



# Higher-order corrections for VBS and polarised multi-boson processes

Ansgar Denner, Würzburg

LHC EW WG General Meeting CERN, July 10–12, 2024





# Introduction

- Electroweak vector-boson scattering at the LHC
- Olarised vector bosons
- General remarks on results for EW corrections

### 5 Conclusion







# Introduction

2 Electroweak vector-boson scattering at the LHC

3 Polarised vector bosons

4 General remarks on results for EW corrections

#### 5 Conclusion





#### Motivation

• Vector-boson scattering (VBS)

important process to test the Standard Model (SM)

- sensitive to quartic gauge couplings
- sensitive to Higgs sector and electroweak symmetry breaking (EWSB)
- polarised vector bosons

offer new observables to test SM and mechanism of EWSB

- production of polarised vector boson pairs
- longitudinal VBS scattering

Experiments use general purpose codes like SHERPA, MADGRAPH5\_AMC@NLO or POWHEG/PYTHIA including

- NLO QCD corrections including parton-shower matching etc.
- but no NLO EW corrections

Focus of the talk

- EW corrections
- available results for (mostly) leptonic final states
- $\bullet\,$  remarks on incorporation in experimental analyses  $\Rightarrow\,$  discussion





#### Introduction

- Electroweak vector-boson scattering at the LHC
- 3 Polarised vector bosons
- General remarks on results for EW corrections

#### 6 Conclusion







# Processes: $pp \rightarrow VV + 2j \rightarrow 4\ell + 2j$

WÜRZBURG

Vector-boson scattering (VBS) signal (decays not shown)



Irreducible background to VBS



- $\mathcal{O}(\alpha^4)$  for stable Vs,  $\mathcal{O}(\alpha^6)$  with decays • EW process:
- QCD-induced process:  $\mathcal{O}(\alpha_s^2 \alpha^2)$  for stable Vs,  $\mathcal{O}(\alpha_s^2 \alpha^4)$  with decays
- interferences between EW and QCD contributions:
  - $\mathcal{O}(\alpha_{\rm s}\alpha^3)$  for stable Vs,  $\mathcal{O}(\alpha_{\rm s}\alpha^5)$  with decays
- gluonic channels for neutral final states

UNIVERSITÄT Expansion in multiple couplings Example:  $pp \rightarrow 4\ell jj$  (vector-boson scattering:  $pp \rightarrow VV jj$ ) LO: pure EW diagrams  $\mathcal{O}(e^6)$  and diagrams with gluons  $\mathcal{O}(e^4g_s^2)$ 

NLO: EW and QCD corrections to both types of diagrams at level of cross section:



consequences:

Julius-Maximilians

- QCD and EW corrections cannot be separated in general
- consider complete (well-defined) orders  $\mathcal{O}(\alpha_s^n \alpha^m)$
- $\bullet$  QCD corrections to leading LO terms, i.e.  $\mathcal{O}(\alpha_{\rm s}^3\alpha^4)$  , well defined
- QCD corr. to EW LO overlaps with EW corrections to LO interference

CERN, LHC EW WG General Meeting, July 11, 2024



# Virtual diagrams mix QCD and EW corrections:

- EW correction to LO QCD amplitude
- QCD correction to LO EW amplitude
- QED and QCD IR singularities

Julius-Maximilians-

WÜRZBURG



 $\Rightarrow$  separation into QCD and EW is not well-defined at NLO

real subtraction terms with both gluons and photons needed





### Strategy

WÜRZBURG

- isolate EW process
- subtract QCD-induced process based on theoretical predictions
- $\Rightarrow$  measurement of EW VVjj production

Issues

- QCD and EW corrections must be included in EW signal
- QCD and EW corrections should be included in irreducible QCD background (potentially large!)
- QCD-EW interference should be taken into account (if relevant)



Vector-boson scattering (VBS) topologies:  $\mathcal{O}(q^6)$  all t channel (u channel)



irreducible background to VBS:

WÜRZBURG



EW background  $\mathcal{O}(g^6)$ , s channel (also t channel)

QCD background  $\mathcal{O}(g_s^2 g^4)$ t channel (also s channel)

t channel: incoming quarks/antiquarks connected to outgoing quarks/antiquarks u channel: exchange identical quarks/antiquarks in final state s channel: incoming quark and anti-quark connected, all boson propagators time like

#### UNIVERSITÄT VBS approximation WÜRZBURG



# VBS approximation

- Neglect interferences between t- and u-channel contributions and all s-channel contributions
   ⇒ keep only squares of t- and u-channel contributions
- calculation simplifies considerably ( $\sim 1000$  loop diagrams per channel at  $\mathcal{O}(\alpha_{s}\alpha^{6})$ )
- only applicable to order  $\alpha^6$  and corresponding corrections for VBS cuts (tailored to VBS processes, not applicable to  $\alpha_s^2 \alpha^4$ )
- EW and QCD corrections to VBS uniquely defined (interferences neglected by definition!)
- VBS approximation works within  $\lesssim 1\%$  at LO for  $M_{\rm jj} > 500\,{\rm GeV}$ Denner, Hošeková, Kallweit 1209.2389, Ballestrero et al. 1803.07943
- ullet VBS approximation fails for NLO QCD corrections for small  $M_{\rm jj}$ 
  - $\sim 6\%$  for  $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$  and  $M_{jj} \sim 500 \, {\rm GeV}$  1803.07943
  - $\sim 24\%$  for  ${\rm pp} \to \mu^+\mu^-{\rm e^+e^-jj}$  and  $M_{\rm jj}\gtrsim 100\,{\rm GeV}$  2009.00411
  - $\Rightarrow$  contribution to theoretical error



