WG1 goals and paper status

Fulvio Piccinini

LHC EWWG general meeting 10-12 July 2024, CERN

on behalf of the QED/EW precision subgroup WG

Since last EWWG general meeting (november 2022)

Sub-group meetings

- May 2024 http://indico.cern.ch/event/1412120/
- November 2023 https://indico.cern.ch/event/1342373/
- April 2023 https://indico.cern.ch/event/1274770/
- March 2023 https://indico.cern.ch/event/1255813/

Studies and benchmarking on NC Drell-Yan

having in mind, as a target, the LEP precision of $1.6 \cdot 10^{-4}$ on $\sin^2 \vartheta^{\ell}_{eff}$ $\implies \sim 5 \cdot 10^{-4}$ on A_{FB}

Goals of the study on EW/QED

analysis and benchmarking of NLO-EW corrections to NC DY

- focus on $A_{FB}(m_{\ell\ell})$ and $d\sigma/dM_{\ell\ell}$
- quantitative assessment of the uncertainties of EW origin in the determination of $\sin^2 \vartheta^{\ell}_{eff}$

• separate study on
$$p_T^{W/Z}$$
 resummation

talk by L. Rottoli

Main focus on

o pure weak corrections

- Gauge invariance and treatment of the Z-resonance
- input parameter schemes
- evaluation of residual theoretical uncertainties

• pure QED corrections on A₄

breaking of the usual decomposition in angular coefficients

Programs/groups involved

- KKMC_hh
- MCSANC
- POWHEG_ew
- RADY
- WZGRAD2
- DIZET/TauSpinner

Adopted width schemes

- complex mass scheme (CMS)
 - complex M_W and M_Z

$$\mu_V^2 = M_V^2 - i\Gamma_V M_V \Longrightarrow \cos^2 \vartheta = rac{\mu_W^2}{\mu_Z^2}$$

• factorization scheme (FS): global correction factor in the limit $\Gamma \to 0$

$$d\sigma_{\mathsf{weak}} = \delta_{\mathsf{weak}}^{\mathsf{\Gamma}=0} imes d\sigma_{LO}^{\mathsf{\Gamma}\neq 0}$$

• pole scheme (PS): amplitude organized in resonant g.i. contributions

$$\mathcal{M} = \frac{R(p^2)}{p^2 - M_2} + N(p^2) = \frac{R(M^2)}{p^2 - M_2} + \frac{R(p^2)R(M^2)}{p^2 - M_2} + N(p^2)$$

$$\rightarrow \frac{\bar{R}(M^2 - i\Gamma M)}{p^2 - M_2 + i\Gamma M} + \frac{R(p^2)R(M^2)}{p^2 - M_2} + \bar{N}(p^2)$$

Adopted input parameter schemes

- (G_{μ}, M_W, M_Z)
 - MCSANC, POWHEG_EW, RADY, WZGRAD2
- $(\alpha(0), M_W, M_Z)$
 - MCSANC, POWHEG_EW, RADY, WZGRAD2
- (G_μ, sin² ϑ^ℓ_{eff}, M_Z), (α(0), sin² ϑ^ℓ_{eff}, M_Z)
 ► POWHEG_EW, RADY
- (α(0), G_µ, M_Z)
 ► DIZET

