Theory Uncertainties in Extracting α_s from the Z p_T Spectrum.

Frank Tackmann

Deutsches Elektronen-Synchrotron

EWWG General Meeting July 11, 2024

European Research Council Established by the European Commission

2024-07-11 | Frank Tackmann 0/19.

WIP with Thomas Cridge and Giulia Marinelli [arXiv:240x.yyyyy]

[Scale Variations and Theory Correlations](#page-2-0)

Scale Variations and Theory Correlations.

Scale Variations in a Nutsh[el](#page-3-0)l.

Theory uncertainty due to inexactness of our prediction

• We have a series expansion in a small quantity α

 $f(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3 \alpha^3 + \cdots$

• We make a prediction based on first few known terms $f^{\text{predicted}} = f_0 + f_1 \alpha \pm \Delta f$ with $\Delta f = f_1 b_0 \alpha^2 + \mathcal{O}(\alpha^3)$

Scale Variations in a Nutsh[el](#page-3-0)l.

Theory uncertainty due to inexactness of our prediction

• We have a series expansion in a small quantity α

 $f(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3 \alpha^3 + \cdots$

• We make a prediction based on first few known terms $f^{\text{predicted}} = f_0 + f_1 \alpha \pm \Delta f$ with $\Delta f = f_1 b_0 \alpha^2 + \mathcal{O}(\alpha^3)$

We effectively account for inexactness by approximating $f_2 \approx f_1 b_0$

- \checkmark Resulting Δf is indeed $\mathcal{O}(\alpha^2)$
- χ Nothing guarantees that this is a good approximation (often it is not)
	- \blacktriangleright f_2 usually has more complex structure than just $f_1 \times \text{const}$

 b₀ ∼ β_0 **ln(2μ/μ) is** *not* **a parameter with a true value that f depends on**

 \triangleright No value for it might ever capture the true result (happens regularly)

Theory Correlations.

Correlations can be crucial once several predictions are used in combination

• Prototype of many data-driven methods or any type of combined fit

$$
f(y_i) = [g(y_j)]_{\text{measured}} \times \underbrace{[f(y_i) \pm \Delta f]}_{\text{g(y_j)} \pm \Delta g}]_{\text{predicted}}
$$
\n
$$
\underbrace{}_{\text{wanted}} \underbrace{}_{\text{measure precisely}} \underbrace{}_{\text{theory uncertainties cancel}}
$$

- ▶ Cancellation of theory uncertainties is often assumed or taken for granted
- But obviously relies crucially on precise correlation between Δf and Δg

Theory Correlations.

Correlations can be crucial once several predictions are used in combination

• Prototype of many data-driven methods or any type of combined fit

$$
f(y_i) = [g(y_j)]_{\text{measured}} \times \underbrace{[f(y_i) \pm \Delta f]}_{\text{g(y_j)} \pm \Delta g}]_{\text{predicted}}
$$
\n
$$
\underbrace{\phantom{\text{wolved}}_{\text{wanted}} \times \underbrace{\left[f(y_i) \pm \Delta f \right]}_{\text{theory uncertainties cancel}}
$$

- Cancellation of theory uncertainties is often assumed or taken for granted
- But obviously relies crucially on precise correlation between Δf and Δg
- For example: Take a 10% uncertainty for both Δf and Δg , then

 \Rightarrow The Challenge: How to account for correlation between Δf and Δg ? Depends on the extent to which inexactness in $f(y_i)$ and $g(y_i)$ are related $f(\alpha) = f_0 + f_1 \alpha \pm \Delta f$ with $\Delta f = f_1 b_0 \alpha^2 + \cdots$ $q(\alpha) = q_0 + q_1 \alpha \pm \Delta q$ with $\Delta q = q_1 b_0 \alpha^2 + \cdots$

How are Δf and Δg correlated?

- We don't know the scale variation method simply does not tell us
	- \triangleright Correlations require a common uncertain parameter (or more generally a common source of uncertainty)
	- \blacktriangleright b_0 (or μ) is not a common or uncertain parameter, we just made it up
	- X A priori, scale variations *do not* imply correct correlations
- Best we can do is *assume* some theoretically motivated but still *ad hoc* correlation model that we impose on Δf and Δg
- \Rightarrow Probably the most severe shortcoming of scale variations

Scale Varia[t](#page-3-0)ions for Differential Spectrum.

