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Scale Variations and Theory Correlations

Scale Variations in a Nutshell.

Theory uncertainty due to inexactness of our prediction

We have a series expansion in a small quantity α

f(α) = f0 + f1 α+ f2 α
2 + f3 α

3 + · · ·

We make a prediction based on first few known terms

fpredicted = f0 + f1 α±∆f with ∆f = f1 b0 α
2 +O(α3)

We effectively account for inexactness by approximating f2 ≈ f1 b0
X Resulting ∆f is indeed O(α2)

7 Nothing guarantees that this is a good approximation (often it is not)

I f2 usually has more complex structure than just f1 × const

7 b0 ∼ β0 ln(2µ/µ) is not a parameter with a true value that f depends on
I No value for it might ever capture the true result (happens regularly)
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Scale Variations and Theory Correlations

Theory Correlations.

Correlations can be crucial once several predictions are used in combination

Prototype of many data-driven methods or any type of combined fit

f(yi) =
[
g(yj)

]
measured

×
[
f(yi)±∆f

g(yj)±∆g

]
predicted︸ ︷︷ ︸

wanted
︸ ︷︷ ︸
measure precisely

︸ ︷︷ ︸
theory uncertainties cancel

I Cancellation of theory uncertainties is often assumed or taken for granted
I But obviously relies crucially on precise correlation between ∆f and ∆g

I For example: Take a 10% uncertainty for both ∆f and ∆g, then

a correlation of 99.5% 98% 95.5% 87.5%
yields a reduction by a factor of 10 5 3.33 2

and an uncertainty on the ratio of 1% 2% 3% 5%

⇒ The Challenge: How to account for correlation between ∆f and ∆g?
I Depends on the extent to which inexactness in f(yi) and g(yi) are related
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Scale Variations and Theory Correlations

What About Correlations?

f(α) = f0 + f1 α±∆f with ∆f = f1 b0 α
2 + · · ·

g(α) = g0 + g1 α±∆g with ∆g = g1 b0 α
2 + · · ·

How are ∆f and ∆g correlated?

We don’t know – the scale variation method simply does not tell us
I Correlations require a common uncertain parameter

(or more generally a common source of uncertainty)

I b0 (or µ) is not a common or uncertain parameter, we just made it up

7 A priori, scale variations do not imply correct correlations

Best we can do is assume some theoretically motivated but still ad hoc
correlation model that we impose on ∆f and ∆g

⇒ Probably the most severe shortcoming of scale variations

2024-07-11 | Frank Tackmann 4/19.



Scale Variations and Theory Correlations

Scale Variations for Differential Spectrum.
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SCETlib N4LL profile scale variations

µFO

µf
resummation

Now f(α;x) is some differential spectrum in x, e.g. pZT ≡ qT
Its ∆f(x) comes from envelope of various scale variations
I Take f(α) ≡ f(α;x1) and g(α) = f(α;x2) to be spectrum at different

points in x
I We don’t know their correct correlation

7 A priori, scale variations do not imply correct shape uncertainties

⇒ How to interpret and propagate this envelope?
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Theory Nuisance Parameters

What We Should be Doing.

Step 1: Identify the actual source of uncertainty

f(α) = f0 + f1 α + f2 α
2 + f3 α

3 +O(α4)︸ ︷︷ ︸
source of the theory uncertainty

Step 2: Explicitly parametrize and include the (leading) source of uncertainty

N1+1LO: fpredicted(α) = f0 + f1 α+ f2(θ2)α2

In terms of unknown but well-defined parameters θn, which are the
theory nuisance parameters (TNPs)
I Simplest: Use f2 itself: f2(θ2) ≡ θ2

I Better: Account for known internal structure of f2 (color, partonic channels, ...)

Sufficient to include the next term
I We always assume that expansion converges, so f3 is not yet relevant

I When f2 becomes known (or strongly constrained), need to include f3(θ3)

Step 3: Vary all θi to account for correctly correlated theory uncertainty

2024-07-11 | Frank Tackmann 6/19.
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Theory Nuisance Parameters

Application to Drell-Yan pT Spectrum.