• Full LO predictions: Ballestrero, Franzosi, Maina '10 (PHANTOM)

#### NLO QCD separately for EW ( $\mathcal{O}(\alpha^6)$ ) and QCD-induced production ( $\mathcal{O}(\alpha_s^2 \alpha^4)$ )

- NLO QCD corrections to EW production in VBS approximation: Jäger, Oleari, Zeppenfeld (+ Bozzi) '06, '07, '09 (VBFNLO); Denner, Hošeková, Kallweit '12
   PS matching: Jäger, Zanderighi '11, '13 + Karlberg '14 (W<sup>+</sup>W<sup>±</sup>, ZZ) Rauch, Plätzer '16 (W<sup>+</sup>W<sup>-</sup>), Jäger, Karlberg, Scheller '18, '24 (WZ)
- NLO QCD corrections to QCD production: Melia, Melnikov, Röntsch, Zanderighi '10, '11 (W<sup>+</sup>W<sup>+</sup>); Greiner et al. '12 (W<sup>+</sup>W<sup>-</sup>); Campanario, Kerner, Ninh, Zeppenfeld '13, '14 (VBFNLO) (W<sup>+</sup>W<sup>+</sup>, WZ, ZZ)
   PS matching: Melia, Nason, Röntsch, Zanderighi '11 (W<sup>+</sup>W<sup>±</sup>, WZ, ZZ)
- $\bullet~{\rm EW}$  corrections for complete processes  ${\rm pp} \rightarrow 4f + 2{\rm j}$ 
  - NLO EW and QCD corrections for VBS into  $W^+W^\pm,\,W^+Z,\,ZZ$  Biedermann et al.'16; Denner et al.'19, '20, '22
  - full NLO corrections to VBS into W<sup>+</sup>W<sup>+</sup> and ZZ Biedermann, Denner, Pellen '17; Denner, Franken, Pellen, Schmidt '21
  - NLO EW matched to EW PS and interfaced to QCD PS for W<sup>±</sup>W<sup>±</sup> within POWHEG-BOX-RES Chiesa, Denner, Lang, Pellen '19

Julius-Maximilians-UNIVERSITÄT

Existing NLO calculations – state of the art



#### Calculations for massive VBS within the SM

Julius-Maximilians-UNIVERSITÄT

- all processes known at NLO QCD accuracy matched to QCD PS
  - for both QCD-/EW-induced process
  - $\bullet\,$  all available in  $\rm VBFNLO$
  - $\bullet\,$  all available in  ${\rm POWHEG\text{-}BOX} \Rightarrow \mathsf{parton\text{-}shower}$  (PS) matching
  - often in VBS approximation (no int., s channel sometimes included)
  - $\bullet$  possible to generate in  $\rm MG5\_AMC@NLO$  or  $\rm Sherpa$
- NLO EW corrections known for  $W^{\pm}W^{\pm}$ , WZ, ZZ, and  $W^{+}W^{-}$  with leptonic decays NLO EW matched to EW PS and interfaced to QCD PS for  $W^{\pm}W^{\pm}$  in POWHEG-BOX-RES
- $\bullet\,$  full NLO computation only for  $\mathrm{W^+W^+}$  and  $\mathrm{ZZ}$  with leptonic decays
- no NLO results for hadronically decaying vector bosons
- no NLO results for polarised vector bosons
- no NNLO results known



#### Large NLO EW corrections to VBS processes

Julius-Maximilians-

| process                                                                       | $\sigma_{ m LO}^{{\cal O}(lpha^6)}$ [fb] | $\Delta \sigma_{ m NLO, EW}^{{\cal O}(lpha^7)}$ [fb] | $\delta_{\rm EW}$ [%] |
|-------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------|
| Biedermann et al. 1708.00268                                                  | (Dittmaier et al.                        | 2308.16716)                                          |                       |
| $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj (W^+W^+)$                          | 1.4178(2)                                | -0.2169(3)                                           | -15.3                 |
| Denner et al. 1904.0088<br>pp $\rightarrow \mu^+ \mu^- e^+ \nu_e jj (ZW^+)$   | 0.25511(1)                               | -0.04091(2)                                          | -16.0                 |
| Denner et al. 2009.00411<br>pp $\rightarrow \mu^+ \mu^- e^+ e^- jj$ (ZZ)      | 0.097681(2)                              | -0.015573(5)                                         | -15.9                 |
| Denner et al. 2202.10844<br>pp $\rightarrow \mu^+ \mu^- e^+ e^- jj (W^+ W^-)$ | 2.6988(3)                                | -0.307(1)                                            | -11.4                 |

- EW corrections similar for all processes and rather independent of cuts ⇒ intrinsic feature of VBS process
- smaller corrections to W<sup>+</sup>W<sup>-</sup> due to Higgs resonance in fiducial phase space (Higgs contribution about 25%, corresponding EW corrections -6.5%)
- NLO EW corrections to fiducial cross section well described by simple logarithmic approximation (Sudakov approximation  $s, |t|, |u| \gg M_W^2$ )
- NLO EW corrections to distributions not well described by Sudakov approximation