Width schemes with different input par schemes

M. Chiesa, C.L. Del Pio, F.P., arXiv:2402.14659

Comparisons between input par schemes

F. Piccinini (INFN Pavia)

QED/EW subgroup

11 July 2024 8/31

with tuned parameters

M. Chiesa, C.L. Del Pio, F.P., arXiv:2402.14659

Status of benchmarking on weak corrections

NLO weak corrs: $(G_{\mu}, M_W, M_Z), d\sigma/dM(ll)$

Code:		$89 < M_{\ell \bar{\ell}} [\text{GeV}] < 93$	$60 < M_{\ell \bar{\ell}} [\text{GeV}] < 81$	$81 < M_{\ell \bar{\ell}} [\text{GeV}] < 101$	$101 < M_{\ell \bar{\ell}} [GeV] < 150$			
	$\sigma(LO) (pb)$							
MCSANG	3	612.531(5)	46.870(2)	880.527(6)	-			
POW HEG _{ew}	(FS)	612.529(8)	46.8697(8)	880.513(9)	30.8686(5)			
RADY (F	S)	612.526(1)	46.8708(1)	880.520(2)	30.86835(6)			
WZGRAI	02	612.521(7)	46.868(4)	880.520(10)	-			
			$\sigma(\text{NLO})/\sigma(\text{LO})$					
MCSANG	3	0.99167(2)	1.02865(7)	0.99206(1)	•			
DOWNED (FR)	no α resc.	0.99121(3)	1.02972(4)	0.99163(2)	0.98888(3)			
FOW HEGew (F5)	α resc.	0.99150(3)	1.02871(4)	0.99191(2)	0.98926(3)			
DADV (EC)	no α resc.	0.99118(1)	1.02965(1)	0.99160(1)	0.98886(1)			
RADY (F5)	α resc.	0.99148(1)	1.02863(1)	0.99189(1)	0.98924(1)			
WZGRAI	52	0.99198(1)	1.02913(4)	0.99239(1)	-			
		$\sigma(I)$	$NLO + HO)/\sigma(LO)$	•				
MCSANG	3	0.99232(2)	1.02614(7)	0.99268(1)	•			
DOWNEC (FS)	α resc.	0.99216(3)	1.02603(4)	0.99253(2)	0.98968(3)			
POW HEGew (F5)	no α resc.	0.99181(3)	1.02577(4)	0.99218(1)	0.98919(3)			
RADY (FS) α 1	io resc.	0.99179(1)	1.02589(1)	0.99216(1)	0.98915(1)			
TauSpinner+I	DIZET							
(estim ateo	i)	0.99211(0)	1.02321(0)	0.99264(0)	0.98884(0)			

- some entry still missing...
- overall agreement 0.01% level

LO ~
$$\alpha_{G_{\mu}}$$
, $\delta = \text{NLO}/\text{LO} - 1 \sim \alpha_{\text{loop}}$

•
$$\alpha_{\text{loop}} = \alpha_0$$
 (resc)

•
$$\alpha_{\text{loop}} = \alpha_{G_{\mu}}$$
 (nonresc)

	Mauro Chiesa	QED/EW corrections	enchmarking M. Chiesa, G.M. nove	mber 2022
F. Piccinini (INFN Pavia)	QED/EW	subgroup	11 July 2024	11/31

