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Figure 8: Comparison of our default MiNNLOPS prediction NNLO(QCD,QED)PS
QCDxEW

with MPI
effects (blue, solid) and without (red, dashed) against the ATLAS data from the analysis [9].
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dedicated MC’s: Matrix, MCFM, 
NNLOjet, … 

scale variation at NNLO 

+↵3

S d�N3LO

NLO QCD + EW 
vs. 

NLO QCD x EW 
scheme variation, e.g. Gmu vs. a(mZ) 

in case of EW Sudakov 
dominance: exponentiation

+
•sufficient?
•reliable?



EW uncertainties: Sudakov

EW corrections become sizeable  
at large pT,V: -30% @ 1 TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties  
of relative           ?  

[7] TODO (): We should test the degree of correlation of QCD cor-
rections/uncertainties (and resulting cancellation in ratios) by means of
NLO studies. Afterwards, if possible, also through NNLO K-factors.

223

4.2 Pure EW uncertainties of relative O(↵2)224

First of all, note that for each process the corresponding QCD predictions and225

EW corrections should be computed in the same EW input scheme, otherwise226

NLO EW accuracy could be spoiled (here one should be especially careful if227

(N)NLO QCD and NLO EW corrections are computed with different tools).228

As a conservative estimate of missing higher-order EW effects we propose to229

take 10% of the NLO EW correction plus 50% of the 2-loop NLL Sudakov logs,230

i.e.231

d

dx
�
(V )
EW(~"EW, ~"QCD) = (1� 0.1 "EW,1)

d

dx
�
(V )
NLOEW(~"QCD)232

+ (1 + 0.5 "EW,2)
d

dx
�
(V )
NNLOEW(~"QCD), (15)233

with nuisance parameters "EW,i 2 [�1, 1]. The first term (0.1 "EW,1) is supposed234

to describe uncertainties of order ↵ times the NLO EW correction, which are235

not included in the NLL Sudakov approximation. The second term (0.5 "EW,2)236

mimics further uncertainties of the NLL two-loop approximation as well as the237

lack of Sudakov resummation. For instance, in the extreme scenario of an NLO238

EW correction �NLO = �50%, the expected NNLO EW Sudakov correction239

(based on exponentiation) amounts (assuming "EW,1 = "EW,2) to �NNLO =240

��
2
NLO

/2 = 12.5%, and our uncertainty estimate to �0.1�NLO + 0.5�NNLO =241

5% + 6.25% ' 11%, while the unknown N3NLO EW terms are expected to be242

as small as �NNNLO = �
3
NLO

/6 = �NLO�NNLO/3 ' 2%.243

[8] The above prescription is still under discussion: see Sect.8.1

244

Given the universal nature of Sudakov EW corrections and the fact that245

pp ! V j involves only very few independent EW coupling structures, it is nat-246

ural to assume that the known NLO+NNLO EW corrections and the unknown247

higher-order effects depend on the process (V = W
±
, Z, �) in a very similar248

way. Thus we recommend to vary the nuisance parameters ~"EW in eq. (15) in a249

correlated way across processes.250
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[Ciafaloni, Comelli,’98; 
Lipatov, Fadin, Martin, Melles, '99; 
Kuehen, Penin, Smirnov, ’99; 
Denner, Pozzorini, '00]

EW Sudakov logarithms at Q ⇠ TeV � MW

Soft/collinear logarithms from virtual EW bosons [Bauer, Becher, Ciafaloni,

Comelli, Denner, Fadin, Kühn, Lipatov, Manohar Martin, Melles, Penin, S.P., Smirnov, . . . ]
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Uncertainty estimate of (N)NLO EW from naive 
exponentiation x 2:
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EW uncertainties: Sudakov

where �, � and ⇠ are anomalous dimensions depending on the EW quantum394

numbers of the scattering particles. The hard cross section has the form395

d�hard =


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↵

⇡
�
(1)
hard +

⇣
↵
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⌘2
�
(2)
hard + . . .

�
d�Born, (28)396

and the correction factors �
(k)
hard are finite in the limit Q

2
/M

2
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EW Sudakov logarithms of type ↵
m
ln
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/M

2
W

�
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2
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At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402

are known for V+ jet production [12–16], the following types of logarithms are403

available,9404

�
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◆�
, (30)406

where M = MW ⇠ MZ , Q2
ij = |(p̂i±p̂j)

2
| are the various Mandelstam invariants407

built from the hard momenta p̂i of the V+ jet production process and Q
2
=408

Q
2
12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order MW .414

This generates logarithms of the form ↵
n
ln

k
(ŝ/M

2
W ) that correspond to the415

combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order MW . In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420

In this work we will employ full EW results at NLO and NLL Sudakov loga-421

rithms at NNLO. In the notation of eq. (24)-(26), for fully-differential partonic422

cross sections, this implies423

NLOEW(ŝ, t̂) =
↵

⇡

h
�
(1)
hard + �

(1)
Sud

i
, (31)424

NNLOSud(ŝ, t̂) =

⇣
↵

⇡

⌘2
�
(2)
Sud. (32)425

Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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Z+jet

↵(L2 + L1)
�Sud

EW
⇡ (kNLOEW)2
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check against two-loop Sudakov logs 
[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

↵2(L4 + L3)

NLO EW and NNLO Sudakov corrections to V+ jet

EW corrections ⇠ �25% for V + jet at 1 TeV

NLO EW + NNLO Sudakov logs [Kühn, Kulesza,

S.P.,Schulze ’04–’07; Becher, Garcia i Tormo ’13]

NLO QCD+EW with o↵-shell Z/W decays
[Denner,Dittmaier,Kasprzik,Muck ’09–’11]

NLO QCD+EW for Z/W + 1, 2 jets with o↵-shell
decays [Denner, Hofer, Scharf, Uccirati ’14; Kallweit,

Lindert, Maierhöfer, S.P., Schönherr’15]
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EW uncertainties: Sudakov

where �, � and ⇠ are anomalous dimensions depending on the EW quantum394

numbers of the scattering particles. The hard cross section has the form395

d�hard =


1 +

↵

⇡
�
(1)
hard +

⇣
↵

⇡

⌘2
�
(2)
hard + . . .

�
d�Born, (28)396

and the correction factors �
(k)
hard are finite in the limit Q

2
/M

2
W ! 1, while397

EW Sudakov logarithms of type ↵
m
ln

n �
Q

2
/M

2
W

�
are factorised in the expo-398

nential. Expanding in ↵ = ↵(M
2
) with �i(↵) =

↵
⇡ �

(1)
i + . . . , and ↵(t) =399

↵
⇥
1 +

↵
⇡ b

(1)
ln
�

t
M2

�
+ . . .

⇤
yields400

exp

⇢
. . .

�
= 1 +

↵

⇡
�
(1)
Sud +

⇣
↵

⇡

⌘2
�
(2)
Sud + . . . . (29)401

At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402

are known for V+ jet production [12–16], the following types of logarithms are403

available,9404

�
(1)
Sud =

X

i,j

C
(1)
2,ij ln

2

 
Q

2
ij

M2

!
+ C

(1)
1 ln

1

✓
Q

2

M2

◆
,405

�
(2)
Sud =

X

i,j

C
(2)
4,ij ln

4

 
Q

2
ij

M2

!
+ C

(2)
3 ln

3

✓
Q

2

M2

◆
+O


ln

2

✓
Q

2

M2

◆�
, (30)406

where M = MW ⇠ MZ , Q2
ij = |(p̂i±p̂j)

2
| are the various Mandelstam invariants407

built from the hard momenta p̂i of the V+ jet production process and Q
2
=408

Q
2
12 = ŝ.409
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At NLL level, which is the logarithmic accuracy at which NNLO Sudakov effects402
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where M = MW ⇠ MZ , Q2
ij = |(p̂i±p̂j)

2
| are the various Mandelstam invariants407

built from the hard momenta p̂i of the V+ jet production process and Q
2
=408

Q
2
12 = ŝ.409

In this work we will employ the explicit NLL Sudakov results of [12–16],410

which have been implemented, in addition to exact NLO QCD+NLO EW am-411

plitudes, in the OpenLoops matrix-element generator [4, 17]. Let us recall412

that the results of [12–16] are based on the high-energy limit of virtual one- and413

two-loop corrections regularised with a fictitious photon mass of order MW .414
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combination of virtual one- and two-loop EW corrections plus corresponding416

photon radiation contributions up to an effective cut-off scale of order MW . In417

the case of V+ jet production, for physical observables that are inclusive with418

respect to photon radiation, this approximation is accurate at the one-percent419

level [13, 16, 18].420
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Transverse-momentum distributions including exact NLO EW corrections and426

Sudakov logarithms at NLO and NNLO are shown in Fig. 4, which confirms427

that the accuracy of the Sudakov approximation at NLO is very high, thereby428

supporting the usage of EW Sudakov logarithms at NNLO.429

9At NLO, EW corrections are known exactly and also NNLL asymptotic expansions [12–16]
are available.
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Figure 6: Same as Fig. 5, but for ZZZ hadroproduction at 100 TeV.

7.2 ZZZ

In Fig. 6 we show plots, with the same layout of those in Fig. 5, for the process pp ! ZZZ.

This process has a neutral final state, so we do not expect large di↵erences between the

SDK0 and SDKweak approaches. On the other hand, being a 2 ! 3 process, the e↵ect of

the SSCs!rkl terms is supposed to be more relevant. The upper plots of Fig. 6 correspond

to the transverse-momentum distributions of respectively the hardest Z-boson (pT (Z1)),

the second-hardest Z-boson (pT (Z2)) and the softest one (pT (Z3)). The lower plots instead

correspond to the invariant masses m(Zi, Zj) of the three di↵erent Z-boson pairs.

All the results have been obtained by applying the following cuts:

pT (Zi) > 1 TeV , |⌘(Zi)| < 2.5 , m(Zi, Zj) > 1 TeV , �R(Zi, Zj) > 0.5 .