#### Julius-Maximilians-**UNIVERSITÄT** Distributions for pp $\rightarrow \mu^+ \mu^- e^+ \nu_{ejj}$ (ZW<sup>+</sup>jj)



Distribution in transverse momentum of the leading jet Denner et al. 1904.00882



- $\mathcal{O}(\alpha^7) \sim -30\%$ at  $p_{T,i_1} = 800 \, \text{GeV}$ (Sudakov logarithms) dominant correction larger than QCD scale uncertainty
- $\mathcal{O}(\alpha_{\rm s}\alpha^6) \lesssim 10\%$ for  $p_{T,i_1} > 100 \,\mathrm{GeV}$ small QCD scale uncertainty owing to suitable dynamical scale  $\mu = \sqrt{p_{\mathrm{T},j_1} p_{\mathrm{T},j_2}}$
- large correction for small  $p_{T,i_1}$  due to phase-space suppression at LO (all jets have small  $p_{\rm T}$ ) redistribution of events at NLO



### Corrections of order $\mathcal{O}(\alpha_s^2 \alpha^5)$ normalised to $\mathcal{O}(\alpha_s^2 \alpha^4)$ ("EW corrections to LO QCD contribution")

• pp  $\rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$  (W<sup>+</sup>W<sup>+</sup>):

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- negligible: 0.2% for  $M_{\rm j_1j_2}>500\,{\rm GeV}$ , result of cancellations
- EW corrections to LO QCD  $\mathcal{O}(\alpha_{\rm s}^2 \alpha^4)$ : -12.3%
- QCD corrections to LO interference  $\mathcal{O}(\alpha_{\rm s}\alpha^5)$ : 12.5%
- LO interference reaches 30% of LO QCD contribution
- $\bullet\,$  LO QCD amounts to 12% of LO cross section
- pp  $\rightarrow \mu^+ \mu^- e^+ e^- jj$  (ZZ):
  - sizeable: -10% (-8%) for  $M_{j_1j_2} > 500 \,{
    m GeV}$  ( $100 \,{
    m GeV}$ )
  - EW corrections to LO QCD  $\mathcal{O}\bigl(\alpha_{\rm s}^2\alpha^4\bigr):~-11.6\%~(-8.2\%)$
  - QCD corrections to LO interference  $\mathcal{O}(\alpha_{\rm s}\alpha^5)$ : 1.3% (0.3%)
  - LO interference only 0.8% (4%) of LO QCD contribution
  - LO QCD amounts to 60% (82%) of LO cross section

 $\Rightarrow \mathsf{EW} \ \mathcal{O}(\alpha_{\rm s}^2 \alpha^5) \text{ corrections generically large} (also seen in individual partonic processes)$ 





#### Introduction

2 Electroweak vector-boson scattering at the LHC

#### Olarised vector bosons

4 General remarks on results for EW corrections

#### 6 Conclusion

#### 6 Backup



#### Observables with polarised massive vector bosons

- are important probes of Standard Model gauge and Higgs sectors,
- may provide discrimination power between SM and beyond-SM physics.
- Longitudinal polarisation mode of vector bosons is
  - a consequence of the EW Symmetry Breaking
  - very sensitive to deviations from SM: unitarity of cross sections with longitudinally polarised vector bosons realised in SM via cancellation of different contributions.

### Challenges and problems

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- Unstable massive vector bosons appear only as virtual particles  $\Rightarrow$ 
  - no unique definition of vector-boson polarisations for off-shell bosons
  - diagrams without resonant vector bosons contribute to physical final state



vector bosons are massive ⇒
 definition of polarisation depends on reference frame



Idea: use pole expansion to extract resonant (vector-boson) contributions in gauge-invariant way Ballestrero, Maina, Pelliccioli 1710.09339, 1907.04722

formulation for NLO developed by Denner, Pelliccioli 2006.14867

 not all diagrams involve required resonances resonant diagrams
 non-resonant diagrams



• split full matrix element into resonant part and non-resonant part using pole expansion (gauge-invariant)

$$\begin{aligned} \mathcal{A} &= \frac{R(k^2)}{k^2 - M^2 + iM\Gamma} + N(k^2) \\ &= \frac{R(M^2)}{k^2 - M^2 + iM\Gamma} + \frac{R(k^2) - R(M^2)}{k^2 - M^2} + N(k^2) = \mathcal{A}_{\text{res}} + \mathcal{A}_{\text{nonres}} \end{aligned}$$

• consider non-resonant part as irreducible background: no resonance

• define polarisation for on-shell residue  $R(M^2)$  (gauge invariant)