Now $f(\alpha;x)$ is some differential spectrum in x , e.g. $p_T^Z\equiv q_T$

- Its $\Delta f(x)$ comes from envelope of various scale variations
	- \triangleright Take $f(\alpha) \equiv f(\alpha; x_1)$ and $g(\alpha) = f(\alpha; x_2)$ to be spectrum at different points in x
	- We don't know their correct correlation
	- X A priori, scale variations *do not* imply correct shape uncertainties

\Rightarrow How to interpret and propagate this envelope?

Theory Nuisance Parameters.

Step 1: Identify the actual source of uncertainty

$$
f(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3 \alpha^3 + \mathcal{O}(\alpha^4)
$$

source of the theory uncertainty

Step 1: Identify the actual source of uncertainty

$$
f(\alpha) = f_0 + f_1 \alpha \underbrace{+ f_2 \alpha^2 + f_3 \alpha^3 + \mathcal{O}(\alpha^4)}_{\text{source of the theory uncertainty}}
$$

Step 2: Explicitly parametrize and include the (leading) source of uncertainty N¹⁺¹LO: $f^{\rm predicted}(\alpha) = f_0 + f_1 \,\alpha + f_2(\theta_2) \,\alpha^2$

- **In terms of unknown but well-defined parameters** θ_n **, which are the** *theory nuisance parameters (TNPs)*
	- **►** Simplest: Use f_2 itself: $f_2(\theta_2) \equiv \theta_2$
	- Better: Account for known internal structure of f_2 (color, partonic channels, ...)
- Sufficient to include the next term
	- \triangleright We always assume that expansion converges, so f_3 is not yet relevant

Step 1: Identify the actual source of uncertainty

$$
f(\alpha) = f_0 + f_1 \alpha \underbrace{+ f_2 \alpha^2 + f_3 \alpha^3 + \mathcal{O}(\alpha^4)}_{\text{source of the theory uncertainty}}
$$

Step 2: Explicitly parametrize and include the (leading) source of uncertainty N²⁺¹LO: $f^{\rm predicted}(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3(\theta_3) \alpha^3$

- **In terms of unknown but well-defined parameters** θ_n **, which are the** *theory nuisance parameters (TNPs)*
	- **►** Simplest: Use f_2 itself: $f_2(\theta_2) \equiv \theta_2$
	- Better: Account for known internal structure of f_2 (color, partonic channels, ...)
- Sufficient to include the next term
	- \triangleright We always assume that expansion converges, so f_3 is not yet relevant
	- **ID** When f_2 becomes known (or strongly constrained), need to include $f_3(\theta_3)$

Step 1: Identify the actual source of uncertainty

$$
f(\alpha) = f_0 + f_1 \alpha \underbrace{+ f_2 \alpha^2 + f_3 \alpha^3 + \mathcal{O}(\alpha^4)}_{\text{source of the theory uncertainty}}
$$

Step 2: Explicitly parametrize and include the (leading) source of uncertainty N²⁺¹LO: $f^{\rm predicted}(\alpha) = f_0 + f_1 \alpha + f_2 \alpha^2 + f_3(\theta_3) \alpha^3$

- **In terms of unknown but well-defined parameters** θ_n **, which are the** *theory nuisance parameters (TNPs)*
	- **►** Simplest: Use f_2 itself: $f_2(\theta_2) \equiv \theta_2$
	- Better: Account for known internal structure of f_2 (color, partonic channels, ...)
- Sufficient to include the next term
	- \triangleright We always assume that expansion converges, so f_3 is not yet relevant
	- **ID** When f_2 becomes known (or strongly constrained), need to include $f_3(\theta_3)$

Step 3: Vary all θ_i to account for correctly correlated theory uncertainty

Structure of p_T dependence is known to all orders (up to small power corrections)

$$
p_T \frac{\mathrm{d}\sigma}{\mathrm{d}p_T} = \Big[H \times B_a \otimes B_b \otimes S \Big] (\alpha_s; L \equiv \ln p_T / m_Z) + \mathcal{O}(p_T^2 / m_Z^2)
$$

Each factor depends on a *boundary condition* and *anomalous dimensions* (solution to a coupled RGE system)

$$
F(\alpha_s, L) = F(\alpha_s) \, \exp \int_0^L \mathrm{d}L' \left\{ \Gamma[\alpha_s(L')] \, L' + \gamma_F[\alpha_s(L')] \right\}
$$