NLO weak corrs: (G_{μ}, M_W, M_Z) , $A_{\rm FB}$

Code:		$89 < M_{\ell \bar{\ell}} [\text{GeV}] < 93$	$60 < M_{\ell \bar{\ell}} [\text{GeV}] < 81$	$81 < M_{\ell \bar{\ell}} [\text{GeV}] < 101$	$101 < M_{\ell \bar{\ell}} [\text{GeV}] < 150$		
	A _{FB} (LO)						
MCSANO	3	0.04654(1)	-0.20299(4)	0.04481(1)	-		
POWHEG _{ew}	(FS)	0.04655(2)	-0.202975(24)	0.04481(2)	0.22608(4)		
RADY (FS	5)	0.046547(4)	-0.202955(4)	0.044812(3)	0.226090(4)		
WZGRAD	2	0.04654(1)	-0.20299(8)	0.04482(1)	-		
		A _{FB}	$(NLO) - A_{FB}(LO)$				
MCSANC (1	FS)	-0.01717(2)	-0.01183(8)	-0.01715(2)	-0.00688(7)		
DOWIEG (ER)	α resc.	-0.01718(3)	-0.01198(3)	-0.01718(3)	-0.00680(3)		
POWIEGew (F5)	no α resc.	-0.01779(3)	-0.01239(3)	-0.01778(3)	-0.00705(5)		
DADV (EF)	α resc.	-0.017166(5)	-0.011988(6)	-0.017156(5)	-0.006809(6)		
(F5)	no α resc.	-0.017778(5)	-0.012399(6)	-0.017767(5)	-0.007052(6)		
WZGRAD	2	-0.01716(2)	-0.01186(11)	-0.01715(2)	-0.00686(14)		
		A _{FB} (NL	$O + HO) - A_{FB}(NLO)$)			
MCSANO	3	0.00137(2)	0.00111(8)	0.00137(2)	-		
DOWNEC (ES)	α resc.	0.00136(3)	0.00113(3)	0.00137(3)	0.0004(2)		
rowned _{ew} (rs)	no α resc.	0.00183(3)	0.00147(3)	0.00183(2)	0.00057(35)		
RADY (FS) no	α resc.	0.001829(5)	0.001437(6)	0.001830(5)	0.000582(6)		
		A _{FB} (N	$LO + HO) - A_{FB}(LO)$				
MCSANO	3	-0.01551(2)	-0.01059(8)	-0.01551(1)	-		
DOWHEC (ES)	α resc.	-0.01582(3)	-0.01085(3)	-0.01581(3)	-0.0064(2)		
rowned _{ew} (ro)	no α resc.	-0.01597(3)	-0.01092(3)	-0.01596(3)	-0.0065(5)		
RADY (FS) no	α resc.	-0.015948(5)	-0.010962(6)	-0.015937(5)	-0.006470(6)		
TauSpinner+D	IZET						
(estimated	l)	-0.01507(0)	-0.01104(0)	-0.01514(0)	0.00684(0)		

	Mauro Chiesa	QED/EW corrections I	penchmarking		
			M. Chiesa, C	3.M. novembe	er 2022
F. Piccinini (INFN Pavia)	QED/EW	subaroup	11 Ju	lv 2024 1	2/31

Code:	$89 < M_{\ell \bar{\ell}} [\text{GeV}] < 93$	$60 < M_{\ell \bar{\ell}} [\text{GeV}] < 81$	$81 < M_{\ell \bar{\ell}} [{\rm GeV}] < 101$	$101 < M_{\ell\bar\ell} [{\rm GeV}] < 150$			
	$\sigma(LO)$ (pb)						
MCSANC	571.412(5)	43.724(2)	821.414(6)	-			
POW HEG _{ew} (FS)	571.416(7)	43.7239(8)	821.414(9)	28.7967(4)			
RADY (FS)	571.414(1)	43.725(1)	821.420(2)	28.7965(6)			
WZGRAD2	571.409(7)	43.722(4)	821.419(9)	-			
	•	$\sigma(\text{NLO})/\sigma(\text{LO})$	•				
MCSANC	1.05117(1)	1.08830(4)	1.05157(1)	-			
POWHEG _{ew} (FS)	1.05095(3)	1.08815(4)	1.05136(2)	1.04870(3)			
RADY (FS)	1.05100(1)	1.08816(1)	1.05141(1)	1.0487685(7)			
WZGRAD2	1.05151(1)	1.08854(9)	1.05191(1)	-			
		$\sigma(\text{NLO} + \text{HO})/\sigma(\text{LC})$))				
MCSANC	1.06452(1)	1.1004(4)	1.06491(1)	-			
POWHEG _{ew} (FS)	1.06381(3)	1.09911(4)	1.06420(2)	1.06175(3)			
RADY (FS)	1.06387(1)	1.09979(1)	1.06426(1)	1.0614687(8)			
TauSpinner+DIZET							
estim at ed	1.06558(0)	1.09892(0)	1.06613(0)	1.06202(0)			

	Mauro Chiesa	QED/EW corrections t	penchmarking M. C	hiesa. G.M. novem	ber 2022
				,	
E. Piccinini (INEN Pavia)	QED/EW	subaroup		11 July 2024	13/31