(7.3)

Similarly to (7.2), these cuts resemble realistic experimental cuts for high-energy objects,

– 42 –

Tools for EW Sudakov corrections 

the sum of EW charges of the external lines are equal in this case. As has recently been noted in [53], this
can be deduced from the general expressions for one-loop corrections in [1] and from soft-collinear e↵ective
theory [28, 30]. Although the overall e↵ect for Zj and Z+4j is found to be very similar here, the individual
contributions partly exhibit a di↵erent behaviour between the two, with the SSC terms becoming negative
in the four-jet case and thus switching sign, and the C terms becoming a few percent smaller. It is in general
noticeable that the SSC terms exhibit the strongest shape di↵erences among all processes considered in this
study. Finally, similarly to the previous studied cases, the resummed result gives a slightly reduced Sudakov
suppression, reaching approximately �30% for pT . 2TeV, implying that in this case, higher logarithmic
contributions should be small.
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Figure 3: The transverse momentum of the leading jet in EW-induced dijet production in proton-proton
collisions (including photon channels), and for the reconstructed Z boson in e

+
e
� plus four jets

production, For the dijet production, LO and NLO calculations are shown, whereas for the Z

plus jets production only the LO is shown. These baseline calculations are compared with the
results of the LO+NLL calculation, both at fixed-order and resummed. In the dijet case, the
virtual approximation EWvirt is shown in addition. The ratio plots show the ratios to the LO
and the EWvirt calculations, and the relative size of each NLL contribution.

11

Sherpa
[Bothmann, Napoletano, ’20]

MadGraph5_aMC@NLO
[Pagani, Zaro, ’21]

OpenLoops
[JML, Mai, ’23]

• all based on 
[Denner, Pozzorini, ’00, ’01] 

the logarithms l(M2
W,M2

Z), l(m
2
t ,M

2
W), and l(M2

H,M
2
W) are neglected. Furthermore, in the

limit (2.6), the pure angular-dependent contributions log (rkl/s) and log2 (rkl/s) can be
neglected.

The lowest-order matrix element for (2.1) is denoted by

Mi1...in
0 (p1, . . . , pn). (2.10)

In LA the corrections assume the form

δMi1...in(p1, . . . , pn) = Mi′1...i
′
n

0 (p1, . . . , pn)δi′1i1...i′nin , (2.11)

i.e. they factorize as a matrix, and are split into various contributions according to their
origin:

δ = δLSC + δSSC + δC + δPR. (2.12)

The leading and subleading soft–collinear logarithms are denoted by δLSC and δSSC, re-
spectively, the collinear logarithms by δC, and the logarithms resulting from parameter
renormalization, which can be determined by the running of the couplings, by δPR.

3 Soft–collinear contributions

The DL corrections originate from loop diagrams where virtual gauge bosons Va =
A,Z,W± are exchanged between pairs of external legs (Figure 1). The double logarithms

n
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Va=A,Z,W±

Va

k

l

Figure 1: Feynman diagrams leading to DL corrections

arise from the integration region where the gauge-boson momenta are soft and collinear
to one of the external legs. As in QED, they can be evaluated using the eikonal approx-
imation, where in the numerator of the loop integral the gauge-boson momentum is set
to zero and all mass terms are neglected. In this approximation the one-loop corrections
give
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and in LA, using the high-energy expansion of the scalar three-point function [ 21], one
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where mf 6=t denotes light-fermion masses and we have set µ
2 = s due to the independence of

the S matrix of the renormalisation scale; this choice allows to get rid of all the logs logµ2
/s

originating from loop diagrams which are not mass-singular. Here, the lightest scale � corresponds
to the fictitious photon mass which is used in mass regularisation in order to deal with infrared
(IR) singularities; in the following we will provide all results using this regularisation scheme for
IR divergencies, but in Sec. (2.2.2) we will discuss how it’s possible to translated them into the
correspondent poles of dimensional regularisation (DR).
In the high-energy and fixed-angle limit, the contribution of order (2.5) is the leading part of the
one-loop EW corrections and it is universal, which means that it can be predicted in a process-
independent way. The remaining part, instead, is non-universal and will be neglected: in particular,
we don’t take into account mass-suppressed logarithmic contributions of the order M
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d, i.e.terms that are constant
relative to the Born matrix element. Therefore, as a necessary condition to apply the DP algorithm
to a given process is that at least one helicity configuration of the matrix element is not mass
suppressed; if this is not the case, then it’s not possible to apply the algorithm. This framework is
known as Logarithmic Approximation (LA).

2.2 Double Logarithms

Double logarithmic mass-singular corrections (DL) originate from loop diagrams where a virtual
gauge boson V becomes soft and collinear to one of the two on-shell external particles which
exchange it, i.e from diagrams of the kind
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so that the total contribution simply reads

�
DL

M
'i1 ...'in

LA
=

↵

4⇡

nX

k=1

X

l<k

X

V=A,Z,W±

�
DL

kl
M

'i1 ...'in
0 . (2.11)

Here, Ceik

0 is the scalar three-point function evaluated in the Eikonal approximation and it explicitly
reads

C
eik

0 ⌘ C
eik

0 (pk, pl,MV ,M'i0
k
,M'i0

l
) =

1

(pk + pl)
2


log2

|rkl|

M
2
V

� 2i⇡⇥(rkl) log
|rkl|

M
2
V

�
, (2.12)

– 4 –

scale µ introduced by dimensional regularisation. These scales are characterised by the following
hierarchy

µ
2 = s ⇠ rkl � m

2
t
,M

2
H

> M
2
Z
⇠ M

2
W

� m
2
f 6=t

� �
2
, (2.8)

where mf 6=t denotes light-fermion masses and we have set µ
2 = s due to the independence of

the S matrix of the renormalisation scale; this choice allows to get rid of all the logs logµ2
/s

originating from loop diagrams which are not mass-singular. Here, the lightest scale � corresponds
to the fictitious photon mass which is used in mass regularisation in order to deal with infrared
(IR) singularities; in the following we will provide all results using this regularisation scheme for
IR divergencies, but in Sec. (2.2.2) we will discuss how it’s possible to translated them into the
correspondent poles of dimensional regularisation (DR).
In the high-energy and fixed-angle limit, the contribution of order (2.5) is the leading part of the
one-loop EW corrections and it is universal, which means that it can be predicted in a process-
independent way. The remaining part, instead, is non-universal and will be neglected: in particular,
we don’t take into account mass-suppressed logarithmic contributions of the order M

n

W
E

d�n
L and

M
n

W
E

d�n
L with n > 0 as well as all corrections of the order ↵E

d, i.e.terms that are constant
relative to the Born matrix element. Therefore, as a necessary condition to apply the DP algorithm
to a given process is that at least one helicity configuration of the matrix element is not mass
suppressed; if this is not the case, then it’s not possible to apply the algorithm. This framework is
known as Logarithmic Approximation (LA).

2.2 Double Logarithms

Double logarithmic mass-singular corrections (DL) originate from loop diagrams where a virtual
gauge boson V becomes soft and collinear to one of the two on-shell external particles which
exchange it, i.e from diagrams of the kind

'i
0
l

'il

'i
0
k

'ik

V (2.9)

where 'ik ,'il ,'i
0
k
,'i

0
l

can be whatever SM field according to the EW Feynman rules. In the LA,
such a loop correction to the LO amplitude M0 is

�
DL

kl
M

'i1 ...'in
LA
=

↵

4⇡

X

'i0
k
,'i0

l

I
V

'i0
k
'ik

I
V̄

'i0
l
'il

M
'i1 ...'i0

k
...'i0

l
...'in

0 C
eik

0 (2.10)

so that the total contribution simply reads

�
DL

M
'i1 ...'in

LA
=

↵

4⇡

nX

k=1

X

l<k

X

V=A,Z,W±

�
DL

kl
M

'i1 ...'in
0 . (2.11)

Here, Ceik

0 is the scalar three-point function evaluated in the Eikonal approximation and it explicitly
reads

C
eik

0 ⌘ C
eik

0 (pk, pl,MV ,M'i0
k
,M'i0

l
) =

1

(pk + pl)
2


log2

|rkl|

M
2
V

� 2i⇡⇥(rkl) log
|rkl|

M
2
V

�
, (2.12)

– 4 –

scale µ introduced by dimensional regularisation. These scales are characterised by the following
hierarchy

µ
2 = s ⇠ rkl � m

2
t
,M

2
H

> M
2
Z
⇠ M

2
W

� m
2
f 6=t

� �
2
, (2.8)

where mf 6=t denotes light-fermion masses and we have set µ
2 = s due to the independence of

the S matrix of the renormalisation scale; this choice allows to get rid of all the logs logµ2
/s

originating from loop diagrams which are not mass-singular. Here, the lightest scale � corresponds
to the fictitious photon mass which is used in mass regularisation in order to deal with infrared
(IR) singularities; in the following we will provide all results using this regularisation scheme for
IR divergencies, but in Sec. (2.2.2) we will discuss how it’s possible to translated them into the
correspondent poles of dimensional regularisation (DR).
In the high-energy and fixed-angle limit, the contribution of order (2.5) is the leading part of the
one-loop EW corrections and it is universal, which means that it can be predicted in a process-
independent way. The remaining part, instead, is non-universal and will be neglected: in particular,
we don’t take into account mass-suppressed logarithmic contributions of the order M

n

W
E

d�n
L and

M
n

W
E

d�n
L with n > 0 as well as all corrections of the order ↵E

d, i.e.terms that are constant
relative to the Born matrix element. Therefore, as a necessary condition to apply the DP algorithm
to a given process is that at least one helicity configuration of the matrix element is not mass
suppressed; if this is not the case, then it’s not possible to apply the algorithm. This framework is
known as Logarithmic Approximation (LA).