Julius-Maximilians-

Definition of polarisation based on pole approximation II



Separate polarisation modes of resonant amplitude

split propagator numerator of resonant particle



$$\begin{split} \mathcal{A}_{\rm res} &= \mathcal{P}_{\mu} \, \frac{-g^{\mu\nu}}{k^2 - M_{\rm W}^2 + \mathrm{i}\Gamma_{\rm W}M_{\rm W}} \, \mathcal{D}_{\nu} = \mathcal{P}_{\mu} \, \frac{\sum_{\lambda} \varepsilon_{\lambda}^{\mu*}(k)\varepsilon_{\lambda}^{\nu}(k)}{k^2 - M_{\rm W}^2 + \mathrm{i}\Gamma_{\rm W}M_{\rm W}} \, \mathcal{D}_{\nu} \\ &= \sum_{\lambda=\mathrm{L},\pm} \, \frac{\mathcal{M}_{\lambda}^{\mathrm{prod}}\,\mathcal{M}_{\lambda}^{\mathrm{dec}}}{k^2 - M_{\rm W}^2 + \mathrm{i}\Gamma_{\rm W}M_{\rm W}} =: \sum_{\lambda=\mathrm{L},\pm} \mathcal{A}_{\lambda} \,, \\ \mathcal{A}_{\mathrm{res}} \Big|^2 &= \sum_{\lambda} \left| \mathcal{A}_{\lambda} \right|^2 + \sum_{\lambda\neq\lambda'} \mathcal{A}_{\lambda}^* \, \mathcal{A}_{\lambda'} \end{split}$$

• incoherent sum  $\sum_{\lambda} |A_{\lambda}|^2$ :  $|A_{\lambda}|^2 \propto$  "polarised cross sections", "polarisation fractions":  $f_{\lambda} = \frac{|A_{\lambda}|^2}{\sum_{\lambda} |A_{\lambda}|^2}$ 

• interferences  $\sum_{\lambda \neq \lambda'} A_{\lambda}^* A_{\lambda'}$ vanish for observables fully inclusive in decay products in general to be considered as extra background

Julius-Maximilians-UNIVERSITÄT



#### Method

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- applicable to arbitrary processes and multiple resonances at LO, NLO QCD and EW and beyond
- needs pole approximation/ pole expansion for all NLO contributions including subtraction terms ⇒ technical complication
- implementation for processes with two polarised vector bosons complete in double-pole approximation (DPA) for NLO QCD and EW
- use of spin-correlated narrow-width approximation (NWA) also possible (simpler but potentially less precise)

Method allows to separate

- polarised cross sections in arbitrary frames
- interference contributions between polarisations
- irreducible background.

All contributions that are not small need to be taken into account!



#### Fixed-order results at (N)NLO

- results at LO for VBS for ss-WW, WZ, ZZ, os-WW Ballestrero, Maina, Pelliccioli '17, '19, '20 [PHANTOM]
- results at NLO QCD for

• pp  $\rightarrow jj\ell^+\ell^-$  (W<sup>+</sup>Z)

- pp  $\rightarrow \mu^+ \nu_\mu e^+ \nu_e (W^+ W^-)$ Denner, Pelliccioli 2006,14867 • pp  $\rightarrow \mu^+ \mu^- e^+ \nu_e$  (W<sup>+</sup>Z)
  - Denner, Pelliccioli 2010.07149
  - Denner, Haitz, Pelliccioli '22
- results at NLO EW for (diboson production)
  - pp  $\rightarrow \mu^+ \mu^- e^+ e^-$  (ZZ) Denner, Pelliccioli 2107.06579
  - pp  $\rightarrow \mu^+ \mu^- e^+ \nu_e$  (W<sup>+</sup>Z) Baglio, Dao, Le 2203.01470, 2208.09232
  - pp  $\rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu$  (WW) Denner, Pelliccioli 2311.16031, Dao, Le 2311.17027
- results at NNLO QCD for
  - pp  $\rightarrow \mu^+ \nu_\mu e^+ \nu_e$  (W<sup>+</sup>W<sup>-</sup>) (DPA and NWA) Poncelet, Popescu 2102.13583

Implementation in Monte Carlo generators

- MADGRAPH5\_AMC@NLO: spin-correlated narrow-width approximation (NWA), LO Franzosi, Mattelaer, Ruiz, Shil 1912.01725
- SHERPA: approximate NLO QCD (NWA) Hoppe, Schönherr, Siegert 2310.14803
- POWHEG-BOX-RES: for diboson processes at NLO QCD

Pelliccioli, Zanderighi 2311.05220



#### Massive diboson production with leptonic decays within the SM

- $\bullet$  NLO QCD corrections for all processes  $\mathrm{W^+W^-},\,\mathrm{WZ},\,\mathrm{ZZ}$
- $\bullet$  PS matching available via  $\operatorname{POWHEG-BOX-RES}$
- $\bullet\,$  NNLO QCD results for  $\rm W^+W^-$
- $\bullet$  NLO EW corrections for all processes  $\mathrm{W^+W^-},\,\mathrm{WZ},\,\mathrm{ZZ}$

Massive diboson production with semi-leptonic decays within the SM

 $\bullet$  NLO QCD results for  ${\rm ZW} \to \ell^+ \ell^- j j$ 

Massive VBS within the SM

Julius-Maximilians-

WÜRZBURG

- LO results exist within PHANTOM
- first NLO QCD+EW results being calculated

Implementation in Monte Carlo generators

- $Madgraph5_AMC@NLO:$  spin-correlated NWA at LO
- SHERPA: approximate NLO QCD in NWA



| $\mathrm{pp} \rightarrow \mathrm{e}$ | $e^+ \nu_e \mu^-$ | $\bar{\nu}_{\mu}$ | (WW | '): |
|--------------------------------------|-------------------|-------------------|-----|-----|
|--------------------------------------|-------------------|-------------------|-----|-----|

