Axion Haloscope Searches

Light Dark World 2024 August 12, 2024 KAIST

> Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)

Axion dark matter

- Strong CP problem
 - PQ mechanism (1977)
 - U(1) global symmetry and scalar field
 - SSB => axion field (1978)
 - QCD axion: $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$ (cf. ALP)
 - Invisible axion (1979): $m_a \approx 10^{-6} eV \frac{10^{12} \text{ GeV}}{f_a}$
- Cosmological implication
 - Accounting for dark matter (1983)

Axion models and detection

Axion coupling to SM

	Photons	Fermions	nEDMs				
Hamiltonian	$g_{a\gamma\gamma}a\mathbf{E}\cdot\mathbf{B}$	$g_{aff} \mathbf{\nabla} a \cdot \widehat{\mathbf{S}}$	$g_{EDM} a \widehat{m{S}} \cdot m{E}$				
Observable	Photon	Spin precession	Oscillating EDM				
Detection	Power spectrum, photon counter,	Magnetometer, NMR, 	NMR, polarimeter,				

Axion models

PQWW	DFSZ	KSVZ	
SM fer	BSM fermions		
2 Higgs	2Higgs+singlet	Higgs+singlet	
Standard ($f_a \sim v_{EW}$)	Invisible ($f_a \gg v_{EW}$)		
Ruled out	Benchmark		

Detection principle

- Sikivie effect (1983)
 - Macroscopic Primakoff

Solar

axion

flux

Lase

Sunset

system

Magnet bore

Production Cavity (PC)

Magnet String

.

ib^s.

Dark matter halo in our galaxy

$$P_{a\gamma\gamma} \approx 9 \times 10^{-23} W \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \frac{GeV}{cc}}\right) \left(\frac{f_a}{1.1 GHz}\right) \left(\frac{B_0}{10.5 T}\right)^2 \left(\frac{V}{37 L}\right) \left(\frac{Q_c}{0.6}\right) \left(\frac{Q_c}{10^5}\right)$$

$$\sim 100 \text{ photons/sec}$$

- Helioscope
 - Solar axion

•
$$\mathcal{P}_{a \to \gamma} \approx 2.6 \times 10^{-17} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}} \right)^2 \left(\frac{B_0}{10 \text{ T}} \right)^2 \left(\frac{L}{10 \text{ m}} \right)^2 \mathcal{F}, \quad \mathcal{F} = \frac{2(1 - \cos qL)}{(qL)^2}$$

~10 photons/day

Axion production at lab

•
$$\dot{N_{\gamma}} \approx 4 \times 10^{-5} Hz \left(\frac{g_{a\gamma\gamma}}{10^{-10} \ GeV^{-1}}\right)^4 \left(\frac{P_{laser}}{40 \ W}\right) \left(\frac{BL}{560 \ Tm}\right) \left(\frac{\beta_{PC}}{5000}\right) \left(\frac{\beta_{RC}}{40000}\right)$$
~1 photons/day

Sunrise

system

Detector

X-ray telescope

Shielding -X-ray detector

Regeneration Cavity (RC)

Amplifier (T)

Magnetic field (B_n)

L = 9.26 m

B - 9 T

Wall

(g_{avv}, ρ_a, m_a, Q_a,

5

for Bas

bS

Axion searches

10⁻³

 $1 \, \text{GHz} = 4.2 \, u \text{eV}$ Frequency [GHz] 10⁻² 10^{-1} 10⁰ 10^{2} 10³ 10⁴ 10⁵ 10¹ **ALPS** OSQAR

Axion haloscopes

- Most sensitive for DM axion search in μeV region
 - Resonant conversion of axions into microwave photons

Axion haloscopes

• Axion-photon conversion power ($a \rightarrow \gamma \gamma$)

$$P_{a\gamma\gamma} \approx 9 \times 10^{-23} W \left(\frac{g_{a\gamma\gamma}}{0.36}\right)^2 \left(\frac{\rho_a}{0.45 \frac{GeV}{cc}}\right) \left(\frac{f_a}{1.1 GHz}\right) \\ \times \left(\frac{B_0}{10.5 T}\right)^2 \left(\frac{V}{37 L}\right) \left(\frac{C}{0.6}\right) \left(\frac{Q_c}{10^5}\right)$$