2.2 Double Logarithms

Double logarithmic mass-singular corrections (DL) originate from loop diagrams where a virtual
gauge boson V becomes soft and collinear to one of the two on-shell external particles which
exchange it, i.e from diagrams of the kind

'i
0
l

'il

'i
0
k

'ik

V (2.9)

where 'ik ,'il ,'i
0
k
,'i

0
l

can be whatever SM field according to the EW Feynman rules. In the LA,
such a loop correction to the LO amplitude M0 is

�
DL

kl
M

'i1 ...'in
LA
=

↵

4⇡

X

'i0
k
,'i0

l

I
V

'i0
k
'ik

I
V̄

'i0
l
'il

M
'i1 ...'i0

k
...'i0

l
...'in

0 C
eik

0 (2.10)

so that the total contribution simply reads

�
DL

M
'i1 ...'in

LA
=

↵

4⇡

nX

k=1

X

l<k

X

V=A,Z,W±

�
DL

kl
M

'i1 ...'in
0 . (2.11)

Here, Ceik

0 is the scalar three-point function evaluated in the Eikonal approximation and it explicitly
reads

C
eik

0 ⌘ C
eik

0 (pk, pl,MV ,M'i0
k
,M'i0

l
) =

1

(pk + pl)
2


log2

|rkl|

M
2
V

� 2i⇡⇥(rkl) log
|rkl|

M
2
V

�
, (2.12)

– 4 –

WWZ



EW Sudakov corrections 

12

WWZ

scale µ introduced by dimensional regularisation. These scales are characterised by the following
hierarchy

µ
2 = s ⇠ rkl � m

2
t
,M

2
H

> M
2
Z
⇠ M

2
W

� m
2
f 6=t

� �
2
, (2.8)

where mf 6=t denotes light-fermion masses and we have set µ
2 = s due to the independence of

the S matrix of the renormalisation scale; this choice allows to get rid of all the logs logµ2
/s

originating from loop diagrams which are not mass-singular. Here, the lightest scale � corresponds
to the fictitious photon mass which is used in mass regularisation in order to deal with infrared
(IR) singularities; in the following we will provide all results using this regularisation scheme for
IR divergencies, but in Sec. (2.2.2) we will discuss how it’s possible to translated them into the
correspondent poles of dimensional regularisation (DR).
In the high-energy and fixed-angle limit, the contribution of order (2.5) is the leading part of the
one-loop EW corrections and it is universal, which means that it can be predicted in a process-
independent way. The remaining part, instead, is non-universal and will be neglected: in particular,
we don’t take into account mass-suppressed logarithmic contributions of the order M

n

W
E

d�n
L and

M
n

W
E

d�n
L with n > 0 as well as all corrections of the order ↵E

d, i.e.terms that are constant
relative to the Born matrix element. Therefore, as a necessary condition to apply the DP algorithm
to a given process is that at least one helicity configuration of the matrix element is not mass
suppressed; if this is not the case, then it’s not possible to apply the algorithm. This framework is
known as Logarithmic Approximation (LA).

2.2 Double Logarithms

Double logarithmic mass-singular corrections (DL) originate from loop diagrams where a virtual
gauge boson V becomes soft and collinear to one of the two on-shell external particles which
exchange it, i.e from diagrams of the kind

'i
0
l

'il

'i
0
k

'ik

V (2.9)

where 'ik ,'il ,'i
0
k
,'i

0
l

can be whatever SM field according to the EW Feynman rules. In the LA,
such a loop correction to the LO amplitude M0 is

�
DL

kl
M

'i1 ...'in
LA
=

↵

4⇡

X

'i0
k
,'i0

l

I
V

'i0
k
'ik

I
V̄

'i0
l
'il

M
'i1 ...'i0

k
...'i0

l
...'in

0 C
eik

0 (2.10)

so that the total contribution simply reads

�
DL

M
'i1 ...'in

LA
=

↵

4⇡

nX

k=1

X

l<k

X

V=A,Z,W±

�
DL

kl
M

'i1 ...'in
0 . (2.11)

Here, Ceik

0 is the scalar three-point function evaluated in the Eikonal approximation and it explicitly
reads

C
eik

0 ⌘ C
eik

0 (pk, pl,MV ,M'i0
k
,M'i0

l
) =

1

(pk + pl)
2


log2

|rkl|

M
2
V

� 2i⇡⇥(rkl) log
|rkl|

M
2
V

�
, (2.12)

– 4 –

scale µ introduced by dimensional regularisation. These scales are characterised by the following
hierarchy

µ
2 = s ⇠ rkl � m

2
t
,M

2
H

> M
2
Z
⇠ M

2
W

� m
2
f 6=t

� �
2
, (2.8)

where mf 6=t denotes light-fermion masses and we have set µ
2 = s due to the independence of

the S matrix of the renormalisation scale; this choice allows to get rid of all the logs logµ2
/s

originating from loop diagrams which are not mass-singular. Here, the lightest scale � corresponds
to the fictitious photon mass which is used in mass regularisation in order to deal with infrared
(IR) singularities; in the following we will provide all results using this regularisation scheme for
IR divergencies, but in Sec. (2.2.2) we will discuss how it’s possible to translated them into the
correspondent poles of dimensional regularisation (DR).
In the high-energy and fixed-angle limit, the contribution of order (2.5) is the leading part of the
one-loop EW corrections and it is universal, which means that it can be predicted in a process-
independent way. The remaining part, instead, is non-universal and will be neglected: in particular,
we don’t take into account mass-suppressed logarithmic contributions of the order M

n

W
E

d�n
L and

M
n

W
E

d�n
L with n > 0 as well as all corrections of the order ↵E

d, i.e.terms that are constant
relative to the Born matrix element. Therefore, as a necessary condition to apply the DP algorithm
to a given process is that at least one helicity configuration of the matrix element is not mass
suppressed; if this is not the case, then it’s not possible to apply the algorithm. This framework is
known as Logarithmic Approximation (LA).

2.2 Double Logarithms

Double logarithmic mass-singular corrections (DL) originate from loop diagrams where a virtual
gauge boson V becomes soft and collinear to one of the two on-shell external particles which
exchange it, i.e from diagrams of the kind

'i
0
l

'il

'i
0
k

'ik

V (2.9)

where 'ik ,'il ,'i
0
k
,'i

0
l

can be whatever SM field according to the EW Feynman rules. In the LA,
such a loop correction to the LO amplitude M0 is

�
DL

kl
M

'i1 ...'in
LA
=

↵

4⇡

X

'i0
k
,'i0

l

I
V

'i0
k
'ik

I
V̄

'i0
l
'il

M
'i1 ...'i0

k
...'i0

l
...'in

0 C
eik

0 (2.10)

so that the total contribution simply reads

�
DL

M
'i1 ...'in

LA
=

↵

4⇡

nX

k=1

X

l<k

X

V=A,Z,W±

�
DL

kl
M

'i1 ...'in
0 . (2.11)

Here, Ceik

0 is the scalar three-point function evaluated in the Eikonal approximation and it explicitly
reads
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scale µ introduced by dimensional regularisation. These scales are characterised by the following
hierarchy

µ
2 = s ⇠ rkl � m

2
t
,M

2
H

> M
2
Z
⇠ M

2
W

� m
2
f 6=t

� �
2
, (2.8)

where mf 6=t denotes light-fermion masses and we have set µ
2 = s due to the independence of

the S matrix of the renormalisation scale; this choice allows to get rid of all the logs logµ2
/s

originating from loop diagrams which are not mass-singular. Here, the lightest scale � corresponds
to the fictitious photon mass which is used in mass regularisation in order to deal with infrared
(IR) singularities; in the following we will provide all results using this regularisation scheme for
IR divergencies, but in Sec. (2.2.2) we will discuss how it’s possible to translated them into the
correspondent poles of dimensional regularisation (DR).
In the high-energy and fixed-angle limit, the contribution of order (2.5) is the leading part of the
one-loop EW corrections and it is universal, which means that it can be predicted in a process-
independent way. The remaining part, instead, is non-universal and will be neglected: in particular,
we don’t take into account mass-suppressed logarithmic contributions of the order M

n

W
E

d�n
L and

M
n

W
E

d�n
L with n > 0 as well as all corrections of the order ↵E

d, i.e.terms that are constant
relative to the Born matrix element. Therefore, as a necessary condition to apply the DP algorithm
to a given process is that at least one helicity configuration of the matrix element is not mass
suppressed; if this is not the case, then it’s not possible to apply the algorithm. This framework is
known as Logarithmic Approximation (LA).

2.2 Double Logarithms

Double logarithmic mass-singular corrections (DL) originate from loop diagrams where a virtual
gauge boson V becomes soft and collinear to one of the two on-shell external particles which
exchange it, i.e from diagrams of the kind
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0
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can be whatever SM field according to the EW Feynman rules. In the LA,
such a loop correction to the LO amplitude M0 is
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1.

2.

•Sizeable cancellations between different logarithmic contributions.
•Only partial control of angular-dependent S-SSC contribution 

in Sudakov approximation  
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EW uncertainties: hard-coefficient

Scheme variations Estimate hard coefficient  

e.g.  vs. {Gµ,mW ,mZ} {↵(mZ),mW ,mZ}

However: scheme variations mix perturbative  
and parametric uncertainties! 

[Bothmann, et. al.; ’21]

Typical size of hard EW corrections:  ~2%
⇣↵
⇡

⌘
�(1)hard = 2% $ �(1)hard = 10

Require: �(2)hard  100 �(1)hard

�hard
EW = 1000⇥

⇣↵
⇡

⌘2
= 0.6%

ZZ



14

dσ/dmee [fb/GeV] pp→e+ e− μ+ νμ@LHC 13 TeV

NNLOQCD
(QCD,QED)PS

NNLOQCD+QED
(QCD,QED)PS

NNLOQCD×QED
(QCD,QED)PS

10-2

10-1

100

101

dσ/dσNNLOQCD
(QCD,QED)PS

inclusive setup

NNLOQCD
(QCD)PS

NLOEW
(QCD,QED)PS + δNNLOQCD

(QCD)PS

0.5
0.6
0.7
0.8
0.9
1

1.1
1.2

dσ/dσNNLOQCD+QED
(QCD,QED)PS

mee [GeV]

NNLOQCD
(QCD)PS × K-NLOEW

(f.o.)

0.9

0.95

1

1.05

1.1

70 80 90 100 110

Figure 4: Differential distributions of the dilepton rapidity originating from the Z-boson
(left) and of the corresponding dilepton invariant mass (right) in W+Z production in the
inclusive setup at NNLOQCD combined with NLOEW matched to parton showers for
different combination schemes. See text for details.

the lepton-pair associated with the Z boson in the inclusive setup. Looking at the yee

distribution in figure 4 (left) we observe scale-uncertainty bands with upper and lower edges
at the level of +3–5% and �2–3%, respectively, in all shown predictions. EW corrections
are smaller than these QCD scale variations and show hardly any shape effects, as expected
from this observable that is inclusive with respect to QED radiation. Indeed, comparing the
NNLO(QCD)PS

QCD
prediction against the NNLO(QCD,QED)PS

QCD
one indicates that pure QED effects

are at the level of �1–2%, and an additional �2–3% of weak origin is found when comparing
further against the NLO EW-matched NNLO(QCD,QED)PS

QCD+EW
or NNLO(QCD,QED)PS

QCDxEW
predictions,

which in turn agree at the one percent level. We also observe that the NNLO(QCD)PS
QCD

⇥

K-NLO(f.o.)