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Denner, Haitz, Pelliccioli 2311.16031

| state                                                             | $\sigma_{ m LO}$ [fb] | $\sigma_{ m NLOEW}$ [fb] | $\delta_{\rm EW}[\%]$ | $f_{\rm NLOEW}[\%]$ |  |  |
|-------------------------------------------------------------------|-----------------------|--------------------------|-----------------------|---------------------|--|--|
| ${ m b}ar{ m b}$ included, $\gamma{ m b},\gammaar{ m b}$ excluded |                       |                          |                       |                     |  |  |
| full                                                              | 259.02(2)             | 253.95(9)                | -1.96                 | 103.4               |  |  |
| unp.                                                              | 249.97(2)             | 245.49(2)                | -1.79                 | 100.0               |  |  |
| LL                                                                | 21.007(2)             | 20.663(2)                | -1.64                 | 8.4                 |  |  |
| LT                                                                | 33.190(3)             | 33.115(3)                | -0.23                 | 13.5                |  |  |
| TL                                                                | 34.352(5)             | 34.230(5)                | -0.35                 | 13.9                |  |  |
| ΤT                                                                | 182.56(2)             | 178.21(3)                | -2.38                 | 72.6                |  |  |
| int.                                                              | -21.14(5)             | -20.6(2)                 | -2.45                 | -8.4                |  |  |

- $\bullet$  irreducible background (3.4%) consistent with DPA accuracy
- ullet sizeable interferences (-8.4%) from  $p_{\rm T}$  cuts on charged leptons
- NLO EW corrections differ for various polarised and unpolarised cross sections
- expect larger differences for VBS





#### Introduction

- 2 Electroweak vector-boson scattering at the LHC
- 3 Polarised vector bosons

#### 4 General remarks on results for EW corrections

#### 5 Conclusion







#### Existing results for EW corrections

- no public codes except for  $W^{\pm}W^{\pm}$  within POWHEG-BOS-RES NLO EW matched to EW PS and interfaced to QCD PS Chiesa, Denner, Lang, Pellen 1906.01863
- fiducial cross sections and various distributions for specific setups (one-dimensional histograms)
- for other setups obtainable with some numerical efforts
- can be used to reweight Monte Carlo events (as has been done in the past)

Long-term goal (not available soon)

- Les Houches events including EW corrections
- suitable for matching to (e.g. PYTHIA) parton shower
- public codes





#### QCD corrections

- Standard procedure: 7-point scale variations to estimate uncertainty owing to missing higher-order corrections
- conventional, simple, easy to use, but not reliable

EW corrections

- no standard method to estimate missing higher-order corrections
- available approaches
  - differences between renormalisation schemes, e.g.  $\alpha(M_{\rm Z})$  versus  $\alpha_{G_{\mu}}$
  - square of relative NLO correction as uncertainty
  - resummation in Sudakov approximation as uncertainty estimate
  - counting of powers of couplings and logarithms
  - use process-specific combination of estimates
- sensible estimate needs agreement of experts ⇒ task for LHC EW WG?

# A P2

#### Other sources of errors

Julius-Maximilians-

WÜRZBURG

- use of approximations
  - VBS approximation
  - pole approximation
  - NWA
- QED final-state radiation
- photon-induced contributions

#### Estimates from comparison of results of different codes

- $\bullet$  done for unpolarised  $W^+W^+$  scattering at NLO QCD within VBSCAN COST network Ballestrero et al. 1803.07943
- ongoing for polarised ZZ production within COMETA WG1 https://foswiki.web.cern.ch/COMETA/WkG1





• check of our results by other codes

done for W<sup>+</sup>W<sup>+</sup> scattering by Freiburg group Dittmaier et al. 2308.16716 bug with minor impact found  $[0.005 \,\text{fb} \text{ in } \mathcal{O}(\alpha_s^2 \alpha^5)]$ 

- NLO corrections to polarised VBS  $\Rightarrow$  in the making for  $W^+W^+$  needed for other channels?
- estimate of theoretical uncertainty  $\Rightarrow$  see above
- resummation of EW logarithms  $\Rightarrow$  needed for LHC?

more relevant for higher energies

matching of EW corrections to parton showers (including EW effects)
 ⇒ work ongoing by different groups

• . . .





#### Introduction

- 2 Electroweak vector-boson scattering at the LHC
- 3 Polarised vector bosons
- 4 General remarks on results for EW corrections

#### 5 Conclusion

#### 🗿 Backup





#### Higher-order (EW) corrections in VBS

- NLO QCD matched to QCD PS available in Monte Carlo generators
- results for EW corrections exist in form of one-dimensional histograms
- EW corrections typically at the level of 10–20% similarly large for irreducible background
- estimate of theoretical uncertainties to be developed

#### Polarised multi-boson processes

- MADGRAPH5\_AMC@NLO: spin-correlated NWA at LO
- SHERPA: approximate NLO QCD in NWA
- diboson production with leptonic decays
  - $\bullet~$  NLO QCD and matching to PS via  $\operatorname{Powheg-Box-Res}$
  - EW corrections in form of one-dimensional histograms
  - NLO (EW) corrections depend on boson polarisations
- VBS
  - LO results exist within PHANTOM
  - NLO QCD+EW results being calculated.





