	28 ± 19	
$W_0 Z_T + W_T Z_0$	323 ± 12	280 ± 140	23.7 ± 0.8	50 ± 40	
$W_T Z_T$	856 ± 31	920 ± 100	124 ± 4	132 ± 29	
Prompt background	169 ± 18	166 ± 18	24.1 ± 2.7	24.2 ± 2.7	
Non-prompt background	68 ± 29	80 ± 40	2.8 ± 1.1	2.8 ± 1.1	
Total Expected	1640 ± 60	1740 ± 40	222 ± 8	236 ± 15	
Data	1740		236		

Predicted and measured fractions

<u>3 parameter fit</u>

	Measu	rement		Prediction	on
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	100 <	$p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
f_{00}	$0.19 \pm_{0.03}^{0.03} (\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$	$0.13 \pm _{0.08}^{0.09} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst}) \parallel f_0$	0.0.	152 ± 0.006	0.234 ± 0.007
f_{0T+T0}	$0.18 \pm _{0.08}^{0.07} (\text{stat}) \pm _{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst}) f_0$	<i>T</i> 0.	120 ± 0.002	0.062 ± 0.002
f_{TT}	$0.63 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst}) f_T$	ro 0.	109 ± 0.001	0.058 ± 0.001
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ f_T	T = 0.	619 ± 0.007	0.646 ± 0.008

<u>2 parameter fit</u>

	Measurement			Prediction		
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
f_{00}	$0.17 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.02}^{0.01} (\text{syst})$	$0.16 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.03}^{0.02} (\text{syst})$	$\int f_{00}$	0.152 ± 0.006	0.234 ± 0.007	
f_{XX}	$0.83 \pm_{0.02}^{0.02} (\text{stat}) \pm_{0.01}^{0.02} (\text{syst})$	$0.84 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.02}^{0.03} (\text{syst})$	$\int f_{0T}$	0.120 ± 0.002	0.062 ± 0.002	
f_{00} obs (exp) sig.	7.7 (6.9) σ	3.2 (4.2) <i>σ</i>	$\int f_{T0}$	0.109 ± 0.001	0.058 ± 0.001	
			$\int f_{TT}$	0.619 ± 0.007	0.646 ± 0.008	

Uncertainties

<u>3 parameter fit</u>

e	Impact on f_0	00 [%]			Impa	ct [%
perimental	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	Source	TT s	state	Sun
Luminosity	0.1	0.2	Experimental	$\Delta Y(\ell_W Z)$	$\Delta Y(WZ)$	$ \Delta Y(\ell$
Electron calibration Muon calibration Jet energy scale and resolution $E_{\rm T}^{\rm miss}$ scale and resolution Flavor-tagging inefficiency Pileup modelling Non-prompt background estimation	1.0 1.1 5.9 1.0 0.1 1.6 5.8	0.9 1.3 9.0 0.6 0.2 1.1 0.8	Luminosity Electron calibration Muon calibration Jet energy scale and resolution $E_{\rm T}^{\rm miss}$ scale and resolution Flavor-tagging inefficiency	1.2 1.3 1.9 8.1 0.3 0.0	0.5 0.7 0.7 3.6 0.8 0.0	0.1 0.1 1. 2.0 0.4 0.4
Modelling			Pileup modelling Non-prompt background estimation	1.3 4.2	1.3 1.4	2. 5.
Background, other Model statistical	1.4 2.5	1.6 5.6	Modelling			
NLO QCD effects NLO EW effects Effect of additive vs multiplicative QCD+EW combination Interference impact PDF, Scales, and shower settings	6.8 1.1 1.3 1.4 3.5	8.2 3.3 3.8 0.7 9.2	Background, other Model statistical NLO corrections PDF, Scale and shower settings Unfolding uncertainty	4.0 2.3 13.3 13.1 0.0	1.4 1.3 3.5 5.4 4.4	4.9 4.1 0.0 0.7 0.0
Experimental and modelling Data statistical	12.1 18.0	17.7 64.5	Experimental and modelling Data statistical	21.5 13.3	9.1 6.5	$\begin{vmatrix} & 0.0 \\ & 9.3 \\ & 24. \end{vmatrix}$
Total	21.7	66.9	Total	25.3	11.1	25

$p_T^{WZ} < 20~{ m GeV}$

Yields

		Pre-fit	Post-fit		
	$Z_{\rm L}Z_{\rm L}$	189.3 ± 8.7	220 ± 54		
77	$Z_{\rm T}Z_{\rm L}$	710 ± 29	711 ± 29		
LL	$Z_{\mathrm{T}}Z_{\mathrm{T}}$	2170 ± 120	2147 ± 60		
I	Interference	33.7 ± 2.8	33.4 ± 2.7		
N	on-prompt	18.7 ± 7.1	18.5 ± 7.0		
	Others	20.0 ± 3.7	19.9 ± 3.7		
	Total	3140 ± 150	3149 ± 57		
	Data	3149	3149		

Uncertainties

Contribution Total	Relativ
Data statistical uncertainty Total systematic uncertainty	
MC statistical uncertainty Theoretical systematic uncertainties $q\bar{q} \rightarrow ZZ$ interference modelling NLO reweighting observable choice for $q\bar{q} \rightarrow ZZ$ PDF, α_s and parton shower for $q\bar{q} \rightarrow ZZ$ NLO reweighting non-closure QCD scale for $q\bar{q} \rightarrow ZZ$ NLO EW corrections for $q\bar{q} \rightarrow ZZ$ $gg \rightarrow ZZ$ modelling	
Experimental systematic uncertaintiesLuminosityMuonsElectronsNon-prompt backgroundPile-up reweightingTriboson and $t\bar{t}Z$ normalisations	

Yields

Yields in $W^{\pm}V$
16.0 ± 18
63.1 ± 10
110.1 ± 18
13.8 ± 1.6
8.4 ± 0.6
63.3 ± 7.8
0.7 ± 0.2
213.7 ± 52
7.1 ± 2.2
26.9 ± 9.9
522.9 ± 60
524

- W[±] SR 3.3 0.7 3.1 6 6 8 2
- ..3 2 9
- .7

Uncertainties

Source of uncertainty	$W_{L}^{\pm}W_{L}^{\pm}$ (%)	$W_X^{\pm} W_T^{\pm}$ (%)	$W_{\rm L}^{\pm}W_{X}^{\pm}$ (%)	$W_{T}^{\pm}W_{T}^{\pm}$ (%)
Integrated luminosity	3.2	1.8	1.9	1.8
Lepton measurement	3.6	1.9	2.5	1.8
Jet energy scale and resolution	11	2.9	2.5	1.1
Pileup	0.9	0.1	1.0	0.3
b tagging	1.1	1.2	1.4	1.1
Nonprompt lepton rate	17	2.7	9.3	1.6
Trigger	1.9	1.1	1.6	0.9
Limited sample size	38	3.9	14	5.7
Theory	6.8	2.3	4.0	2.3
Total systematic uncertainty	44	6.6	18	7.0
Statistical uncertainty	123	15	42	22
Total uncertainty	130	16	46	23