We're left with several independent (scalar) perturbative series (plus QCD beta function and splitting functions)

$$
\triangleright N^{2+1}LL: F(\alpha_s) = F_0 + \alpha_s F_1 + \alpha_s^2 F_2(\theta_2^F) + \cdots
$$

$$
\gamma_F(\alpha_s) = \alpha_s \gamma_{F0} + \alpha_s^2 \gamma_{F1} + \alpha_s^3 \gamma_{F2}(\theta_2^T) + \cdots
$$

$$
\Gamma(\alpha_s) = \alpha_s \Gamma_0 + \alpha_s^2 \Gamma_1 + \alpha_s^3 \Gamma_2 + \alpha_s^4 \Gamma_3(\theta_3^F) + \cdots
$$

D analogously for N^{3+1} LL, etc.

\Rightarrow Remaining task: How exactly to define and vary the θ_i ?

Theory Uncertainties via T[NP](#page-10-0)s.

ML fits:
$$
L(y, \theta_i) = P(d|y, \theta_i) \times \prod_i \frac{1}{\sqrt{2\pi}\sigma_i} \exp \left[-\frac{(u_i - \theta_i)^2}{2\sigma_i^2}\right]
$$

$$
\chi^2 \text{ fits: } \qquad \chi^2(y, \theta_i) = \sum_d \frac{[d - f_d^{\text{predicted}}(y, \theta_i)]^2}{\sigma_d^2} + \sum_i \frac{(u_i - \theta_i)^2}{\sigma_i^2}
$$

Standard method of including systematic unc. via nuisance parameters

- Auxiliary (real or imagined) measurements provide constraint on θ_i
	- $\blacktriangleright u_i =$ best estimate of θ_i (from an actual measurement or our best quess)
	- \bullet σ_i = uncertainty on u_i (the estimated "systematic uncertainty")
- \bullet We *do not* need a precise estimate of the true value for each θ_i
	- **If** Typically our best-guess central value will be $u_i = 0$
	- Generically we can still have $f_2(\theta_2 = 0) \neq 0$
- We *do* need an estimate of σ_i for each θ_i (the systematic "theory uncertainty")
	- i.e., how is θ_i allowed to vary around u_i (if otherwise unconstrained)
	- \Rightarrow Sufficient to understand the *typical, generic size* of θ_i (or equivalently f_2)

TNP Parameterization.

cross sections, boundary conditions:

$$
F(\alpha_s) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n F_n
$$

$$
\gamma(\alpha_s) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{n+1} \gamma_n
$$

• Parametrize n -loop coefficients as

$$
F_n(\theta_n) = 4C_r (4C_A)^{n-1} (n-1)! \theta_n^F(n_f)
$$

$$
\gamma_n(\theta_n) = 2C_r (4C_A)^n \theta_n^{\gamma}(n_f)
$$

 $\blacktriangleright C_r C_A^{n-1} =$ leading n-loop color factor

anomalous dimensions:

- Expect θ_n to be $\mathcal{O}(1)$ numbers $\rightarrow \theta_i = 0 \pm \mathcal{O}(1)$
	- \triangleright We can of course check by looking at known n-loop coefficients

TNP Parameterization.

cross sections, boundary conditions:

$$
F(\alpha_s) = 1 + \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^n F_n
$$

$$
\gamma(\alpha_s) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{4\pi}\right)^{n+1} \gamma_n
$$

- anomalous dimensions:
- Parametrize n -loop coefficients as

$$
F_n(\theta_n) = 4C_r (4C_A)^{n-1} (n-1)! \theta_n^F(n_f)
$$

$$
\gamma_n(\theta_n) = 2C_r (4C_A)^n \theta_n^{\gamma}(n_f)
$$

 $\blacktriangleright C_r C_A^{n-1} =$ leading n-loop color factor

- Expect θ_n to be $\mathcal{O}(1)$ numbers $\rightarrow \theta_i = 0 \pm \mathcal{O}(1)$
	- \triangleright We can of course check by looking at known n-loop coefficients

In statistics terms: QCD has an (unknown) population of θ^F_n and θ^γ_n (for each n)

- How are they distributed?
- \Rightarrow We can find out from population sample

Distribution of TNPs: Boun[da](#page-10-0)ry Conditions.