#### Introduction

- 2 Electroweak vector-boson scattering at the LHC
- 3 Polarised vector bosons
- 4 General remarks on results for EW corrections

#### 5 Conclusion



NLO QCD and EW corrections to  $\operatorname{ZZ}$  production in VBS





- Loose VBS cut:  $M_{j_1j_2} > 100 \,\text{GeV}$ based on 1708.02812 (CMS)
- 24% NLO QCD corrections to fiducial cross section
- *s*-channel NLO contribution involving tri-boson production



Less suppression at NLO owing to extra gluon jet

⇒ include tri-boson contribution (s-channel) and interferences for loose VBS cuts

Julius-Maximilians-UNIVERSITÄT

Source of large EW corrections

AP2

Double-pole approximation (DPA) for outgoing W bosons effective vector-boson approximation (EVBA) for incoming W bosons

- DPA and EVBA reduce discussion to  $V_1V_2 \rightarrow V_3V_4$
- $\bullet\,$  DPA accurate for cross section within 1%
- EVBA crude approximation ( $\sim 50\%$ ) Kuss, Spiesberger '96, Dittmaier et al. '23 sufficient to understand dominant effects



high-energy, logarithmic approximation for  $V_1V_2 \rightarrow V_3V_4$ 

Denner, Pozzorini '00

$$d\sigma_{\rm LL} = d\sigma_{\rm LO} \left[ 1 - \frac{\alpha}{4\pi} 4C_{\rm W}^{\rm EW} \log^2 \left( \frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2b_{\rm W}^{\rm EW} \log \left( \frac{Q^2}{M_{\rm W}^2} \right) \right]$$
$$C_{\rm W}^{\rm EW} = \frac{2}{s_{\rm w}^2}, \quad b_{\rm W}^{\rm EW} = \frac{19}{6s_{\rm w}^2} \quad \text{for transverse W bosons,} \quad Q \to M_{4\ell}$$

(double EW logs, collinear single EW logs, and single logs from parameter renormalisation included) (angular-dependent logarithms omitted,  $\log \frac{t}{u} \log \frac{Q}{M_W}$ )

#### large NLO EW corrections intrinsic feature of VBS

CERN, LHC EW WG General Meeting, July 11, 2024

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

A. Denner (Würzburg) Corrections for VBS and polarised multi-boson processes 27/25



AP

Simple formula for total cross section

$$d\sigma_{\rm LL} = d\sigma_{\rm LO} \left[ 1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm EW} \log^2 \left( \frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm EW} \log \left( \frac{Q^2}{M_{\rm W}^2} \right) \right]$$

| process                                     | $\delta_{\rm EW}$ [%] | $\delta_{\rm EW}^{\rm log,int}$ [%] | $\delta_{\rm EW}^{\rm log, diff}$ [%] | $\langle M_{4\ell} \rangle$ [GeV] |
|---------------------------------------------|-----------------------|-------------------------------------|---------------------------------------|-----------------------------------|
| $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$ | -16.0                 | -16.1                               | -15.0                                 | 390                               |
| $pp \rightarrow \mu^+ \mu^- e^+ \nu_e jj$   | -16.0                 | -17.5                               | -16.4                                 | 413                               |
| $pp \rightarrow \mu^+ \mu^- e^+ e^- jj$     | -15.9                 | -15.8                               | -14.8                                 | 385                               |

- surprisingly good agreement with complete calculation
- large EW corrections are due to large gauge couplings of vector bosons ( $C^{\rm EW}$ ) and large scale  $Q \sim \langle M_{4\ell} \rangle \sim 400 \, {\rm GeV}$
- angular-dependent logarithms different for different processes  $\sim 1{-}2\%$  owing to cancellations

#### large NLO EW corrections intrinsic feature of VBS

CERN, LHC EW WG General Meeting, July 11, 2024



Process  $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu jj$ 

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

Denner, Franken, Schmidt, Schwan 2202.10844

- EW corrections smaller than for other VBS processes
- fiducial phase space contains Higgs resonance

| setup                         | $\sigma_{ m LO}^{{\cal O}(lpha^6)}$ [fb] | $\Delta \sigma_{ m NLO, EW}^{{\cal O}(lpha^7)}$ [fb] | $\delta_{\rm EW}$ [%] |
|-------------------------------|------------------------------------------|------------------------------------------------------|-----------------------|
| VBS setup                     | 2.6988(3)                                | -0.307(1)                                            | -11.4                 |
| VBS setup, Higgs cut out      | 1.6117(2)                                | -0.239(2)                                            | -14.8                 |
|                               |                                          | 0.060(0)                                             | 10.0                  |
| VBS setup, Higgs cut out      | 1.9750(2)                                | -0.260(2)                                            | -13.2                 |
| VBS setup, Higgs contribution | 0.7238(2)                                | -0.047(2)                                            | -6.5                  |
| Higgs setup                   | 1.5322(2)                                | -0.103(1)                                            | -6.7                  |

- $\bullet~{\rm EW}$  corrections to generic VBS contributions  $\sim -15\%$
- $\bullet~{\rm EW}$  corrections to Higgs resonance contribution  $\sim -6.5\%$
- Higgs cut:  $|M_{4\ell} M_{\rm H}| > 20\Gamma_{\rm H} \approx 80 \,{\rm MeV}$ , removes 98.4% of resonance
- Higgs contribution:  $|M_{4\ell} M_{\rm H}| < 20\Gamma_{\rm H}$
- Higgs setup: cuts inspired by CMS Higgs search CMS 1806.05246



