Perturbative uncertainties for high-energy tails

University of Sussex

LHC EWWG General Meeting CERN 12th July 2024

Jonas M. Lindert

Science & Technology Facilities Council

UK Research and Innovation

Multiboson tails

 $nn \rightarrow ZW^{\pm} \rightarrow \ell \ell \ell' \nu_{\ell'}$ @LHC 13 TeV

Perturbative expansion

scale variation at NNLO

aMC@NLO, Sherpa, Herwig... & Recola, Madloop, Gosam, OpenLoops

dedicated MC's: Matrix, MCFM, NNLOjet, ...

scale variation at NNLO

EW corrections become sizeable at large p_{T,V}: -30% @ I TeV

Origin: virtual EW Sudakov logarithms

How to estimate corresponding pure EW uncertainties of relative $\mathcal{O}(\alpha^2)$?

Large EW corrections dominated by Sudakov logs

Large EW corrections dominated by Sudakov logs

Uncertainty estimate of (N)NLO EW from naive exponentiation $\times 2$:

 $\Delta_{\rm EW}^{\rm Sud} \approx \left(k_{\rm NLOEW}\right)^2$

 $\Delta_{\rm EW}^{\rm hard} \approx O(1\%)$

e.g. from scheme variation, e.g. Gmu vs. a(mZ)

Large EW corrections dominated by Sudakov logs

[Kühn, Kulesza, Pozzorini, Schulze; 05-07]

Tools for EW Sudakov corrections

also: alpgen [Chiesa, et. al., '13]

EW Sudakov corrections

2.
$$\hat{\delta}^{\text{SL}} = \hat{\delta}^{\text{PR}} + \hat{\delta}^{\text{COLL}} + \hat{\delta}^{\text{WFRC}}$$

- Sizeable cancellations between different logarithmic contributions.
- Only partial control of angular-dependent S-SSC contribution in Sudakov approximation

EW uncertainties: hard-coefficient

Scheme variations e.g. $\{G_{\mu}, m_W, m_Z\}_{VS.} \{\alpha(m_Z), m_W, m_Z\}$

However: scheme variations mix perturbative and parametric uncertainties!

Estimate hard coefficient

Typical size of hard EW corrections: ~2%

$$\begin{pmatrix} \alpha \\ \pi \end{pmatrix} \delta^{(1)}_{hard} = 2\% \leftrightarrow \delta^{(1)}_{hard} = 10$$
Require: $\delta^{(2)}_{hard} \le 100 \, \delta^{(1)}_{hard}$

$$\checkmark \Delta^{hard}_{EW} = 1000 \times \left(\frac{\alpha}{\pi}\right)^2 = 0.6\%$$

Mixed QCD-EW uncertainties

Mixed QCD-EW uncertainties

- at large pTVI:VV phase-space is dominated by V+jet (w/ soft V radiation)

$$-\frac{d\sigma_{VV}^{V(V)j}}{d\sigma_{VV}^{LO}} \propto \frac{\sigma_{00}}{\alpha_{\rm S}} \log \left(\frac{Q^2}{M_W^2}\right) \simeq 3 \quad \text{at} \quad Q = 17$$

- •NNLO / NLO QCD moderate and NNLO uncert. 5-10%
- •Very large difference $d\sigma_{
 m NNLO\,QCD+EW\,VS} d\sigma_{
 m NNLO\,QCD\times EW}$
 - . In additive combination dominant Vj topology does not receive any EVV corrections 2. In multiplicative combination EW correction for VV is applied to Vj hard process
- Pragmatic solution I: take average as nominal and spread as uncertainty
- Pragmatic solution II: apply jet veto to constrain Vj toplogoies

MEPS @ NLO QCD + EW

WW(+jet): [Bräuer, Denner, Pellen, Schönherr, Schumann; '20] ZZ(+jet): [Bothmann, Napoletano, Schönherr, Schumann, Villani; '21]

• More rigorous solution: merge VVj incl. approx. EW corrections with VV with Sherpa's MEPS@NLO QCD + EWvirt

Used in many ATLAS modern multi-purpose samples: V+jets,VV+jets, tt+jets

[Kallweit, JML, et. al.; '15]