Structure of pT dependence is known to all orders (up to small power corrections)

pT
dσ

dpT
=
[
H ×Ba ⊗Bb ⊗ S

]
(αs;L ≡ ln pT /mZ) +O(p2

T /m
2
Z)

Each factor depends on a boundary condition and anomalous dimensions
(solution to a coupled RGE system)

F (αs, L) = F (αs) exp

∫ L

0

dL′
{

Γ[αs(L
′)]L′ + γF [αs(L

′)]
}

We’re left with several independent (scalar) perturbative series
(plus QCD beta function and splitting functions)

I N2+1LL: F (αs) = F0 + αs F1 + α2
s F2(θF2 ) + · · ·

γF (αs) = αs γF0 + α2
s γF1 + α3

s γF2(θγ2 ) + · · ·

Γ(αs) = αs Γ0 + α2
s Γ1 + α3

s Γ2 + α4
s Γ3(θΓ

3 ) + · · ·

I analogously for N3+1LL, etc.

⇒ Remaining task: How exactly to define and vary the θi?
2024-07-11 | Frank Tackmann 7/19.



Theory Nuisance Parameters

Theory Uncertainties via TNPs.

ML fits: L(y, θi) = P (d|y, θi)×
∏
i

1√
2πσi

exp

[
−(ui − θi)2

2σ2
i

]

χ2 fits: χ2(y, θi) =
∑
d

[d− fpredicted
d (y, θi)]

2

σ2
d

+
∑
i

(ui − θi)2
σ2
i

Standard method of including systematic unc. via nuisance parameters

Auxiliary (real or imagined) measurements provide constraint on θi
I ui = best estimate of θi (from an actual measurement or our best guess)
I σi = uncertainty on ui (the estimated “systematic uncertainty”)

We do not need a precise estimate of the true value for each θi
I Typically our best-guess central value will be ui = 0

I Generically we can still have f2(θ2 = 0) 6= 0

We do need an estimate of σi for each θi (the systematic “theory uncertainty”)

I i.e., how is θi allowed to vary around ui (if otherwise unconstrained)

⇒ Sufficient to understand the typical, generic size of θi (or equivalently f2)
2024-07-11 | Frank Tackmann 8/19.



Theory Nuisance Parameters

TNP Parameterization.

cross sections, boundary conditions: F (αs) = 1 +
∑
n=1

(αs
4π

)n
Fn

anomalous dimensions: γ(αs) =
∑
n=0

(αs
4π

)n+1

γn

Parametrize n-loop coefficients as

Fn(θn) = 4Cr(4CA)n−1(n−1)! θFn (nf)

γn(θn) = 2Cr(4CA)n θγn(nf)

I CrC
n−1
A = leading n-loop color factor

Expect θn to be O(1) numbers → θi = 0±O(1)

I We can of course check by looking at known n-loop coefficients

In statistics terms: QCD has an (unknown) population of θFn and θγn (for each n)

How are they distributed?

⇒ We can find out from population sample
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Theory Nuisance Parameters

Distribution of TNPs: Boundary Conditions.
1 loop: θ1 2 loop: θ2
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Fn(θn) = 4Cr(4CA)n−1(n−1)! θFn (nf)

Estimate θFn population distribution from sample of known, independent series

X Good fit to a Gaussian with mean 0 and variance 1

X Provides well-defined and reliable estimate: ui = 0 with σi = 1

Fineprint: Strong nf dependence, for nf → 0 variance increases to σi ∼ n
→ Nontrivial correlation between different nf , can be estimated from sample
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Theory Nuisance Parameters

Distribution of TNPs: Anomalous Dimensions.
2 loop: θ1 3 loop: θ2

-2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

-2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

γn(θn) = 2Cr(4CA)n θγn(nf)

Estimate θγn population distribution from sample of known, independent series

X Good fit to a Gaussian, now with variance ∼ 0.5 and mean 6= 0
I In the following will use ui = 0 with σi = 1

(just for simplicity, as we will mostly care about θ3)
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Theory Nuisance Parameters

Distribution of TNPs: Anomalous Dimensions.
4 loop: θ3 5 loop: θ4
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Theory Nuisance Parameters

Application to Drell-Yan pT Spectrum.
relative impact for Z relative impact for W

0 5 10 15 20 25 30
qT [GeV]

−5

0

5

10

15

re
l.
di
ff
er
en

ce
[%

]