Code:	$89 < M_{\ell \bar{\ell}} [\text{GeV}] < 93$	$60 < M_{\ell \bar{\ell}} [\text{GeV}] < 81$	$81 < M_{\ell \bar{\ell}} [{\rm GeV}] < 101$	$101 < M_{\ell\bar\ell} [{\rm GeV}] < 150$				
	A _{FB} (LO)							
MCSANC	0.04655(1)	-0.20304(4)	0.04482(1)	-				
POW HEG _{ew} (FS)	0.04655(2)	-0.20296(2)	0.04481(2)	0.226094(25)				
RADY (FS)	0.046547(4)	-0.202955(4)	0.044812(3)	0.226090(4)				
WZGRAD2	0.04654(1))	-0.20299(8)	0.04482(1)	-				
		$A_{FB}(NLO) - A_{FB}(Le$	O)					
MCSANC	-0.01618(1)	-0.01118(7)	-0.01618(1)	-0.00647(7)				
POW HEG _{ew} (FS)	-0.01621(3)	-0.01134(3)	-0.01620(2)	-0.00643(4)				
RADY (FS)	-0.016195(5)	-0.011332(6)	-0.016186(5)	-0.006423(6)				
WZGRAD2	-0.01619(2)	-0.01121(12)	-0.01617(2)	-0.00650(14)				
	A _F	$_{\rm B}(\rm NLO + HO) - A_{\rm FB}$	(NLO)					
MCSANC	0.00077(1)	0.00068(6)	0.00078(1)	-				
POWHEG _{ew} (FS)	0.00077(3)	0.00073(3)	0.00078(2)	0.000232(35)				
RADY (FS)	0.000771(5)	0.000664(7)	0.000774(6)	0.000245(6)				
	А	$_{FB}(NLO + HO) - A_{FE}$	(LO)					
MCSANC	-0.01519(1)	-0.01035(6)	-0.01517(1)	-				
POWHEG _{ew} (FS)	-0.01544(3)	-0.01061(3)	-0.01542(2)	-0.006100(35)				
RADY (FS)	-0.015424(5)	-0.010668(6)	-0.015412(5)	-0.006178(6)				
TauSpinner+DIZET								
(estimated)	-0.01508(0)	-0.01104(0)	-0.01515(0)	0.00684(0)				

	Mauro Chiesa		penchmarking M. Chiesa, G.M. nover	nber 2022
E Piccinini (INEN Pavia)		subaroun	11 July 2024	1//31

Code/scheme:	$89 < M_{\ell \ell} [GeV] < 93$	$60 < M_{\ell \ell} [GeV] < 81$	$81 < M_{\ell \ell} [GeV] < 101$	$101 < M_{\ell \ell} [GeV] < 150$			
$A_{\rm FB}(m LO)$							
RADY/CMS	0.030552(3)	-0.214572(4)	0.028815(4)	0.220793(5)			
Powheg/CMS	0.03056(2)	-0.21459(2)	0.02881(2)	0.22077(35)			
RADY/PS	0.030552(3)	-0.214572(4)	0.028815(4)	0.220793(5)			
Powheg/PS	0.03056(2)	-0.21459(2)	0.02881(2)	0.22077(35)			
RADY/FS	0.030552(3)	-0.214572(4)	0.028815(4)	0.220793(5)			
Powheg/FS	0.03056(2)	-0.21459(2)	0.02881(2)	0.22077(35)			
X–CMS	0	0	0	0			
		A _{FB} (NLO weal	k)				
RADY/CMS	0.030459(3)	-0.214082(4)	0.028738(4)	0.219509(5)			
Powheg/CMS	0.03046(2)	-0.21408(2)	0.02873(2)	0.219506(25)			
RADY/PS	0.030376(3)	-0.214136(4)	0.028658(4)	0.219475(5)			
Powheg/PS	0.03038(2)	-0.21413(2)	0.02865(2)	0.219472(25)			
RADY/FS	0.030589(3)	-0.213854(4)	0.028871(4)	0.219573(5)			
Powheg/FS	0.03059(2)	-0.21385(2)	0.02886(2)	0.219571(25)			
PS-CMS	0.00008	0.00005	0.00008	0.00003			
FS–CMS	0.0001	0.0002	0.0001	0.00006			