VBF-V @ NLO QCD + EW

- If LO interference is small: possible to consider QCD and EW production modes as independent and factorise QCD and EW corrections to the respective processes

- Multiboson tails are becoming precision probes with often $< \sim 10\%$ uncertainties
- EW uncertainties:
 - Higher-order Sudakov corrections: $\Delta_{\rm EW}^{\rm Sud} = \left(\delta_{\rm Sud}^{(1)}\right)^2$
 - \odot Higher-order hard corrections: $\Delta_{\rm EW}^{\rm hard} \approx 1\%$
 - Higher-order QED radiation: $\Delta_{\rm EW}^{\rm QED} = |\delta_{\rm EW} \delta_{\rm EW+PS/YFS}|$
- ► QCD-EW uncertainties:
 - Conservative: difference between add. and multipl. combination: $\Delta_{\rm QCD-EW} = \delta_{\rm QCD} \delta_{\rm EW}$
 - More aggressive: $\Delta_{\text{QCD}-\text{EW}} = \delta_{\text{QCD}} \left(\delta_{\text{EW}}^{\text{SL}} + \delta_{\text{EW}}^{\text{hard}} \right)$ (applicable when $\delta_{\text{EW}} \sim \delta_{\text{EW}}^{\text{DL}}$)
 - For processes subject to significant QCD radiation: $\Delta_{\text{OCD-EW}}^{\text{multi-jet merged}} = \delta_{\text{QCD}} \delta_{\text{EW}}$
 - \bullet X+j @ NLO EW proxy computations might allow for estimate of non-factorising effects
 - Factorisation feasible for processes with small interferences of tower of born orders
- Necessary tools are available:
 - NLO EW in MG5_aMC@NLO / Sherpa / POWHEG
 - NLL EW in Sherpa / MG5_aMC@NLO / OpenLoops
 - NLOPS EW in POWHEG / MEPS NLO EW + YFS in Sherpa

Conclusions

- Plan for recommendation document from WG3 agreed amongst different theorists
- ► See also:
 - Electroweak Radiative Corrections for Collider *Physics* (Denner & Dittmaier): <u>1912.06823</u>
 - Les Houches 2023: 2406.00708

Backup

- pole approximation vs. full computation: agree below the percent level

• Comparison against naive factorised NLO QCD x NLO EW ansatz: fail at the 5-10% level • At large p_{T,μ^+} in DY: sizeable contributions from $pp \rightarrow Vj$ which receives larger EW corrections

The need for off-shell computations:VV

[Biedermann, M. Billoni, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, L. Salfelder ;' I 6]

➡ sizeable differences in fully off-shell vs. double-pole approximation in tails

 $pp \to \ell \bar{\ell} \ell' \bar{\ell}'$ u_{μ} $p_{\mathrm{T},\bar{\nu}_{e}}$ beam axis $ec{p}_{\mathrm{T},
u_{\mu}}$ $\nu_{\mu} \downarrow$

Combination of QCD and EW corrections

- full calculations of $\mathcal{O}(\alpha \alpha_s)$ out of reach
- Approximate combination: MEPS@NLO including (approximate) EW corrections
- key: QCD radiation receives EW corrections!
- strategy: modify MC@NLO B-function to include NLO EW virtual corrections and integrated approx. real corrections = VI

$$\overline{B}_{n,QCD+EW_{virt}}(\Phi_n) = \overline{B}_{n,QCD}(\Phi_n) + V_{n,EW}(\Phi_n) + I_{n,EW}(\Phi_n)$$

exact virtual contribution
approximate integrated real contribution

Mixed QCD-EW uncertainties

N-jettiness cut ensures approx. constant ratio V+2jets/V+jet

$$\tau_1 = \sum_k \min_i \left\{ \frac{2p_i \cdot q_k}{Q_i \sqrt{\hat{s}}} \right\}$$

Estimate of non-factorising contributions

VBS @ NLO QCD + EW

• QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen '16+'17] • EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, '19] • QCD and EW ZZjj at NLO QCD+EW: [Denner, Franken, Pellen, Schmidt, '20+'21] • EW WWjj at NLO QCD+EW: [Denner, Franken, Schmidt, Schwan, '22]