Estimate $\theta _{n}^{F}$ population distribution from sample of known, independent series Good fit to a Gaussian with mean 0 and variance 1 Provides well-defined and reliable estimate: $u_i = 0$ with $\sigma_i = 1$

Fineprint: Strong n_f dependence, for $n_f \rightarrow 0$ variance increases to $\sigma_i \sim n$

Nontrivial correlation between different n_f , can be estimated from sample

Distribution of TNPs: Boun[da](#page-10-0)ry Conditions.

Estimate $\theta _{n}^{F}$ population distribution from sample of known, independent series Good fit to a Gaussian with mean 0 and variance 1 Provides well-defined and reliable estimate: $u_i = 0$ with $\sigma_i = 1$

Fineprint: Strong n_f dependence, for $n_f \rightarrow 0$ variance increases to $\sigma_i \sim n$

Nontrivial correlation between different n_f , can be estimated from sample

Distribution of TNPs: Anom[a](#page-10-0)lous Dimensions.

Estimate θ_n^{γ} population distribution from sample of known, independent series

- Good fit to a Gaussian, now with variance \sim 0.5 and mean \neq 0
	- In the following will use $u_i = 0$ with $\sigma_i = 1$ (just for simplicity, as we will mostly care about θ_3)

Distribution of TNPs: Anom[a](#page-10-0)lous Dimensions.

Estimate θ_n^{γ} population distribution from sample of known, independent series

- Good fit to a Gaussian, now with variance \sim 0.5 and mean \neq 0
	- In the following will use $u_i = 0$ with $\sigma_i = 1$ (just for simplicity, as we will mostly care about θ_3)

Vary each θ_i independently

- Add in quadrature to get total uncertainty
- Correlations in p_T and Q and between W and Z are correctly captured
	- Each θ_i fully correlated, different θ_i uncorrelated

Fineprint:

- Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 1.5) \times f_n^{\text{true}}$ here
- DGLAP splitting functions not varied here (count as noncusp anom. dims.)
- Hard boundary conditions H : No singlet corrections (enter for Z but not W)

2024-07-11 | Frank Tackmann 12/19.

Vary each θ_i independently

- $\sqrt{}$ Add in quadrature to get total uncertainty
- Correlations in p_T and Q and between W and Z are correctly captured
	- Each θ_i fully correlated, different θ_i uncorrelated

Fineprint:

- Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 1.5) \times f_n^{\text{true}}$ here
- DGLAP splitting functions not varied here (count as noncusp anom. dims.)
- Hard boundary conditions H : No singlet corrections (enter for Z but not W)

2024-07-11 | Frank Tackmann 12/19.

Vary each θ_i independently

- Add in quadrature to get total uncertainty
- Correlations in p_T and Q and between W and Z are correctly captured
	- Each θ_i fully correlated, different θ_i uncorrelated

Fineprint:

- Beam boundary conditions B_{qj} : Using $f_n = (0 \pm 1.5) \times f_n^{\text{true}}$ here
- DGLAP splitting functions not varied here (count as noncusp anom. dims.)
- Hard boundary conditions H : No singlet corrections (enter for Z but not W)

2024-07-11 | Frank Tackmann 12/19.

Extracting α_s from Z p_T spectrum.

Toy Study Setup.

We perform a toy study of fitting α_s from Z p_T using Asimov fits

o Goals

- Obtain *expected* theory uncertainty on α_s in a controlled setting
- \blacktriangleright Try out TNPs in real life ...
- Theory input
	- SCETlib resummed-only at N^{2+1} LL and N^{3+1} LL
	- \triangleright Nonperturbative model at small p_T not discussed here
	- \blacktriangleright Neglecting $\mathcal{O}(p_T^2/m_Z^2)$ (FO matching), quark-mass effects, QED effects
		- \rightarrow Okay for toy studies, important to include in fit to real data
- Toy data
	- **IDED** Central values from central theory prediction with $\alpha_s(m_Z) = 0.118$
	- ▶ Uncertainties from recent ATLAS 8 TeV inclusive measurement including full correlations (integrated over $|Y| \le 1.6$)
	- \triangleright 9 p_T points in [0, 29] GeV corresponding to ATLAS bins (Fixed $Q = m_Z$, $Y = 0$ for simplicity, integrating in q_T , Q, Y makes practically no difference)

Scanning ov[er Scale Variat](#page-25-0)i[o](#page-26-0)ns.