EW
prediction is practically identical with the NNLO(QCD,QED)PS

QCDxEW
one, which implies

that multiple photon emissions (beyond the first one) do not have a relevant impact here.
Looking at the mee distribution in figure 4 (right), the observations are different: there

are large effects from collinear QED radiation which shift events from above the Breit–Wigner
peak to below the peak. These effects are entirely absent in the NNLO(QCD)PS

QCD
prediction

showing deviations of up to 40% compared to the NNLO(QCD,QED)PS
QCD

prediction including
effects from the QED shower. The observed shape of the corrections due to these collinear
QED effects is qualitatively very similar to the well-known NLO EW corrections to neutral-

– 16 –

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, ‘22]

EW uncertainties: QED radiation

Conservative estimate of  
higher-order QED radiation: 

NLO EW 

vs. 

multi-photon radiation (YFS)
or
QED-PS
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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Figure 8: Differential cross-sections as a function of the invariant mass of the muon pair in e
+
e
�
µ
+
µ
�

production (top) as well as the invariant mass of the leading muon pair in µ
+
µ
�
µ
+
µ
� production

(bottom). The NLO EW prediction (green), including its renormalisation scheme uncertainty, is
compared to predictions in the EWapprox approximation, augmented with PHOTOS (dotted) or
YFS (solid) using either a conservative (red) or relaxed (blue) clustering threshold. The Born-level
prediction is illustrated by the black curve. The absolute cross-sections are shown on the left for
a dressing-cone size of 0.1, while ratios of the PHOTOS and YFS curves are shown with respect to
the NLO EW prediction on the right for different dressing-cone sizes.
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[Gütschow, Schönherr, ’20]

�QED
EW = |�EW � �EW+PS/YFS|

NLOPS EW needs to be  
resonance-aware: [Jezo, Nason, ’15]

ZZ WZ
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Bold estimate: 

O(↵↵s)Consider real               correction to  
X production

Educated guess of QCD–EW combination uncertainty
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Fig. 1: Top quark transverse momentum (left) and top-antitop invariant mass (right) in inclusive tt̄ production (blue) and
tt̄ + jet production (red) at NLO EW at 13 TeV at the LHC. In tt̄ + jet we require pT > 30GeV. The top panel shows the
differential cross section, while the three lower panels show, from top to bottom, the subleading Born and higher-order
corrections to inclusive tt̄ production and tt̄ + jet production, respectively. Subleading Born and one-loop contributions are
shown with lighter shades of the colour of the respective processes, dashed lines containing only the subleading Born con-
tributions and solid lines containing all subleading Born and one-loop contributions. The lowest panel shows the ratio of the
NLO EW corrections to the two processes. Corrections based on the NLO EWvirt approximation are shown as the dashed
line of the same colour as the exact NLO EW result.

tions are dominated by the DNLO22 contributions and can
in some sense be understood as the NLO QCD corrections
to the sub-subleading Born of LO12. However, we want to
note that the O(a2

s a2) bremsstrahlung also comprises ttV

production with V ! qq̄ decays, where V = {W
±,Z}. Thus,

in principle care has to be taken when such processes are
considered as separate backgrounds in BSM searches. How-
ever, these subleading one-loop corrections contribute only

at the percent level, with an increasing effect at very large
mtt̄ .

In Figure 1 we also investigate the quality of the so-
called EWvirt approximation [64] defined as

dsNLO EWvirt = dFB


B(n+2)0(FB)+V(n+2)1(FB)

+
Z

1
dF1 Rapprox

(n+2)1(FB ·F1)

�
,

(2.6)

Z+jets

tt

ttj

pTj > 30 GeV

X + jet X

tt+jet
[JML et. al.: 1705.04664]

NNLO QCD⇥EW As a possible approximation of the mixed QCD–EW higher-order corrections
we consider the factorised combination

d�
NNLO QCD⇥EW

= d�
LO

�
1 + �

QCD

�
(1 + �

EW
) + d�

gg

LO
, (2.7)

where the EW correction factor is applied to the entire NNLO QCD cross section except for the
loop-induced gg channel, for which the EW corrections �

EW
of the qq̄ and �� channels are not

applicable. The prescription (2.7) can also be written in the form

d�
NNLO QCD⇥EW

= d�
NNLO QCD+EW

+ d�
LO

�
QCD

�
EW

. (2.8)

Thus, the factorised combination (2.8) generates extra O(↵S↵) and O(↵
2

S
↵) mixed QCD–EW cor-

rections. Provided that the dominant sources of QCD and EW corrections factorise, such terms
can be regarded as a reasonable approximation of mixed QCD–EW effects. For instance, at scat-
tering energies Q � MW this assumption is justified when EW effects are dominated by Sudakov
logarithms, and the dominant QCD effects arise at scales well below Q, factorising with respect to
the underlying hard-V V process. In such cases, the factorised prescription (2.7) should be regarded
as a superior prediction as compared to the additive combination (2.6).

NNLO QCD⇥EWqq As a motivation for an alternative combination, let us highlight the role
of individual partonic channels in the factorised formula (2.7). To this end we rewrite the QCD
corrections as

d�
NNLO QCD

= d�
qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO
+ d�

gg

LO
, (2.9)

where �qq̄
QCD

includes the same QCD corrections as �
QCD

, but is normalised to the LO cross section in
the qq̄ channel. Moreover we split the EW corrections into contributions from the qq̄ and �-induced
channels,

d�
NLO EW

= d�
qq̄

LO

�
1 + �

qq̄

EW

�
+ d�

��

LO

⇣
1 + �

��/q�

EW

⌘
. (2.10)

Here in the factor �
qq̄

EW
we include only O(↵) corrections from the qq̄ channel, whereas all other

O(↵) effects stemming from the �� and q� channels8 are included in the factor �
��/q�

EW
. Using the

notation of eqs. (2.9)–(2.10) we can rewrite the factorised formula (2.7) as

d�
NNLO QCD⇥EW

=

h
d�

qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO

i
(1 + �

EW
) + d�

gg

LO
, (2.11)

where the EW K-factor corresponds to

�
EW

=
�
qq̄

EW
d�

qq̄

LO
+ �

��/�q

EW
d�

��

LO

d�
qq̄

LO
+ d�

��

LO

, (2.12)

and can be regarded as the weighted average of the corrections in the qq̄ and �� channels. The
representation (2.11) demonstrates that the factorised combination does not induce any O(↵S) effect
in the �� and gg channels. The only nontrivial factorised correction arises from the term �

qq̄

QCD
�
EW

,

8This ad-hoc splitting of EW corrections deserves some comments. As pointed out in ref. [43], (anti)quark-photon
channels have the twofold role of EW corrections to the qq̄ and �� channels and are connected to both channels
via collinear singularities. Thus, they cannot be entirely associated with one or the other channel. For this reason,
eq. (2.10) should be understood as a purely technical separation of qq̄ and �-induced corrections, which can be adopted
upon subtraction of collinear singularities (based on dipole subtraction in our implementation). As discussed below,
the choice of handling the q� channels as corrections to the �� channel (rather than to the dominant qq̄ channel) is
motivated by the fact that the q� channels can lead to giant EW K-factors that cannot be combined with the QCD
corrections with a factorised prescription.
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alternative:  

  →  =

�NLL
EW = �DL

EW + �SLEW + �non�log
EW

O(↵S↵) d�LO �QCD (�SL
EW

+ �non�log

EW
) → �QCD�EW = �QCD (�SLEW + �hardEW )
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Figure 5. Generic pp ! V V j topologies and kinematic regions that give rise to giant K-factors in the
quark–gluon channel at NLO QCD. The blob denotes the hard scattering subprocess gq ! V q at the scale
Q � MW , while the subleading vector boson (red) is radiated by one of the SU(2)⇥U(1) charged external
states giving rise to EW logarithms of soft and collinear kind.
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General real-emission topologies that lead to giant K-factors are depicted in figure 5. They cor-
respond to a hard pp ! V j subprocess at the scale Q � MW supplemented by soft vector-boson
radiation. The corresponding kinematic regions will be referred to as hard-V j regions, and they are
characterised by a hard jet with pT,j ⇠ Q and a large gap between the leading and subleading vector
boson, pT,V2

⌧ pT,V1
. Conversely, standard QCD radiation effects correspond to a hard subprocess

pp ! V V at the scale Q and QCD radiation at scales well below Q. In this case the two vector
bosons are comparably hard, and such phase space regions will be classified as hard-V V regions.

Noteworthy, giant K-factors can also arise at NLO EW, where they appear in �q ! V V q real-
emission processes with a hard �q ! V q subprocess and soft vector-boson radiation, as well as in
crossing-related qq̄ ! V V � processes with a hard qq̄ ! V � subprocess. At NLO EW, in addition
to the topologies of figure 5 with gluons replaced by photons, also extra topologies where the soft
vector boson is radiated off external photons arise. Here, the giant K-factor mechanism leads to
NLO EW effects of order ↵w log

2
(Q

2
/M

2

W
), and these are dominated by the �q ! V V q channel.

The appearance of giant K-factors at NLO raises important questions concerning the conver-
gence of the perturbative expansion and the combination of QCD and EW corrections. In this
respect, it is important to note that, contrary to QCD logarithmic effects of soft and collinear ori-
gin, the large logarithms in eq. (2.1) do not contribute to all orders in ↵S. In fact, such logarithms
do not arise from soft QCD radiation, but from soft vector-boson radiation in combination with
the opening of the hard pp ! V (V )j channel at NLO QCD. Since this happens only when moving
from LO to NLO QCD, higher-order QCD corrections beyond NLO are free from further giant
K-factors.5 Note also that the availability of NNLO QCD corrections makes it possible to verify
the stability of the perturbative expansion beyond NLO and to arrive at reliable QCD predictions
for observables that feature giant K-factors.