	Mauro Chiesa	QED/EW corrections b	enchmarking M. Cl	niesa, G.M. novem	oer 2022
E Piccinini (INEN Pavia)	OED/EW	subaroup		11 July 2024	15/31

Semianalytical A₄ uncertainties in the pure weak sector

F. Piccinini (INFN Pavia)

QED/EW subgroup

11 July 2024 16/31

Including photon exchange and photon form factor estimate: (neglecting boxes and s-dependence of Z form factors)

$$A_{4} = \frac{\sum_{q} X_{q} \, 4\left(\frac{v_{\ell}}{a_{\ell}} \frac{v_{q}}{a_{q}} + \frac{v_{\ell q}(s)}{a_{\ell} a_{q}}\right)}{\sum_{q} X_{q} \left(1 + \frac{v_{\ell}^{2}}{a_{\ell}^{2}} + \frac{v_{q}^{2}}{a_{\ell}^{2}} + \frac{v_{\ell q}^{2}(s)}{a_{\ell}^{2} a_{q}^{2}}\right)}$$

 $X_q = f_q(x_1)f_{\bar{q}}(x_2) + f_{\bar{q}}(x_1)f_q(x_2)$

$$v_{\ell q}(s) = v_{\ell} v_{q} + \frac{s - M_{\mathsf{Z}}^{2} - iM_{\mathsf{Z}} \Gamma_{\mathsf{Z}}}{s} e^{2} e_{q} \left(1 + \overline{\Delta}_{q}\right)$$

 $\frac{v_{\ell}}{a_{\ell}} = 1 - 4s_{\ell}^2, \qquad \qquad s_{\ell}^2 \equiv \sin^2 \theta_{\text{eff}}^{\ell}$

$$\frac{v_q}{a_q} = 1 - 4|e_q|(s_\ell^2 + \Delta_q)$$

$$\Delta_q = \Delta_{q(1)} + \Delta_{q(2)}$$

$$\Delta_q = \underbrace{\Delta_{q(1)}}_{\text{known}} + \underbrace{\Delta_{q(2)}}_{\text{unknown}}$$

 $\begin{array}{l} \Delta_{q(2)} \text{ is known (in SM) for leading Z pole term} \\ \overline{\Delta}_{q(2)} = \pm \overline{\Delta}_{q(1)} \times \frac{g^2}{16\pi^2} n_f, \quad n_f = 6 + 6N_c \quad (\text{maybe underestimate ?}) \\ A. Freitas, 02/03/2023 \end{array}$

F. Piccinini (INFN Pavia)

A. Freitas, 02/03/2023

F. Piccinini (INFN Pavia)

QED/EW subgroup

11 July 2024 18/31

Z-pole 2-loop flavor dependence:

Assume: all EW 2-loop corrections are a source theory uncertainties

Schemes:

- α' : Use α, M_W, M_Z as inputs, perturb. exp. in α
- α : Use α , G_{μ} , M_{Z} as inputs, perturb. exp. in α
- G_{μ} : Use G_{μ}, M_{W}, M_{Z} as inputs, perturb. exp. in G_{μ}

Scheme:	α'	α	G_{μ}	
$\Delta_{u(\alpha^2)} [10^{-5}]$	-1.74	-1.82	-1.37	
$\Delta_{d(\alpha^2)}[10^{-5}]$	-1.49	-1.67	-0.88	
including non-factoriz	able EW>	QCD cor	rections:	Czarnecki, Kühn '96
$\Delta_{u(\alpha^2+\alpha\alpha_s)}$ [10 ⁻⁵]	+1.46	+1.38	+1.52	Harlander, Seidensticker, Steinhauser '97
$\Delta_{d(\alpha^2 + \alpha \alpha_{\rm s})} [10^{-5}]$	+2.33	+2.14	+2.46	

Inputs: $M_Z = 91.1876 \text{ GeV}, M_W = 80.385 \text{ GeV}, M_H = 125.7 \text{ GeV}$