SCETlib N2+1LL pp→ Z (8 TeV)
MSHTaN3LO, Q=mZ, Y =0

Γ

γµ

γν
H

S

Bqq

Bqg

0 5 10 15 20 25 30
qT [GeV]

−5

0

5

10

15

re
l.
di
ff
er
en

ce
[%

]

SCETlib N2+1LL pp→W (8 TeV)
MSHTaN3LO, Q=mW , Y =0

Γ

γµ

γν
H

S

Bqq

Bqg

Vary each θi independently

X Add in quadrature to get total uncertainty

X Correlations in pT and Q and between W and Z are correctly captured
I Each θi fully correlated, different θi uncorrelated

Fineprint:
I Beam boundary conditionsBqj : Using fn = (0± 1.5)× ftrue

n here
I DGLAP splitting functions not varied here (count as noncusp anom. dims.)
I Hard boundary conditionsH: No singlet corrections (enter for Z but not W )
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Theory Nuisance Parameters

Application to Drell-Yan pT Spectrum.
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Extractingαs fromZ pT spectrum

Toy Study Setup.

We perform a toy study of fitting αs from Z pT using Asimov fits

Goals
I Obtain expected theory uncertainty on αs in a controlled setting
I Try out TNPs in real life ...

Theory input
I SCETlib resummed-only at N2+1LL and N3+1LL
I Nonperturbative model at small pT – not discussed here
I NeglectingO(p2

T /m
2
Z) (FO matching), quark-mass effects, QED effects

→ Okay for toy studies, important to include in fit to real data

Toy data
I Central values from central theory prediction with αs(mZ) = 0.118

I Uncertainties from recent ATLAS 8 TeV inclusive measurement including full
correlations (integrated over |Y | ≤ 1.6)

I 9 pT points in [0, 29] GeV corresponding to ATLAS bins
(FixedQ = mZ , Y = 0 for simplicity, integrating in qT ,Q, Y makes practically no difference)
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Extractingαs fromZ pT spectrum

Scanning over Scale Variations.
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Fit to toy data: αS, pZT in [0, 29] GeV
(Q = mZ, Y = 0, MSHTaN3LO, 8 TeV ATLAS unc.)

SCETlib N4LL profile scale variations

µFO

µf

matching
resummation

exp. uncertainty
χ2/ndof ≥ 1.5

Each variation provides a trial 100% (anti)correlated correlation model
Correlation model strongly impacts the result (as expected ...)
I How to interpret this?

Sum of envelopes: ∆total =
√

∆2
FO + ∆2

resum + ∆match ∼ 2.6× 10−3

Max envelope: ∆total ∼ 2.1× 10−3

I Fit should be able to decide whether to allow or constrain some theory
excursion vs. changing fitted POIs (here αs) to compensate

⇒ Upshot: Scale variations are just not sufficient for this purpose
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Extractingαs fromZ pT spectrum

Scanning with TNPs.
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Repeat fit for each TNP variation
I TNPs correctly capture independent uncertainty sources and correlations
I Well-defined interpretation

Sum in quadrature: ∆total = 1.59× 10−3

Still does not let the fit decide between moving theory vs. αs
I Amounts to neglecting possible correlations between TNPs and αs
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Profiling TNPs.
TNPs are real parameters, so it is perfectly okay to profile them in the fit

Include all TNPs in the fit
I With Gaussian prior constraint of θi = 0± 1

I Accounts for correlations between theory uncertainties and fitted POIs
I Allows data to constrain TNPs and reduce theory uncertainty

At N2+1LL:
I Huge reduction due to

profiling
I Overconstrained?

At N3+1LL:
I Still sizeable reduction
I More reasonable ...

(Uncertainties in units of 10−3)
Playing with the Asimov fit and TNPs

9/17.

data = central [ ] N LL  
theory prediction against N LL model

αS(mZ) = 0.118 2+1

2+1

data = central N LL theory prediction  
against N LL model

3+1

2+1

Scanning: vary one TNP at a time and re-fit  
(doesn’t allow the fit to constrain theory or adjust 
  to compensate)

αS

αS

Profiling: fitting  together with all TNPs 
(allow the fit to decide what to do)

αS

* uncertainties in units of 10−3

0.114 0.116 0.118 0.120 0.122

ÆS(mZ)

N2+1LL scanned

N2+1LL profiled

N2+1LL profiled
against N3+1LL

Z pT Asimov
(ATLAS 8 TeV unc.)