For what concerns the combination of QCD and EW corrections, the presence of giant K-factors
raises more serious issues. In particular, the fact that in the relevant high-pT regions the NLO QCD
and NLO EW corrections are both strongly enhanced implies sizeable theoretical uncertainties from
large unknown mixed QCD–EW NNLO effects. In principle, depending on the observable and the
kinematic region, mixed QCD–EW effects can be approximated through a factorised description of
QCD and EW corrections (see section 2.6). However, such a factorisation can be justified only in
cases where QCD and EW corrections are both dominated by soft corrections with respect to the
same hard subprocess. In the case at hand, this condition is not fulfilled since NLO EW effects are
driven by logarithmic Sudakov corrections to hard V V production, whereas giant QCD K-factors

5Here, we assume that in diboson production at the scale Q � MW at least one vector boson with pT,V1
= O(Q)

is required. Otherwise, allowing both vector bosons to become soft would result into giant NNLO QCD K-factors of
the form ↵2

S log4(Q2/M2
W ) stemming from hard dijet topologies.
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quark–gluon channel at NLO QCD. The blob denotes the hard scattering subprocess gq ! V q at the scale
Q � MW , while the subleading vector boson (red) is radiated by one of the SU(2)⇥U(1) charged external
states giving rise to EW logarithms of soft and collinear kind.
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The appearance of giant K-factors at NLO raises important questions concerning the conver-
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respect, it is important to note that, contrary to QCD logarithmic effects of soft and collinear ori-
gin, the large logarithms in eq. (2.1) do not contribute to all orders in ↵S. In fact, such logarithms
do not arise from soft QCD radiation, but from soft vector-boson radiation in combination with
the opening of the hard pp ! V (V )j channel at NLO QCD. Since this happens only when moving
from LO to NLO QCD, higher-order QCD corrections beyond NLO are free from further giant
K-factors.5 Note also that the availability of NNLO QCD corrections makes it possible to verify
the stability of the perturbative expansion beyond NLO and to arrive at reliable QCD predictions
for observables that feature giant K-factors.

For what concerns the combination of QCD and EW corrections, the presence of giant K-factors
raises more serious issues. In particular, the fact that in the relevant high-pT regions the NLO QCD
and NLO EW corrections are both strongly enhanced implies sizeable theoretical uncertainties from
large unknown mixed QCD–EW NNLO effects. In principle, depending on the observable and the
kinematic region, mixed QCD–EW effects can be approximated through a factorised description of
QCD and EW corrections (see section 2.6). However, such a factorisation can be justified only in
cases where QCD and EW corrections are both dominated by soft corrections with respect to the
same hard subprocess. In the case at hand, this condition is not fulfilled since NLO EW effects are
driven by logarithmic Sudakov corrections to hard V V production, whereas giant QCD K-factors

5Here, we assume that in diboson production at the scale Q � MW at least one vector boson with pT,V1
= O(Q)

is required. Otherwise, allowing both vector bosons to become soft would result into giant NNLO QCD K-factors of
the form ↵2
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are dominated by soft EW boson radiation on top of hard V j production. Actually, the leading
source of O(↵S↵) corrections is given by the NLO EW corrections to the enhanced pp ! V V j

channel, which cannot be captured through a naive factorised combination of the NLO QCD and
NLO EW corrections to pp ! V V .

When presenting our results in section 3, the problem of giant K-factors in the inclusive phase
space will be illustrated. We will show that giant K-factors can be avoided by means of selection cuts
that require a similar hardness of the two vector bosons, e.g. by direct requirements on the hardness
of the softer vector boson or by imposing a veto against hard QCD radiation. This will restrict
the phase space to hard-V V topologies and suppress hard-V j production. Besides reducing the
size of mixed QCD–EW higher-order effects and their respective theoretical uncertainties, selecting
hard-V V topologies enhances the sensitivity of experimental measurements that aim at extracting
new-physics effects in vector-boson pair processes, such as anomalous triple gauge couplings, from
the tails of kinematic distributions. On the other hand, a reliable inclusive description of diboson
production is indispensable for background simulations in direct searches at the TeV scale. This can
be achieved by merging pp ! V V and pp ! V V j production including NLO QCD and NLO EW
corrections as demonstrated in ref. [77]. The extension of this approach to NNLO QCD+EW is
beyond the scope of the present paper.

2.6 Combination of QCD and EW corrections

When QCD and EW corrections are both large, also NNLO mixed QCD–EW effects of relative
O(↵S↵) and beyond can become important. In order to gain insights into such higher-order effects,
we consider a standard additive combination of NNLO QCD and NLO EW corrections and compare
it against factorised combination prescriptions. To this end, we express higher-order effects in terms
of relative correction factors with respect to the LO differential cross section,

d�
LO

= d�
qq̄

LO
+ d�

��

LO
, (2.3)

which involves O(↵
4
) contributions from the qq̄ and �� channels.6 Higher-order QCD contributions

can be cast into the form

d�
NNLO QCD

= d�
LO

�
1 + �

QCD

�
+ d�

gg

LO
, (2.4)

where d�
gg

LO
is the O(↵

2

S
↵
4
) contribution of the loop-induced gg channel, and all other QCD correc-

tions are embodied in the correction factor �
QCD

, which includes the O(↵S) and O(↵
2

S
) corrections

of the qq̄, qg/q̄g, gg and qq/q̄q̄ channels.7 Similarly, the NLO EW cross section can be written as

d�
NLO EW

= d�
LO

(1 + �
EW

) , (2.5)

where all O(↵) corrections in the qq̄, �� and q� (including q̄� is implicitly understood) channels are
incorporated into the factor �

EW
. For the combination of QCD and EW corrections we consider

three different prescriptions.

NNLO QCD+EW The first prescription amounts to a purely additive combination,

d�
NNLO QCD+EW

= d�
LO

�
1 + �

QCD
+ �

EW

�
+ d�

gg

LO
, (2.6)

where all terms of O(↵
4
), O(↵S↵

4
), O(↵

5
) and O(↵

2

S
↵
4
) are simply summed.

6Note that the �� channel contributes only to ZZ and WW production. The same holds for the gg channel
contributing at NNLO QCD.

7Here and in the following, higher-order contributions (or terms) of O(↵n
S↵

4+m) are also referred to as corrections
(or effects) of O(↵n

S↵
m).
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NNLO QCD⇥EW As a possible approximation of the mixed QCD–EW higher-order corrections
we consider the factorised combination

d�
NNLO QCD⇥EW

= d�
LO

�
1 + �

QCD

�
(1 + �

EW
) + d�

gg

LO
, (2.7)

where the EW correction factor is applied to the entire NNLO QCD cross section except for the
loop-induced gg channel, for which the EW corrections �

EW
of the qq̄ and �� channels are not

applicable. The prescription (2.7) can also be written in the form

d�
NNLO QCD⇥EW

= d�
NNLO QCD+EW

+ d�
LO

�
QCD

�
EW

. (2.8)

Thus, the factorised combination (2.8) generates extra O(↵S↵) and O(↵
2

S
↵) mixed QCD–EW cor-

rections. Provided that the dominant sources of QCD and EW corrections factorise, such terms
can be regarded as a reasonable approximation of mixed QCD–EW effects. For instance, at scat-
tering energies Q � MW this assumption is justified when EW effects are dominated by Sudakov
logarithms, and the dominant QCD effects arise at scales well below Q, factorising with respect to
the underlying hard-V V process. In such cases, the factorised prescription (2.7) should be regarded
as a superior prediction as compared to the additive combination (2.6).

NNLO QCD⇥EWqq As a motivation for an alternative combination, let us highlight the role
of individual partonic channels in the factorised formula (2.7). To this end we rewrite the QCD
corrections as

d�
NNLO QCD

= d�
qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO
+ d�

gg

LO
, (2.9)

where �qq̄
QCD

includes the same QCD corrections as �
QCD

, but is normalised to the LO cross section in
the qq̄ channel. Moreover we split the EW corrections into contributions from the qq̄ and �-induced
channels,

d�
NLO EW

= d�
qq̄

LO

�
1 + �

qq̄

EW

�
+ d�

��

LO

⇣
1 + �

��/q�

EW

⌘
. (2.10)

Here in the factor �
qq̄

EW
we include only O(↵) corrections from the qq̄ channel, whereas all other

O(↵) effects stemming from the �� and q� channels8 are included in the factor �
��/q�

EW
. Using the

notation of eqs. (2.9)–(2.10) we can rewrite the factorised formula (2.7) as

d�
NNLO QCD⇥EW

=

h
d�

qq̄

LO

⇣
1 + �

qq̄

QCD

⌘
+ d�

��

LO

i
(1 + �

EW
) + d�

gg

LO
, (2.11)

where the EW K-factor corresponds to

�
EW

=
�
qq̄

EW
d�

qq̄

LO
+ �

��/�q

EW
d�

��

LO

d�
qq̄

LO
+ d�

��

LO

, (2.12)

and can be regarded as the weighted average of the corrections in the qq̄ and �� channels. The
representation (2.11) demonstrates that the factorised combination does not induce any O(↵S) effect
in the �� and gg channels. The only nontrivial factorised correction arises from the term �

qq̄

QCD
�
EW

,

8This ad-hoc splitting of EW corrections deserves some comments. As pointed out in ref. [43], (anti)quark-photon
channels have the twofold role of EW corrections to the qq̄ and �� channels and are connected to both channels
via collinear singularities. Thus, they cannot be entirely associated with one or the other channel. For this reason,
eq. (2.10) should be understood as a purely technical separation of qq̄ and �-induced corrections, which can be adopted
upon subtraction of collinear singularities (based on dipole subtraction in our implementation). As discussed below,
the choice of handling the q� channels as corrections to the �� channel (rather than to the dominant qq̄ channel) is
motivated by the fact that the q� channels can lead to giant EW K-factors that cannot be combined with the QCD
corrections with a factorised prescription.
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•Problems:
1. In additive combination dominant Vj topology does not receive any EW corrections
2. In multiplicative combination EW correction for VV is applied to Vj hard process

•Pragmatic solution I: take average as nominal and spread as uncertainty 
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•Pragmatic solution II: apply jet veto to constrain Vj toplogoies

Mixed QCD-EW uncertainties
[M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; ’19]
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MEPS @ NLO QCD + EW
WW(+jet): [Bräuer, Denner, Pellen, Schönherr, Schumann; ’20]
ZZ(+jet): [Bothmann, Napoletano, Schönherr, Schumann, Villani; ’21]

•More rigorous solution: merge VVj incl. approx. EW corrections with VV with Sherpa’s MEPS@NLO QCD + EWvirt
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Figure 16: Predictions from multi-jet merged parton-shower simulations for the njet = 1 event
selection: Transverse momentum of the jet (top left), rapidity of the jet (top right), transverse
momentum of the anti-muon (middle left), rapidity of the anti-muon (middle right), transverse
momentum of the anti-muon–electron system (bottom left), and missing transverse momentum
(bottom right). All results contain YFS soft-photon resummation. For the MePs@Nlo cal-
culation we present results including approximate NLO EW corrections in the additive and
multiplicative approach.
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Figure 4: Differential distributions for pp ! µ+⌫µe�⌫̄e at LO, NLO QCD, NLO QCD + EW,
NLO QCD⇥EW, and NLO QCD⇥EWapprox: Transverse momentum of the anti-muon (top left),
rapidity of the anti-muon (top right), transverse momentum of the anti-muon–electron system
(bottom left), and missing transverse momentum (bottom right). The upper panels show the
absolute predictions, while the lower ones display the ratio of the various predictions with respect
to the NLO QCD predictions.