#### Biedermann, Denner, Pellen 1708.00268

## PDFs

NNPDF3.0QED Ball et al. '13, '14 factorisation and renormalisation scales:  $\mu_{\rm F} = \mu_{\rm R} = \sqrt{p_{\rm T,j_1}p_{\rm T,j_2}}$ 

# Recombination / jet clustering

Anti- $k_{\rm T}$  algorithm with R = 0.4 Cacciari, Salam, Soyez '08 recombination of photons with charged partons with R = 0.1

#### Cuts: based on ATLAS 1405.6241, 1611.02428 and CMS 1410.6315

 $\begin{array}{ll} p_{\mathrm{T},j} > 30 \, \mathrm{GeV}, & |y_{j}| < 4.5, \quad \Delta R_{j\ell} > 0.3 \\ p_{\mathrm{T},\ell} > 20 \, \mathrm{GeV}, & |y_{\ell}| < 2.5, \quad \Delta R_{\ell\ell} > 0.3, \quad \Delta R_{ij} = \sqrt{(\Delta y_{ij})^{2} + (\Delta \phi_{ij})^{2}} \\ E_{\mathrm{T,miss}} > 40 \, \mathrm{GeV} \\ M_{jj} > 500 \, \mathrm{GeV}, & |\Delta y_{jj}| > 2.5 \quad (\mathsf{VBF cuts}) \\ \mathrm{require} \geq 2 \text{ jets}, 2 \text{ same-sign leptons and missing energy} \end{array}$ 





# Energy: 13 TeV (14 TeV)

Denner et al. 1904.00882

#### PDFs

NNPDF3.1QED Ball et al. '14, Bertone et al. '17 factorisation and renormalisation scales:  $\mu_{\rm F} = \mu_{\rm R} = \sqrt{p_{\rm T,j_1} p_{\rm T,j_2}}$ 

#### Recombination / jet clustering

Anti- $k_{\rm T}$  algorithm with R=0.4  $\,$  Cacciari, Salam, Soyez '08 recombination of photons with charged partons with R=0.4

#### Cuts: loose fiducial region of CMS 1901.04060

 $\begin{array}{ll} p_{\mathrm{T},j} > 30 \, \mathrm{GeV}, & |y_{j}| < 4.7, \quad \Delta R_{\mathrm{j}\ell} > 0.4 & \Delta R_{ij} = \sqrt{(\Delta y_{ij})^{2} + (\Delta \phi_{ij})^{2}} \\ p_{\mathrm{T},\ell} > 20 \, \mathrm{GeV}, & |y_{\ell}| < 2.5, \quad M_{3\ell} > 100 \, \mathrm{GeV}, \quad M_{\ell\ell} > 4 \, \mathrm{GeV} \\ |M_{\mu^{+}\mu^{-}} - M_{\mathrm{Z}}| < 15 \, \mathrm{GeV} & \\ M_{\mathrm{j}j} > 500 \, \mathrm{GeV}, & |\Delta y_{\mathrm{j}j}| > 2.5 & (\mathsf{VBF cuts}) \\ \mathrm{require} \geq 2 \, \mathrm{jets}, \, 3 \, \mathrm{leptons} \end{array}$ 





Denner, Franken, Pellen, Schmidt 2009.00411

#### PDFs

NNPDF3.1QED Ball et al. '14, Bertone et al. '17 factorisation and renormalisation scales:  $\mu_{\rm F} = \mu_{\rm R} = \sqrt{p_{\rm T,j_1} p_{\rm T,j_2}}$ 

#### Recombination / jet clustering

#### Cuts: inspired by CMS 1708.02812

 $\begin{array}{ll} p_{\mathrm{T},j} > 30 \, \mathrm{GeV}, & |y_{j}| < 4.7, \quad \Delta R_{j\ell} > 0.4 \qquad \Delta R_{ij} = \sqrt{(\Delta y_{ij})^{2} + (\Delta \phi_{ij})^{2}} \\ p_{\mathrm{T},\ell} > 20 \, \mathrm{GeV}, & |y_{\ell}| < 2.5, \quad \Delta R_{\ell\ell'} > 0.05, \quad M_{\ell^{+}\ell'^{-}} > 4 \, \mathrm{GeV} \\ 60 \, \mathrm{GeV} < M_{\ell^{+}\ell^{-}} < 120 \, \mathrm{GeV} \\ \text{inclusive setup: } M_{jj} > 100 \, \mathrm{GeV}, \qquad \mathsf{VBS \ setup} \ M_{jj} > 500 \, \mathrm{GeV} \\ \text{require} \geq 2 \ \text{jets}, \ 4 \ \text{leptons} \end{array}$ 





Denner, Franken, Schmidt, Schwan 2202.10844

# PDFs

NNPDF3.1QED Ball et al. '14, Bertone et al. '17 factorisation and renormalisation scales:  $\mu_{\rm F} = \mu_{\rm R} = \sqrt{p_{\rm T,j_1}p_{\rm T,j_2}}$ 

