Some thoughts on Future EW Measurements at the LHC

Frank Krauss

Institute for Particle Physics Phenomenology **Durham University**

LHC EW WG General Meeting - July 2024 - CERN

- introduction
- a detour: photons
- vector boson scattering
- the interface to QCD
- quantum mechanics
- outlook

instead of an introduction

("sort of summary")

Introduction •000

disclaimer

Introduction

- apologies first:
 - couldn't follow most of the meeting, speed-read the slides
 - please, don't be offended when I missed things or misrepresent them
- clear danger for me to carry coal to Newcastle
- therefore: just some thoughts on possible additions to extremely well-thought out programme
- and sorry: no plots or new insights, mostly questions . . .

current trajectory

Introduction

- testing deeper and deeper tails, severe tests of SM dynamics
- well-established standard candles (DY, VBS, di-bosons, dots) and methods (higher orders, EFTs, dots)
- increasing blurring of lines between EW, QCD, top, & Higgs: inter-dependence on fundamental inputs, methods, backgrounds, . . .
- race for "ultimate" theoretical precision:
 - fixed-orders: NNLO, QCD⊗EW will become standard across board
 - matched/merged with parton showers: beyond NLL accuracy need to improve EW radiation (QED)?
 - suspicion: future dominance of non-perturbative uncertainties
 how prepared are we?

useful additions?

Introduction 0000

- in the following I will try to
 - add some personal thoughts
 - make some unconventional suggestions for additional studies

(many of which may not work out or be useless)

• blur the lines between EW, top, Higgs, QCD a bit further

Detour

(some thoughts on photons)

the role of photons

- interesting final state, couple to everything electrically charged
 - no discussion concerning issues with isolation etc.

(you know this better, anyway)

- how do multi-photon cross sections scale with N_{γ} ? steps on a ladder or Poissonian?
- important initial state

Photons

- part of the parton content of the proton (→ PDFs)
- but: also coherently emitted by protons/ions

(large-Z enhancement of Weizsaecker-Williams photons)

⇒LHC is a photon collider

different signatures for PDF and WW photons

VBS

(prime laboratory for coupling structure analyses)

forgotten (?) channels

- goal: constrain **all** VVV couplings $WW\gamma$, WWZ and dim-6 deviations:
 - VBS production of the neutrals
 - VBS production of single-W: use WW photons vs. PDF photons?

(i.e. use a large rapidity gap in one forward direction/forward proton)

triple-neutral coupling: higher-dim (\geq 8) in EFTs, but: part of old-fashioned anomalous gauge coupling framework

- single-Z production with WW photons?
- goal: constrain **all** *VVVV* couplings:
 - VBS production of VV pairs
 - again: use WW photons vs. PDF photons?

(i.e. use a large rapidity gaps in both directions)

$\gamma\gamma$ collisions

- clean signature with WW photons: system produced centrally, rapidity gaps/forward protons
- $\gamma\gamma$ scattering:
 - sensitive to charged particles in loop
 - unforeseen resonant structures (axions?)
 - axions/dark photons/etc. in final state

(signal: single $\gamma + \not\models_{\mathcal{T}}$)

how about γZ final states?

same-sign W's

- "wonderful" final state, probes lots of gauge structures
- curious: $qq' \rightarrow \tilde{q}\tilde{q}'W^{\pm}W^{\pm}$ is finite for all quark p_{\perp} ⇒ no need per se to look for jets in forward direction
 - this is not true for backgrounds such as WZ, $W \pm W^{\mp}$, ...
 - can this be used? (maybe in ratio w.r.t. leading jet p_{\perp} ...)
- also: great for measurements of double-parton scattering:
 - supremely clean: $\sigma_{DPS} \approx \sigma \text{direct}$
 - use this more differentially?

QCD interface

(EW final states for QCD studies)

heavy quarks

- use of V + Q final states for measurements of PDFs:
 - $W + c \longrightarrow f_s$, Z + c, $b \longrightarrow f_{c,b}$
- have to understand heavy-quark production:
 - $g \to Q\bar{Q}$ a persistent problem in parton showers
 - can we measure ratio of $g \to b\bar{b}/g \to c\bar{c}$?

(maybe in $Z + Q\bar{Q}$, $W + Q\bar{Q}$?)

relevant for boosted H, HH, ...

"dirty" QCD

- interesting issue with underlying event models: hard to accommodate MPIs in both QCD and DY production maybe worth a second look?
- the "ridge" in high-multi events: strong azimuthal correlation in "towards" side can we use V + QCD with V the towards side? what is the flavour of the ridge?

spins?

(some basic quantum mechanics)

entanglement and information

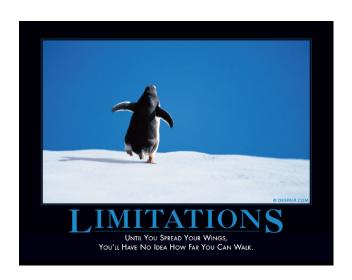
- spins of produced systems can be correlated: recent little wave of papers on entangled systems, especially in $t\bar{t}$ production
- this program can be extended to VV production:
 - measure spin-correlations of ZZ pairs
 - "old" QM (interference) effect: radiation zeroes, which are being "destroyed" by real radiation
 - are LO spin-correlations destroyed by real/virtual EW corrections?

(I genuinely have no idea, in how far chiral nature does that)

a stupid idea

- observations:
 - 10% of all b quarks become Λ_b
 - Λ_b "inherit" spin of quark
 - in high-energy limit chirality ←→ helicity ←→ spin:

can we measure b chirality in Λ_b decays?


- I think this is an experimental question . . .
- can we use this for further spin correlation studies?

outlook

(what the future holds for us)