has thus a very similar kinematics as the transverse momentum of the two charged leptons. In
both cases, the NLO QCD corrections reach about �40% at 400GeV, while the EW ones are
of order �15% for the same transverse momentum. Around 100GeV the NLO QCD prediction
suddenly exceeds the LO one at a level of 20%. The corrections then turn negative towards
high transverse momentum. This can be understood as follows. At LO, contributions with two
resonant W bosons require these bosons to be back-to-back and therefore cannot contribute to
events with transverse momenta pT,µ+e� or pT,miss larger than about MW [13, 14]. Thus, at LO
such events can only result from contributions with at most one resonant W boson and are there-
fore suppressed. At NLO, the momentum of the extra jet can balance the momenta of the two
resonant W bosons allowing for large pT,µ+e� and/or pT,miss also in the presence of two resonant
W bosons. Going towards higher transverse momenta, such configurations are then suppressed
by the jet veto that forbids hard jets that would balance the WW system. The fluctuations in

13

WW

MEPS@NLO QCD + EWvirt

Used in many ATLAS modern 
multi-purpose samples:  
V+jets, VV+jets, tt+jets

[Kallweit, JML, et. al.; ’15]
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Figure 3. Representative LO, LO mix and LO EW contributions to V + 2 jet production.
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Figure 4. Representative virtual and real NLO EW contributions to V + 2 jet production.

counter-intuitive feature of NLO EW corrections, namely that real emission at O(↵S↵
3) does not

only involve photon bremsstrahlung (Fig. 2b) but also V + 2 jet final states resulting from the
emission of quarks through mixed QCD–EW interference terms (Fig. 2c).

The LO production and off-shell decay of V + 2 jets receives contributions from a tower of
O(↵k

S↵
4�k) terms with powers k = 2, 1, 0 in the strong coupling. The contributions of O(↵2

S↵
2),

O(↵S↵
3) and O(↵4) will be denoted as LO, LO mix and LO EW, respectively. The two subleading

orders contribute only via partonic channels with four external (anti)quark legs, and the LO EW
contribution includes, inter alia, the production of dibosons with semi-leptonic decays. Representa-
tive Feynman diagrams for V +2 jet production are shown in Figs. 3 and 4. The NLO contributions
of O(↵3

S↵
2) and O(↵2

S↵
3) are denoted as NLO QCD and NLO EW, respectively. They are the main

subject of this paper, while subleading NLO contributions of O(↵S↵
4) or O(↵5) are not consid-

ered. Apart from the terminology, let us remind the reader that O(↵2
S↵

3) NLO EW contributions
represent at the same time O(↵) corrections with respect to LO and O(↵S) corrections to LO mix
contributions. Therefore, in order to cancel the O(↵2

S↵
3) leading logarithmic dependence on the

renormalisation and factorization scales, NLO EW corrections should be combined with LO and
LO mix terms.1

For what concerns the combination of NLO QCD and NLO EW corrections,

�
NLO

QCD
= �

LO + ��
NLO

QCD
, �

NLO

EW
= �

LO + ��
NLO

EW
, (2.1)

as a default we adopt an additive prescription,

�
NLO

QCD+EW
= �

LO + ��
NLO

QCD
+ ��

NLO

EW
. (2.2)

Here, for the case of V + n jet production, �LO is the O(↵n

S↵
2) LO cross section, while ��

NLO

QCD
and

��
NLO

EW
correspond to the O(↵n+1

S ↵
2) and O(↵n

S↵
3) corrections, respectively. Alternatively, in order

to identify potentially large effects due to the interplay of EW and QCD corrections beyond NLO,
we present results considering the following factorised combination of EW and QCD corrections,

�
NLO

QCD⇥EW
= �

NLO

QCD

 
1 +

��
NLO

EW

�LO

!
= �

NLO

EW

 
1 +

��
NLO

QCD

�LO

!
. (2.3)

In situations where the factorised approach can be justified by a clear separation of scales—such as
where QCD corrections are dominated by soft interactions well below the EW scale—the factorised

1 LO mix and NLO EW contributions are shown separately in the fixed-order analysis of Section 4, while in the
merging framework of Section 5 they are systematically combined.
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Figure 2: Example LO diagrams at O(g2
se

2) (a,b), O(gse
3) (c,d), and O(e4) (e-l). The square of

O(g2
se

2) diagrams yields the O(↵2
s↵

2) QCD LO amplitude, while the square of the O(e4) diagrams
yields the O(↵4) EW LO amplitude. The O(↵s↵

3) perturbative contribution emerges as square of
O(gse

3) diagrams, or due to the interference between O(g2
se

2) and O(e4) diagrams.

perturbative order. In particular, in order to facilitate the cancellation of collinear singularities at
NLO QCD+EW, we use a democratic jet clustering algorithm, where photons, quarks and gluons
are treated on the same footing as jet constituents. 2

The contributions to the EW mode (and consequently also to the interference) deserve some
closer inspection. Diagrams illustrated in Figs. 2e and 2f, contribute to VBF-type production,
while diagrams as in Figs. 2g and 2h contribute to (off-shell) diboson production with one vector
boson decaying hadronically and the other leptonically. In the literature these are often denoted as
t-channel and s-channel contributions, respectively. In general, partonic channels with qq

0 initial
states involve EW Feynman diagrams with t-channel and/or u-channel exchange of vector bosons.
In the case of qq̄

0 channels also diagrams with s-channel vector boson exchange contribute. The
widely used VBF approximation is a gauge-invariant prescription that isolates only squared t-
channel and u-channel contributions discarding their interference as well as any s-channel diagram.
In this approximation, the final-state vector boson can couple either to an external quark line or to
the vector boson that is exchanged in the t/u-channel as in Figs. 2e and 2f, respectively.

In addition, the EW mode also features photon-induced processes, see Fig. 2i. Since we employ
the five-flavour (5F) number scheme throughout, b-quarks are treated as massless partons, and
channels with initial-state b-quarks are taken into account for all processes and perturbative orders.
In the 5F scheme, the process pp ! W + 2 jets includes partonic channels of type qb ! q

0
bW

that involve EW topologies corresponding to t-channel single-top production, qb ! q
0
t(bW ), as

illustrated in Fig. 2k. Top resonances occur also in light-flavour channels of type qq̄
0
! b̄bW , which

receive contributions from s-channel single-top production, qq̄
0
! b̄t(bW ), illustrated in Fig. 2l. All

these single-top contributions are consistently included in our predictions. When the dijet invariant
mass, mj1j2 , is well below the TeV scale, their numerical impact can yield a substantial fraction of

2In order to exclude final-state photons from pp ! V +2 jet one should introduce a photon-isolation prescription,
while this technical complication can be avoided by handling photons as jet constituents. At LO we have verified
that, for all considered observables, partonic channels with initial- or final-state photons contribute only below the
level of 1%. Further technical details concerning the treatment of photons are discussed in Sects. 3.2 and 4.1.
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2) QCD LO amplitude, while the square of the O(e4) diagrams
yields the O(↵4) EW LO amplitude. The O(↵s↵

3) perturbative contribution emerges as square of
O(gse

3) diagrams, or due to the interference between O(g2
se

2) and O(e4) diagrams.

perturbative order. In particular, in order to facilitate the cancellation of collinear singularities at
NLO QCD+EW, we use a democratic jet clustering algorithm, where photons, quarks and gluons
are treated on the same footing as jet constituents. 2

The contributions to the EW mode (and consequently also to the interference) deserve some
closer inspection. Diagrams illustrated in Figs. 2e and 2f, contribute to VBF-type production,
while diagrams as in Figs. 2g and 2h contribute to (off-shell) diboson production with one vector
boson decaying hadronically and the other leptonically. In the literature these are often denoted as
t-channel and s-channel contributions, respectively. In general, partonic channels with qq

0 initial
states involve EW Feynman diagrams with t-channel and/or u-channel exchange of vector bosons.
In the case of qq̄

0 channels also diagrams with s-channel vector boson exchange contribute. The
widely used VBF approximation is a gauge-invariant prescription that isolates only squared t-
channel and u-channel contributions discarding their interference as well as any s-channel diagram.
In this approximation, the final-state vector boson can couple either to an external quark line or to
the vector boson that is exchanged in the t/u-channel as in Figs. 2e and 2f, respectively.

In addition, the EW mode also features photon-induced processes, see Fig. 2i. Since we employ
the five-flavour (5F) number scheme throughout, b-quarks are treated as massless partons, and
channels with initial-state b-quarks are taken into account for all processes and perturbative orders.
In the 5F scheme, the process pp ! W + 2 jets includes partonic channels of type qb ! q

0
bW

that involve EW topologies corresponding to t-channel single-top production, qb ! q
0
t(bW ), as

illustrated in Fig. 2k. Top resonances occur also in light-flavour channels of type qq̄
0
! b̄bW , which

receive contributions from s-channel single-top production, qq̄
0
! b̄t(bW ), illustrated in Fig. 2l. All

these single-top contributions are consistently included in our predictions. When the dijet invariant
mass, mj1j2 , is well below the TeV scale, their numerical impact can yield a substantial fraction of

2In order to exclude final-state photons from pp ! V +2 jet one should introduce a photon-isolation prescription,
while this technical complication can be avoided by handling photons as jet constituents. At LO we have verified
that, for all considered observables, partonic channels with initial- or final-state photons contribute only below the
level of 1%. Further technical details concerning the treatment of photons are discussed in Sects. 3.2 and 4.1.
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Perturbative expansion: tower of contributions
•For processes with at least 4-quarks there is a tower of LO(NLO) contributions.
•E.g.: multijets, , V+jets (VBF-V), VV+jets (VBS-VV), tt̄+X

V+2 jets:
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[JML, Pozzorini, Schönherr, ’22] 
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perturbative order. In particular, in order to facilitate the cancellation of collinear singularities at
NLO QCD+EW, we use a democratic jet clustering algorithm, where photons, quarks and gluons
are treated on the same footing as jet constituents. 2

The contributions to the EW mode (and consequently also to the interference) deserve some
closer inspection. Diagrams illustrated in Figs. 2e and 2f, contribute to VBF-type production,
while diagrams as in Figs. 2g and 2h contribute to (off-shell) diboson production with one vector
boson decaying hadronically and the other leptonically. In the literature these are often denoted as
t-channel and s-channel contributions, respectively. In general, partonic channels with qq

0 initial
states involve EW Feynman diagrams with t-channel and/or u-channel exchange of vector bosons.
In the case of qq̄

0 channels also diagrams with s-channel vector boson exchange contribute. The
widely used VBF approximation is a gauge-invariant prescription that isolates only squared t-
channel and u-channel contributions discarding their interference as well as any s-channel diagram.
In this approximation, the final-state vector boson can couple either to an external quark line or to
the vector boson that is exchanged in the t/u-channel as in Figs. 2e and 2f, respectively.