SCETlib
(preliminary)

 ±3.98

 ±0.81

 ±0.78
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Profiling TNPs.

TNPs are real parameters, so it is perfectly okay to profile them in the fit
Include all TNPs in the fit
I With Gaussian prior constraint of θi = 0± 1

I Accounts for correlations between theory uncertainties and fitted POIs
I Allows data to constrain TNPs and reduce theory uncertainty

At N2+1LL:
I Huge reduction due to

profiling
I Overconstrained?

At N3+1LL:
I Still sizeable reduction
I More reasonable ...

(Uncertainties in units of 10−3)
Playing with the Asimov fit and TNPs

9/17.

0.114 0.116 0.118 0.120 0.122

ÆS(mZ)

N2+1LL scanned

N2+1LL profiled

N2+1LL profiled
against N3+1LL

N3+1LL scanned

N3+1LL profiled

Z pT Asimov
(ATLAS 8 TeV unc.)

SCETlib
(preliminary)

data = central [ ] N LL  
theory prediction against N LL model

αS(mZ) = 0.118 2+1

2+1

data = central N LL theory prediction  
against N LL model

3+1

2+1

data = central N LL theory prediction against N LL model3+1 3+1

Profiling constraints the TNPs allowing data to reduce the theory uncertainty!  

Scanning: vary one TNP at a time and re-fit  
(doesn’t allow the fit to constrain theory or adjust 
  to compensate)

αS

αS

Profiling: fitting  together with all TNPs 
(allow the fit to decide what to do)

αS

* uncertainties in units of 10−3

 ±0.72

 ±1.59

 ±0.78

 ±0.81

 ±3.98
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Constraints on TNPs.Constraints on TNPs

10/17.
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post fit constraint
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H
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Bqq

Bqg

Z pT Asimov
(ATLAS 8 TeV unc.)

N2+1LL, only ÆS

SCETlib

one TNP at a time

all TNPs
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S

Bqq

Bqg

Z pT Asimov
(ATLAS 8 TeV unc.)

N3+1LL, only ÆS

SCETlib

one TNP at a time

all TNPs

N LL:  TNPs much more constrained than at N LL  2+1 3+1

If TNPs get strongly constrained, the next order becomes relevant for the 
uncertainty correlations!
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If TNPs get strongly constrained, the next order becomes relevant for the 
uncertainty correlations!

At N2+1LL: TNPs are strongly constrained by data
I Theory accuracy is insufficient→ next order becomes relevant

At N3+1LL: TNPs are somewhat constrained by data
I Theory accuracy likely sufficient→ next order not relevant (yet)
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Constraints on TNPs.

Another test we can do

Profile N2+1LL theory model
against N3+1LL toy data

Some TNPs get strongly pulled

⇒ Indicates again that N2+1LL is
insufficient for data precision

Constraints on TNPs

11/17.

data = central N LL theory prediction  
against N LL theory model

3+1

2+1

this is another indication that 
N LL is just not enough2+1

As expected, some TNPs are strongly pulled  

°1 0 1
post fit constraint

°

∞µ

∞∫

H

S

Bqq

Bqg

Z pT Asimov
(ATLAS 8 TeV unc.)

N2+1LL against
N3+1LL, only ÆS

SCETlib
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Summary.

Interpretation of LHC precision measurements requires theory predictions
with reliable uncertainties and in particular correct correlations

Scale variations
Neither particularly reliable nor can they do correlations
→ One cannot rely on them for shape uncertainties which unfortunately is

exactly what is often done
→ Insufficient for extracting αs from small-pT Z, since correlations are critical

Theory nuisance parameters overcome many limitations of scale variations
Provide truly parametric theory uncertainties that
X Encode correct correlations
X Can be consistently propagated everywhere (fits, MCs, neural networks, ...)

X Can be consistently profiled and constrained by data

Price to pay: Obviously not as “easy and cheap” as scale variations
First toy studies show that TNPs work as advertised
I Should allow for competitive αs extraction by profiling theory uncertainties
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