### Recombination / jet clustering

#### Cuts: similar to CMS 2205.05711

 $\begin{array}{ll} p_{\mathrm{T},j} > 30 \, \mathrm{GeV}, & |y_{\mathrm{j}}| < 4.5, \quad \Delta R_{\mathrm{j}\ell} > 0.4 \quad \Delta R_{ij} = \sqrt{(\Delta y_{ij})^2 + (\Delta \phi_{ij})^2} \\ p_{\mathrm{T},\ell} > 25 \, \mathrm{GeV}, & |y_\ell| < 2.4, \quad p_{\mathrm{T},\ell^+\ell^-} > 30 \, \mathrm{GeV}, \quad M_{\ell^+\ell^-} > 20 \, \mathrm{GeV} \\ p_{\mathrm{T},\mathrm{miss}} > 20 \, \mathrm{GeV} & \\ M_{\mathrm{j}j} > 500 \, \mathrm{GeV}, \quad \Delta y_{\mathrm{j}j} > 2.5 \\ \mathrm{require} \ge 2 \, \mathrm{jets}, \, 2 \, \mathrm{leptons} \end{array}$ 





Denner, Franken, Schmidt, Schwan 2202.10844

# PDFs

NNPDF3.1QED Ball et al. '14, Bertone et al. '17 factorisation and renormalisation scales:  $\mu_{\rm F} = \mu_{\rm R} = \sqrt{p_{\rm T,j_1} p_{\rm T,j_2}}$ 

#### Recombination / jet clustering

Anti- $k_{\rm T}$  algorithm with R=0.4  $\,$  Cacciari, Salam, Soyez '08 recombination of photons with charged partons with R=0.4

#### Cuts: following CMS 1806.05246 (Higgs search)

$$\begin{array}{ll} p_{\mathrm{T},j} > 30 \, \mathrm{GeV}, & |y_j| < 4.7, \quad \Delta R_{j\ell} > 0.4 \qquad \Delta R_{ij} = \sqrt{(\Delta y_{ij})^2 + (\Delta \phi_{ij})^2} \\ p_{\mathrm{T},\ell}^{\mathrm{lead}} > 25 \, \mathrm{GeV}, & p_{\mathrm{T},\ell}^{\mathrm{trail}} > 10 \, \mathrm{GeV}, \quad |y_\ell| < 2.4, \\ p_{\mathrm{T},\ell+\ell^-} > 30 \, \mathrm{GeV}, & M_{\ell+\ell^-} > 12 \, \mathrm{GeV}, \quad \Delta R_{\ell+\ell^-} > 0.4 \\ p_{\mathrm{T},\mathrm{miss}} > 20 \, \mathrm{GeV}, & 60 \, \mathrm{GeV} < M_{\mathrm{T},\ell+\ell^-,\mathrm{miss}} < 125 \, \mathrm{GeV} \\ M_{j_1j_2} > 400 \, \mathrm{GeV}, & \Delta y_{j_1j_2} > 3.5, \quad p_{\mathrm{T},j_3} < 30 \, \mathrm{GeV} \text{ (jet veto on 3rd jet)} \\ |z_{\ell j_1j_2}| < 0.5, \quad z_{\ell j_1j_2} = \frac{2y_\ell - y_{j_1} - y_{j_2}}{2|y_{j_1} - y_{j_2}|}, \quad \mathrm{require 2 \, jets, 2 \, leptons} \end{array}$$



$$pp \rightarrow e^+ e^- \mu^+ \mu^-$$
 (ZZ):

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

#### Denner, Pelliccioli 2107.06579

| mode                  | $\sigma_{ m LO}$ [fb]          | $\delta_{ m QCD}$ | $\delta_{\mathrm{EW}}$ | $\delta_{ m gg}$ | $\sigma_{ m NLO_+}$ [fb]      |
|-----------------------|--------------------------------|-------------------|------------------------|------------------|-------------------------------|
| full                  | $11.1143(5)^{+5.6\%}_{-6.8\%}$ | +34.9%            | -11.0%                 | +15.6%           | $15.505(6)^{+5.7\%}_{-4.4\%}$ |
| unpol.                | $11.0214(5)^{+5.6\%}_{-6.8\%}$ | +35.0%            | -10.9%                 | +15.7%           | $15.416(5)^{+5.7\%}_{-4.4\%}$ |
| $\rm Z_L \rm Z_L$     | $0.64302(5)^{+6.8\%}_{-8.1\%}$ | +35.7%            | -10.2%                 | +14.5%           | $0.9002(6)^{+5.5\%}_{-4.3\%}$ |
| $\rm Z_L \rm Z_T$     | $1.30468(9)^{+6.5\%}_{-7.7\%}$ | +45.3%            | -9.9%                  | +2.8%            | $1.8016(9)^{+4.3\%}_{-3.5\%}$ |
| $Z_{\rm T} Z_{\rm L}$ | $1.30854(9)^{+6.5\%}_{-7.7\%}$ | +44.3%            | -9.9%                  | +2.8%            | $1.7933(9)^{+4.3\%}_{-3.4\%}$ |
| $Z_{\rm T} Z_{\rm T}$ | $7.6425(3)^{+5.2\%}_{-6.4\%}$  | +31.2%            | -11.2%                 | +20.5%           | $10.739(4)^{+6.2\%}_{-4.7\%}$ |

- small irreducible background (0.5%) and interferences (1.2%)
- sizeable QCD and EW corrections
- substantial contribution from loop-induced gg fusion for LL and TT
- polarisation fractions roughly conserved by NLO corrections owing to cancellations