In addition, the EW mode also features photon-induced processes, see Fig. 2i. Since we employ
the five-flavour (5F) number scheme throughout, b-quarks are treated as massless partons, and
channels with initial-state b-quarks are taken into account for all processes and perturbative orders.
In the 5F scheme, the process pp ! W + 2 jets includes partonic channels of type qb ! q

0
bW

that involve EW topologies corresponding to t-channel single-top production, qb ! q
0
t(bW ), as

illustrated in Fig. 2k. Top resonances occur also in light-flavour channels of type qq̄
0
! b̄bW , which

receive contributions from s-channel single-top production, qq̄
0
! b̄t(bW ), illustrated in Fig. 2l. All

these single-top contributions are consistently included in our predictions. When the dijet invariant
mass, mj1j2 , is well below the TeV scale, their numerical impact can yield a substantial fraction of

2In order to exclude final-state photons from pp ! V +2 jet one should introduce a photon-isolation prescription,
while this technical complication can be avoided by handling photons as jet constituents. At LO we have verified
that, for all considered observables, partonic channels with initial- or final-state photons contribute only below the
level of 1%. Further technical details concerning the treatment of photons are discussed in Sects. 3.2 and 4.1.
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•If LO interference is small: possible to consider QCD and EW production modes as  
independent and factorise QCD and EW corrections to the respective processes

• Otherwise, still factorise but consider QCD+EW combination as nominal (and QCDxEW as uncertainty)
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‣  Multiboson tails are becoming precision probes with often <~ 10% uncertainties

‣  EW uncertainties:

๏ Higher-order Sudakov corrections: 

๏ Higher-order hard corrections: 

๏ Higher-order QED radiation:  

‣ QCD-EW uncertainties:

๏ Conservative: difference between add. and multipl. combination: 

๏ More aggressive:    (applicable when )

๏ For processes subject to significant QCD radiation:   

๏ X+j @ NLO EW proxy computations might allow for estimate of non-factorising effects

๏ Factorisation feasible for processes with small interferences of tower of born orders

‣  Necessary tools are available: 

๏ NLO EW in MG5_aMC@NLO / Sherpa / POWHEG 

๏ NLL EW in Sherpa / MG5_aMC@NLO  / OpenLoops

๏ NLOPS EW in POWHEG / MEPS NLO EW + YFS in Sherpa

�hard
EW ⇡ 1%

�QED
EW = |�EW � �EW+PS/YFS|

�QCD�EW = �QCD �EW

�QCD�EW = �QCD (�SLEW + �hardEW ) �EW ⇠ �DL
EW

Conclusions

�Sud
EW =

⇣
�(1)Sud

⌘2

�multi�jet merged
QCD�EW = �QCD �EW
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‣  Plan for recommendation document from 

  WG3 agreed amongst different theorists

‣ See also: 

• Electroweak Radiative Corrections for Collider 

Physics (Denner & Dittmaier): 1912.06823 

• Les Houches 2023: 2406.00708

https://arxiv.org/abs/1912.06823
https://inspirehep.net/literature/2793807
https://arxiv.org/abs/2406.00708


Backup
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‣ pole approximation vs. full computation: agree below the percent level   
‣ Comparison against naive factorised NLO QCD x NLO EW ansatz: fail at the 5-10% level
‣ At large  in DY: sizeable contributions from  which receives larger EW correctionspT,µ+ pp ! V j

[Bonciani, Buonocore, Grazzini, Kallweit et. al.  2 x ’21]

4

� [pb] �LO �(1,0) �(0,1) �(2,0) �(1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg — �158.08(2) — �74.8(5) 8.6(1)

q(g)� — — �0.839(2) — 0.084(3)

q(q̄)q0 — — — 6.3(1) 0.19(0)

gg — — — 18.1(2) —

�� 1.42(0) — �0.0117(4) — —

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵S↵) correction to the di↵erential
cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
absolute correction d�(1,1)/dpT , while the central (bot-
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Figure 2. As Fig. 1, but for the di-muon invariant mass.

tom) panels display the correction normalised to the LO
(NLO QCD) result. Our results for the complete O(↵S↵)
correction are compared with those obtained in two ap-
proximations. The first approximation consists in com-
puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
in Ref. [49] (see Eq. (14) therein for the precise defini-
tion). The pole approximation, which includes factoris-
able and non-factorisable [44] contributions, requires the
QCD–EW on-shell form factor of the Z boson [40]. The
second approximation is based on a fully factorised ap-
proach for QCD and EW corrections, where we exclude
photon-induced processes throughout (see Ref. [45, 49]
for a detailed description). We see that the result ob-
tained in the pole approximation is in perfect agreement
with the exact result. This is due to the small contri-
bution of the two-loop virtual to the computed correc-
tion, as observed also in the case of W production [49].
Our result for the O(↵S↵) correction in the region of
the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The
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� [pb] �LO �(1,0) �(0,1) �(2,0) �(1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg — �158.08(2) — �74.8(5) 8.6(1)

q(g)� — — �0.839(2) — 0.084(3)

q(q̄)q0 — — — 6.3(1) 0.19(0)

gg — — — 18.1(2) —

�� 1.42(0) — �0.0117(4) — —

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵S↵) correction to the di↵erential
cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
absolute correction d�(1,1)/dpT , while the central (bot-
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Figure 2. As Fig. 1, but for the di-muon invariant mass.

tom) panels display the correction normalised to the LO
(NLO QCD) result. Our results for the complete O(↵S↵)
correction are compared with those obtained in two ap-
proximations. The first approximation consists in com-
puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
in Ref. [49] (see Eq. (14) therein for the precise defini-
tion). The pole approximation, which includes factoris-
able and non-factorisable [44] contributions, requires the
QCD–EW on-shell form factor of the Z boson [40]. The
second approximation is based on a fully factorised ap-
proach for QCD and EW corrections, where we exclude
photon-induced processes throughout (see Ref. [45, 49]
for a detailed description). We see that the result ob-
tained in the pole approximation is in perfect agreement
with the exact result. This is due to the small contri-
bution of the two-loop virtual to the computed correc-
tion, as observed also in the case of W production [49].
Our result for the O(↵S↵) correction in the region of
the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The

Exact mixed QCD-EW for DY
[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, ’20]

[Behring, Buccioni, Caola, et. al. ’20]

exact

�QCD �EW

`+

`�

j

MIXED NNLO QCD EW TO DRELL-YAN×

16

‣ splitting functions    [de Florian, Sborlini, Rodrigo ’16]  
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The need for off-shell computations: VV
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Figure 13: Transverse-momentum distributions of the electron (left) and of the charged-lepton
system (right) in pp → νµµ+e−ν̄e + X in the ATLAS WW setup. The lower panels show the
relative size of the EW corrections to the q̄q channels in our default setup compared to the result
based on the DPA.
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Figure 14: Illustration of diagrammatic structures dominating the pT,e− (left) and pT,e−µ+ (right)
distributions shown in Fig. 13 for high transverse momenta.
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[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;’16]

➡ sizeable differences in fully off-shell vs. double-pole approximation in tails
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Figure 1: Sample tree-level diagrams contributing at O(α4). The dominant q̄q channel (a,b)
defines the LO contribution, while the photon-induced γγ channel (c) is counted as a correction.

WW, WZ, and ZZ production [42]. Most recently, NLO EW calculations based on full 2 → 4
particle amplitudes, including all off-shell effects, have been presented for W-pair [43] and Z-pair
production [44] for four-lepton final states of different fermion generations (i.e. without identical
particle effects or WW/ZZ interferences). For Z-pair production, the off-shell effects include also
the contributions of virtual photons that cannot be separated from the Z-pair signal, but only
suppressed by using appropriate invariant-mass cuts. Note that these full off-shell calculations
are essential to safely assess the EW corrections below the WW and ZZ thresholds, i.e. in the
kinematical region where WW∗/ZZ∗ production appears as background to Higgs-boson analy-
ses. Moreover, a detailed comparison of the full four-lepton calculation [43] to the double-pole
approximation for W-boson pairs [41] revealed limitations of the latter approach for transverse-
momentum distributions of the leptons in the high-energy domain where new-physics signals
are searched for.

In Ref. [44] we have presented some selected results for the NLO EW corrections to off-shell
ZZ production in a scenario relevant for Higgs-boson studies. In this paper we provide more
detailed phenomenological studies in various phase-space regions relevant for LHC analyses
for pp → µ+µ−e+e− + X and completely new results on pp → µ+µ−µ+µ− + X, including
interference effects from identical final-state leptons. We follow the same concepts and strategies
as in Refs. [43, 44], i.e. finite-width effects of the Z bosons are consistently included using the
complex-mass scheme [45–47], so that we obtain NLO EW precision everywhere in phase space.
We also include photon-induced partonic processes originating from γγ or qγ/q̄γ initial states.

The paper is organized as follows: Some details on the calculational methods are presented
in Sec. 2. Phenomenological results for two different experimental setups are discussed in Sec. 3.
Our conclusions are given in Sec. 4.

2 Details of the calculation

2.1 Partonic channels

The leading-order (LO) cross sections of the two processes pp → µ+µ−e+e− + X and pp →
µ+µ−µ+µ− +X receive contributions from the quark–antiquark annihilation channels

q̄q/qq̄ → µ+µ−e+e−, µ+µ−µ+µ−, (2.1)

with q ∈ {u,d, c, s,b}. Sample diagrams for these channels, which are generically called q̄q
channels in the following, are shown in Figs. 1(a) and 1(b). Note that all LO diagrams involve
Z-boson and photon exchange only. There are LO channels with two photons in the initial state
as well,

γγ → µ+µ−e+e−, µ+µ−µ+µ−, (2.2)
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system (right) in pp → νµµ+e−ν̄e + X in the ATLAS WW setup. The lower panels show the
relative size of the EW corrections to the q̄q channels in our default setup compared to the result
based on the DPA.
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d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW

+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

NLO QCD

NNLO QCD

+ …
N3LO QCD

NNLO EW NNLO QCD-EW

NLO EW

+↵3

S d�N3LO
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Perturbative expansion aMC@NLO, Sherpa, Herwig… & 

Recola, Madloop, Gosam, OpenLoops
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dedicated MC’s: Matrix, MCFM, 
NNLOjet, … 

scale variation at NNLO 

NLO QCD + EW 
vs. 