 $m_{\rm f} = 173.5 \text{ GeV}, \ \Delta \alpha = 0.059, \ \alpha_{\rm s} = 0.1184, \ G_{\mu} = 1.16638 \times 10^{-5} \text{ GeV}_{\rm control}^{-2}$

A. Freitas, 02/03/2023

F. Piccinini (INFN Pavia)

Combine $\Delta_{q(2)}$ numbers with $\overline{\Delta}_{q(2)}$ estimate as sources of th. unc. Impact of missing EW 2-loop contributions (including EW×QCD):

 $\delta A_4/A_4$: [10⁻³]

$m_{\ell\ell}[{\rm GeV}]$	Scheme:	α'	α	G_{μ}
60		4.2	1.44	1.24
70		2.1	0.80	0.65
80		9.9	3.1	3.02
M_Z-2		38.6	17.1	12.9
$M_Z - 1$		6.8	3.1	2.5
M_{Z}		0.41	0.43	0.43
M_Z+2		2.4	0.68	0.56
$M_Z + 1$		3.9	1.3	1.1
100		6.3	2.3	1.9
110		5.5	2.0	1.6
130		2.9	1.0	0.80
150		1.1	0.33	0.23

٠	Dominated	by photon	form
	factor unc.	$\overline{\Delta}_q$	

- New: Error estimate for A₄ is larger than what I showed before (due to including all NLO contributions)
- New: Schemes that use G_µ have smaller corrections/ uncertainties

A. Freitas, 02/03/2023

F. Piccinini (INFN Pavia)

QED/EW subgroup

11 July 2024 20/31

CMS measurement of the weak mixing angle

RESULTS

 \triangleright The final combined result for $\sin^2\theta^l_{\rm eff}$ using CT18Z parton densities is:

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00010 \text{ (stat)} \pm 0.00015 \text{ (syst)} \pm 0.00009 \text{ (theo)} \pm 0.00027 \text{(PDF)}$

S. Amoroso, 17/05/2024

see talk by Rhys Taus

NLO WEAK UNCERTAINTIES

- Several sources of uncertainties are considered on the NLO weak corrections
 - Comparison of the complex-mass and pole scheme for the treatment of the finite width
- Comparison between the $(G_F, m_Z, \sin^2 \theta_{\text{eff}}^l)$ and $(\alpha(m_Z), m_Z, \sin^2 \theta_{\text{eff}}^l)$ input EW schemes
- Parametric uncertainties on the measured values of m_t and m_Z (others negligible)

26

S. Amoroso, 17/05/2024

see an update by Rhys Taus

Status of benchmarking on QED ISR and IFI

QED corrections (at QCD LO)

- important to disentangle on A₄
 - ISR
 - FSR
 - IFI
- A_4 defined as $8/3A_{FB}$ or $4(\cos\vartheta)$ (equivalent options at LO)
- IFI contributions defined as

$$\begin{split} A_{FB}^{\rm IFI} &= \frac{(\sigma_F - \sigma_B)^{\rm NLO} - (\sigma_F - \sigma_B)^{\rm ISR} - (\sigma_F - \sigma_B)^{\rm FSR} + 2(\sigma_F - \sigma_B)^{\rm LO}}{(\sigma_F + \sigma_B)^{\rm NLO} - (\sigma_F + \sigma_B)^{\rm ISR} - (\sigma_F + \sigma_B)^{\rm FSR} + 2(\sigma_F + \sigma_B)^{\rm LO}} \\ \langle \cos\vartheta\rangle^{\rm IFI} &= \frac{\int \cos\vartheta \, d\sigma_{\rm NLO} - \int \cos\vartheta \, d\sigma_{\rm ISR} - \int \cos\vartheta \, d\sigma_{\rm FSR} + -\int \cos\vartheta \, d\sigma_{\rm LO}}{\int d\sigma_{\rm NLO} - \int d\sigma_{\rm ISR} - \int d\sigma_{\rm FSR} + 2\int d\sigma_{\rm LO}} \end{split}$$