Each variation provides a trial 100% (anti)correlated correlation model

- Correlation model strongly impacts the result (as expected ...)
	- \blacktriangleright How to interpret this?

Sum of envelopes: $\;\;\Delta_{\rm total}=\sqrt{\Delta_{\rm FO}^2+\Delta_{\rm resum}^2+\Delta_{\rm match}}\sim 2.6\times10^{-3}$ Max envelope: $\Delta_{\text{total}} \sim 2.1 \times 10^{-3}$

 \blacktriangleright Fit should be able to decide whether to allow or constrain some theory excursion vs. changing fitted POIs (here α_s) to compensate

Scanning ov[er Scale Variat](#page-25-0)i[o](#page-26-0)ns.

Each variation provides a trial 100% (anti)correlated correlation model

- Correlation model strongly impacts the result (as expected ...)
	- \blacktriangleright How to interpret this?

Sum of envelopes: $\;\;\Delta_{\rm total}=\sqrt{\Delta_{\rm FO}^2+\Delta_{\rm resum}^2+\Delta_{\rm match}}\sim 2.6\times10^{-3}$ Max envelope: $\Delta_{\text{total}} \sim 2.1 \times 10^{-3}$

 \blacktriangleright Fit should be able to decide whether to allow or constrain some theory excursion vs. changing fitted POIs (here α_s) to compensate

Upshot: Scale variations are just not sufficient for this purpose 2024-07-11 | Frank Tackmann 14/19.

Scanning with TNPs.

- Repeat fit for each TNP variation
	- \blacktriangleright TNPs correctly capture independent uncertainty sources and correlations
	- Well-defined interpretation

Sum in quadrature: $\Delta_{\text{total}} = 1.59 \times 10^{-3}$

- **•** Still does not let the fit decide between moving theory vs. α_s
	- Amounts to neglecting possible correlations between TNPs and α_s

Profiling TNPs.

TNPs are real parameters, so it is perfectly okay to profile them in the fit

- **•** Include all TNPs in the fit
	- With Gaussian prior constraint of $\theta_i = 0 \pm 1$
	- Accounts for correlations between theory uncertainties and fitted POIs
- **P** Allows data to constrain TNPs and reduce theory uncertainty

Profiling TNPs.

TNPs are real parameters, so it is perfectly okay to profile them in the fit

- **o** Include all TNPs in the fit
	- With Gaussian prior constraint of $\theta_i = 0 \pm 1$
	- Accounts for correlations between theory uncertainties and fitted POIs
- **P** Allows data to constrain TNPs and reduce theory uncertainty

Constraints [on TNPs](#page-25-0).

At N^{2+1} LL: TNPs are strongly constrained by data

▶ Theory accuracy is insufficient \rightarrow next order becomes relevant

Constrain[ts on TNPs](#page-25-0).

- At N²⁺¹LL: TNPs are strongly constrained by data

Theory accuracy is insufficient \rightarrow next order becon

At N³⁺¹LL: TNPs are semewhat constrained by data
	- \triangleright Theory accuracy is insufficient \rightarrow next order becomes relevant

At N^{3+1} LL: TNPs are somewhat constrained by data

Theory accuracy likely sufficient \rightarrow next order not relevant (yet)

Another test we can do

- Profile N^{2+1} LL theory model against N^{3+1} LL tov data
- Some TNPs get strongly pulled
- \Rightarrow Indicates again that N^{2+1} LL is insufficient for data precision

Constraints on TNPs

Summary.

Interpretation of LHC precision measurements requires theory predictions with reliable uncertainties and in particular correct correlations

Scale variations

- Neither particularly reliable nor can they do correlations
	- \rightarrow One cannot rely on them for shape uncertainties which unfortunately is exactly what is often done
	- \rightarrow Insufficient for extracting α_s from small- $p_T Z$, since correlations are critical

Theory nuisance parameters overcome many limitations of scale variations

- Provide truly parametric theory uncertainties that
	- $\sqrt{}$ Encode correct correlations
	- \checkmark Can be consistently propagated everywhere (fits, MCs, neural networks, ...)
	- Can be consistently profiled and constrained by data
- **•** Price to pay: Obviously not as "easy and cheap" as scale variations
- **•** First toy studies show that TNPs work as advertised
	- Should allow for competitive α_s extraction by profiling theory uncertainties

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE)

European Research Council

Established by the European Commission