NLO QCD x EW 
scheme variation, e.g. Gmu vs. a(mZ) 

in case of EW Sudakov 
dominance: exponentiation

+



• full calculations of            out of reach 

•Approximate combination: MEPS@NLO including  
(approximate) EW corrections 

• key: QCD radiation receives EW corrections! 

• strategy: modify MC@NLO B-function to include NLO EW  
 virtual corrections and integrated approx. real corrections = VI

O(↵↵s)

Combination of QCD and EW corrections

NLO EW corrections EW corrections in multijet merging Conclusions

Electroweak corrections in particle-level event generation

• incorporate approximate electroweak corrections in
SHERPA’s NLO QCD multijet merging (MEPS@NLO)

• modify MC@NLO B-function to include NLO EW virtual corrections
and integrated approx. real corrections
!

Bn,QCD+EWvirt(�n) = Bn,QCD(�n) +Vn,EW(�n) + In,EW(�n) + Bn,mix(�n)

��*
exact virtual contribution A

AK

approximate integrated real contribution

?
optionally include subleading Born

• real QED radiation can be recovered through standard tools
(parton shower, YFS resummation)

• simple stand-in for proper QCD+EW matching and merging
! validated at fixed order, found to be reliable,
! di↵. . 5% for observables not driven by real radiation

Marek Schönherr Electroweak and subleading correctionsintt̄ + jets production 14/18



Mixed QCD-EW uncertainties
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Estimate of non-factorising contributions 
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by universal ⌧cut-logarithms that should cancel against
virtual two-loop terms, and since such logarithms fac-
torise, their dominance can result in an underestima-
tion of non-factorising effects. Vice versa, excessively
large values of ⌧cut can lead to an overestimation of
non-factorising effects. This is due to the fact that in-
creasing ⌧cut enhances the difference between EW -
factors in Eq. (73) but also suppresses the cross section
of the V + 2-jet subprocess, rendering it a less and less
significant estimator of the behaviour of mixed correc-
tions for inclusive V+ jet production. Thus, excessively
small or large values of ⌧cut should be avoided.

Based on the above considerations, for the fit of the
⇠
(V ) coefficients we require that Eq. (73) is fullfilled in a

wide ⌧cut-range while keeping the �
V+2 jet

/�
V+1 jet ra-

tio at order one, in such a way that the V + 2 jet cross
section is neither too suppressed nor too enhanced. This
procedure is implemented using an N -jettiness cut pa-
rameter [84]. More precisely, we use the dimensionless
one-jettiness parameter

⌧1 =

X

k

mini

⇢
2pi · qk

Qi

p
ŝ

�
, (74)

where the pi are light-like vectors for each of the ini-
tial beams and the hardest final-state jet, and the Qi

characterise their respective hardness, which we set as
Qi = 2Ei. The hardest final-state jet is defined by ap-
plying an anti-kT algorithm with R=1 to all final-state
partons.15 The qk denote the four-momenta of any such
final-state parton, and

p
ŝ is the partonic centre-of-mass

energy. All quantities are defined in the hadronic centre-
of-mass system.

To isolate two-jet configurations against one-jet con-
figurations we require ⌧1 > ⌧cut, and the cut is varied
in the range 0.001  ⌧cut  0.04. As demonstrated
in Figure 15, this choice keeps the �

V+2 jet
/�

V+1 jet ra-
tio around order one, as desired. Moreover, we observe
that the estimator (73) remains quite stable with re-
spect to ⌧cut variations (see the solid lines in the right
plot). Non-factorising effects turn out to be generally
very small. They exceed the percent level only in the
TeV tails of the distributions. As illustrated by the gray
band in Figure 15 (right), setting

⇠
Z
= 0.1, ⇠

W
= 0.2, ⇠

�
= 0.4, (75)

guarantees an acceptable matching of the Ansatz (68)
to the estimator (73). More precisely, for W+ jet pro-
duction the shape of the Ansatz (68) tends to overesti-
mate the uncertainty in the pT range between one and
15In order to guarantee a proper cancellation of QCD and EW
singularities, the jet algorithm is applied to all QCD partons and
photons, excluding photons that are recombined with leptons, as
well as the leading identified photon in case of the �+jets process.

two TeV. However, we have checked that the Ansatz
becomes much less adequate if the full EW correction
in Eq. (67) is replaced by its non-Sudakov part.

The rather small values of the ⇠
(V ) coefficients con-

firm that the bulk of the EW and QCD corrections
factorise. However, in the case of W+ jet and �+ jet
production, the relative size of non-factorising correc-
tions appears to be rather significant. This is due to
the behaviour of the EW -factors in the multi-TeV re-
gion, where the difference between the EW -factors for
pp ! V + 1 jet and pp ! V + 2 jet is enhanced by the
presence of mixed EW–QCD interference contributions
in channels of type qq ! qqV (see the contributions
of type a.5 in Section 4.2). More precisely, EW–QCD
interference effects of O(↵S↵

2
) enhance the EW correc-

tions to pp ! V + 1 jet as a result of the opening of
the qq channel at NLO EW, while in pp ! V + 2 jet
the EW K-factor is not enhanced since the qq channel
is already open at LO. Based on this observation, and
also due to the fact that the main effect of the opening
of the qq channel is already reflected in the NLO QCD
K-factor for V +1 jet production, the above mentioned
EW–QCD interference effects could be excluded from
the factorisation prescription (64) and treated as a sepa-
rate contribution. As illustrated by the dashed curves in
Figure 15, this approach would lead to a drastic reduc-
tion of non-factorising effects, especially for �+ jet pro-
duction. Nevertheless, given that the effects observed
in Figure 15 are subdominant with respect to current
PDF and statistical uncertainties, in the present study
we refrain from implementing such a splitting.

Combination of QCD and EW corrections with related
uncertainties

Based on the above analysis, we recommend to combine
QCD and EW corrections according to the multiplica-
tive prescription (67), treating the non-factorising term
(68) as uncertainty and using the estimated ⇠

(V ) factors
given in Eq. (75). Including QCD and EW uncertain-
ties as specified in Eq. (39) and Eq. (58), this leads to
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VBS @ NLO QCD + EW
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• QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen ’16+’17] 
• EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, ’19]
• QCD and EW ZZjj at NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, ’20+’21]
• EW WWjj at NLO QCD+EW: [Denner, Franken, Schmidt, Schwan, ’22]

•2 → 6 particles at NLO EW !

•In the VBS phase-space EW mode receives:
‣very small QCD corrections (percent level)
‣O(20%) EW corrections

EW ZZ+2jets @ NLO QCD + EW
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Figure 2: Sample diagrams for the loop-induced process gg æ e+e≠µ+µ≠gg.
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Figure 3: Sample one-loop diagrams.

channels, channels with one or two gluons in the initial state contribute. Given the large
gluon luminosity at the LHC, the latter are one of the reasons for the enhancement of the
QCD-induced contributions over the EW ones.

Further contributions at orders O
!
–6"

and O
!
–s–5"

result from photon-induced processes
with ““, “g and “q initial states. Such contributions were found to be below 0.5% for WZ
scattering [18], which is also expected for VBS into ZZ. These contributions are neglected in
this work.

In contrast to final states corresponding to charged W±W± and WZ scattering, the
e+e≠µ+µ≠jj final state receives contributions from the loop-induced partonic process gg æ

e+e≠µ+µ≠gg at order O
!
–4

s –4"
(see Figure 2 for sample diagrams). We include these contri-

butions in our leading-order analysis.

2.2 Virtual corrections

We compute NLO corrections of orders O
!
–7"

and O
!
–s–6"

to the process (2.1).
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Figure 4: Separate contributions of LO and NLO. The upper panels show absolute predictions
of orders O

!
–

6"
(LO EW), O

!
–s–

5"
(LO INT), O

!
–

2
s –

4"
(LO QCD) and the complete NLO

prediction. The lower panels display the contributions of orders O
!
–

7"
, O

!
–s–

6"
, O

!
–

2
s –

5"
,

and O
!
–

3
s –

4"
relative to the complete LO predictions. The observables read as follows:

invariant mass of the two tagging jets (top left), rapidity separation of the two tagging jets
(top right), azimuthal angle between the two tagging jets (bottom left), and cosine of the
angle between the two tagging jets (bottom right).

of the relative corrections is dominated by the O
!
–

2
s –

4"
contributions for small Mj1j2 and

�yj1j2 , but by the O
!
–

6"
ones for large variables. Owing to this varying normalisation, the

EW corrections of order O
!
–

7"
are large for large Mj1j2 or large �yj1j2 (reaching ≠18% at

Mj1j2 = 2 TeV) and small otherwise. The normalisation also explains the opposite behaviour of
the (EW) corrections of order O

!
–

2
s –

5"
, which reach ≠9% at Mj1j2 = 400 GeV but are reduced

to about ≠4% at 2 TeV in the invariant-mass distribution. Despite the fact that these large
EW corrections can be traced back to Sudakov logarithms, they become relatively smaller at
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[Denner, Franken, Pellen, Schmidt; ’21]

1/
LO

to
t

•Always measure also combined QCD-mode + EW-mode  
fiducial xsections!  
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MiNNLOPS QCD + NLOPS EW

for NLOPS QCD + EW also [Chiesa, Re, Oleari ’20]

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, ‘22]
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Figure 8: Comparison of our default MiNNLOPS prediction NNLO(QCD,QED)PS
QCDxEW

with MPI
effects (blue, solid) and without (red, dashed) against the ATLAS data from the analysis [9].
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Figure 8: Comparison of our default MiNNLOPS prediction NNLO(QCD,QED)PS
QCDxEW

with MPI
effects (blue, solid) and without (red, dashed) against the ATLAS data from the analysis [9].
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•Percent level precision in MiNNLOPS QCD + NLOPS EW predictions 

[JML, Lombardi, Wiesemann, Zanderighi, Zanoli, ‘22]