- tuned comparison at fixed order (NLO) level for all codes except for KKMC_hh which produces only exponentiated results for both ISR and FSR
- input parameter scheme: (α, M_W, M_Z)

$A_4 = 8/3A_{FB}$

Code:		$89 < M_{\ell ar{\ell}}[{ m GeV}] < 93$	$60 < M_{\ell ar{\ell}}[{ m GeV}] < 81$	$81 < M_{\ell \ell} [GeV] < 101$	$101 < M_{\ell \bar{\ell}}[\text{GeV}] < 150$	
8/3 · [A _{FB} (NLO QED ISR) – A _{FB} (LO)]/10 ⁻⁴						
MCSANC		0.2(3)	-5(2)	0.2(3)	5(2)	
WZGRAD2		0.2(5)	-5(3)	0.3(5)	6(4)	
KKMC-hh		-1.0(6)	0(1)	-0.5(5)	-8(2)	
KKMC-hh (NISR)		-1(2)	0(4)	0(1)	6(8)	
RADY (CMS)		0.16(4)	-4.05(3)	0.12(3)	4.90(3)	
A. Huss		0.17(1)	-4.07(1)	0.11(1)	4.94(4)	
POWHEG _{ew}		0.1(1)	-4.0(4)	0.1(1)	4.5(7)	
$8/3 \cdot [A_{FB} (NLO QED IFI) - A_{FB} (LO)]/10^{-4}$						
MCSANC		-2.8(5)	-34(2)	-4.0(4)	-60(3)	
WZGRAD2		-1.1(5)	-37(3)	-2.3(5)	-51(4)	
KKMC-hh		-3.8(6)	-25(1)	-2.1(1)	-53(1)	
KKMC-hh (NISR)		-3.1(6)	-17(1)	-3.2(5)	-60(3)	
RADY (CMS)		-1.5(1)	-33.6(4)	-2.49(7)	-59.5(1)	
A. Huss		-1.42(6)	-33.9(6)	-2.57(7)	-58.7(3)	
POWHEG _{ew}	$\mu_F = M_{\ell \bar{\ell} \gamma}$	-1.2(3)	-62(1)	-2.5(4)	-59(2)	
	$\mu_F = M_{\ell\bar{\ell}}$	-1.3(6)	-34(2)	-2.6(7)	-59(3)	

POWHEG_{ew} $\mu_F(1) \Longrightarrow M_{II}$ for real rad calculated with underlying Born momenta

- POWHEG_{ew} $\mu_F(2) \Longrightarrow M_{II}$ for real rad calculated with radiative event momenta
- differences between µ_F(1) and (2) expected to decrease when including also QCD corrections

$A_4 = 4 \langle \cos \vartheta \rangle$

Code:		$89 < M_{\ell \bar{\ell}}[\text{GeV}] < 93$	$60 < M_{\ell \bar{\ell}}[\text{GeV}] < 81$	$81 < M_{\ell \bar{\ell}}[\text{GeV}] < 101$	$101 < M_{\ell \bar{\ell}}[\text{GeV}] < 150$
$[A_4 (NLO QED ISR) - A_4 (LO)]/10^{-4}$					
RADY (CMS)		0.15(3)	-4.05(3)	0.10(2)	4.89(2)
A. Huss		0.16(1)	-4.07(1)	0.11(1)	4.87(2)
POWHEGew		0.07(9)	-4.0(3)	0.10(7)	4.8(4)
$[A_4 (NLO QED IFI) - A_4 (LO)]/10^{-4}$					
RADY (CMS)		-1.7(1)	-42.3(4)	-2.97(6)	-71.6(2)
A. Huss		-1.68(6)	-42.4(6)	-3.05(8)	-71.2(3)
POWLEC	$\mu_F = M_{\ell \bar{\ell} \gamma}$	-1.5(5)	-70(1)	-3.0(4)	-71(3)
FOWHEGew	$\mu_F = M_{\ell \bar{\ell}}$	-1.5(5)	-43(1)	-3.0(4)	-71(3)

- POWHEG_{ew} $\mu_F(1) \Longrightarrow M_{II}$ for real rad calculated with underlying Born momenta
- POWHEG_{ew} $\mu_F(2) \Longrightarrow M_{II}$ for real rad calculated with radiative event momenta
- at low and high M_{II} virtual QED boxes and I-F real radiation interference break factorization assumption for angular coefficients and the LO equality between the two A₄ def's
- differences between µ_F(1) and (2) expected to decrease when including also QCD corrections

IFI contribution to A₄ according to different definitions

 virtual QED boxes and I-F real radiation interference give different contributions according to the definition of A₄

F. Piccinini (INFN Pavia)

QED/EW subgroup

From a recent study

Figure 13: NLO EW corrections to the FB asymmetry $A_{\rm FB}$ for muon pair (left) and dressed-lepton pair (right) production induced by QED IF (red), QED ISR (green), and purely weak (blue) corrections, as well as contributions from LO $\gamma\gamma$ (cyan) and NLO $q\gamma/\bar{q}\gamma$ (yellow) initial states.

S. Dittmaier, A. Huss, J. Schwarz, arXiv:2401.15682

Uncertainties from scale variations in QED LL FSR

S. Dittmaier, A. Huss, J. Schwarz, arXiv:2401.15682

F. Piccinini (INFN Pavia)

QED/EW subgroup

11 July 2024 29/31

Draft on overleaf (by A. Vicini from previous version)

Contents

10	1	Introduction	2
11	1.1	On-shell and effective leptonic weak mixing angles	3
12	1.2	Determination of $\sin^2 \theta_{\text{eff}}^{\ell}$ at LEP/SLC	3
13	2	The neutral current Drell-Yan process and the $\sin^2 \theta_{\rm eff}^\ell$ determination $\ldots \ldots \ldots \ldots$	6
14	2.1	Sensitivity of the LO cross section to the weak mixing angle	6
15	2.2	Determination of $\sin^2 \theta_{\text{eff}}^{\ell}$ from hadron collider observables	7
16	2.3	Goals of the comparisons	8
17	3	Radiative corrections to the neutral-current Drell-Yan process	8
18	3.1	Leading order cross sections	9
19	3.2	Radiative corrections at NLO-EW	9
20	3.3	SM renormalization and input schemes	11
21	3.4	Treatment of the resonance and mass definition (CMS FS/PS)	12
22	3.5	QED radiative corrections	14
23	3.6	Weak corrections	16
24	4	Numerical results	18
25	4.1	Definition of the observables and of the simulation setup	18
26	4.2	Numerical impact of $\mathcal{O}(\alpha)$ and higher-order weak corrections	20
27	4.3	Numerical impact of $O(\alpha)$ QED ISR and QED IFI corrections	25
28	4.4	Photon-induced contributions	25
29	5	A possible strategy for run-2 measurements and combinations at the LHC	25
30	6	Tools implementing the EW radiative corrections to NC DY	26
31	6.1	Dizet in Z+jet simulation code	26
32	6.2	HORACE	26
33	6.3	MCSANC	28
34	6.4	POWHEG	29
35	6.5	RADY	30
36	6.6	WZGRAD	31
	67	KKMChb	21

9

Plans

• in the near future

- finalize the draft
 - ★ few benchmark numbers missing
 - import last version of tables for benchmark numbers
 - * include a more extended description from each code
 - work on section description

Plans

• in the near future

- finalize the draft
 - few benchmark numbers missing
 - import last version of tables for benchmark numbers
 - include a more extended description from each code
 - ★ work on section description
- in the future (a proposal)
 - focus on NNLO mixed $\mathcal{O}(\alpha \alpha_s)$ corrections
 - comparison between factorized O(αα_s) corrections contained in evt. generators and the available exact calculation in pole approximation

S. Dittmaier, A. Huss, J. Schwarz, arXiv:2401.15682

• comparison between $O(\alpha \alpha_s)$ corrections in PA and the exact calculation

T. Armadillo et al., arXiv:2201.01754

R. Bonciani et al., arXiv:2106.11953