Magnetic field (B_0)

Signal-to-noise ratio (SNR)

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{1}{4} \frac{P_{a\gamma\gamma}}{k_B(T_{sys}/0.2 \text{ K})} \sqrt{\frac{\Delta t}{Q_a/10^6}}$$

System noise (in temperature) $T_{sys} = T_{thr} + T_{add}$ ex) 0.2 $K \sim 3 \times 10^{-22} W$

• Unknown mass = > scanning rate (F.O.M.)

$$\frac{df}{dt} \approx 2 \frac{GHz}{year} \left(\frac{5}{SNR}\right)^2 \left(\frac{0.2 K}{T_{sys}}\right)^2 \left(\frac{P_{a\gamma\gamma}}{1x10^{-22} W}\right)^2 \left(\frac{10^5}{Q_c}\right) \sim B_0^4 V^2 C^2 Q_c T_{sys}^{-2}$$

KAIS

TUTE OF SCIE

ibs Cavity haloscopes

for Basi

ADMX

CAPP-9T

CAPP-12T

CAPP-8T

CAPP-8TB

CAPP-9T (9T/127mm)

b

Axion haloscopes STITUTE OF SCI CAPP (I) ΚΔΙΣΤ 1971 Frequency [GHz] 2-cell pizza (3.2 GHz) 10^{1} PRL 125 221302 (2020) UF

NM algorithm arXiv:2312.11003 (PRL) S

 10^{-4}

E/N =

KSV

DFS

E/N =

CAPP-8TB

(8T/165mm)

8-cell + JPA (5.9 GHz, 400 mK)

Near KSVZ sensitivity

Paper in preparation

LDM2024

Axion haloscopes

13

LDM2024

ibs

14

Dielectric cavity

00

8.5 8.0

7.5 7.0

6.5

TWPA PRD 108 062005 (2023)

16

FLASH

FINUDA

B = 1.1 TR = 1.4 m

is Cavity haloscopes

se for Basi

Searches vs. predictions

LDM2024

Axion haloscopes

Dielectric power booster

Suitable for high-freq. search

Proof-of-concept

- Plasma haloscope
 - Wire array => plasma metamaterial

Axion-plasmon interaction

PRD 107 055013 (2023)

Prototype cavity of 10x10 array

- ω_p independent of the detector size
- Large conversion volume at high frequencies

Physics data in 2026

UTUTE OF SC

KAIS

Multiple-cell (pizza) PLB 777 412 (2018)

- Larger volume
- Simpler receiver chain
- ~4 x f_{TM010}

Higher-mode (wheel)

Mode	f _{rel}	Q _{rel}	V _{rel}	C _{abs}
<i>TM</i> ₀₁₀	1	1	1	0.69
TM ₀₃₀	3.6	1.9	1	0.05

JPG 47 035203 (2020)

Axion haloscopes

Photonic crystal PRD 107 015012 (2022)

- $f \propto spacing$
- $\sim 10 \times f_{TM010}$
- Boosting effect

- CAST-CAPP
 - Phase-matched cavities, ~20 ueV

Nat. Comm. **13** 6180 (2022)

- RADES
 - HTS cavity, 11.7 T, ~36.5 ueV

arXiv:2403.07790

- Taiwan Axion Search Experiment with Haloscope
 4.7 GHz, 11 x g_{arr}^{KSVZ} PRL 129 111802 (2022)
- Broadband Reflector Experiment for Axion Detection
 - Parabolic reflector, THz region

PRL 132 131004 (2024)

- SUPerconducting AXion search
 - SC cavity, 14T, 8.4 GHz

PoS EPS-HEP2023 (2024) 140

- Canfranc Axion Detection Experiment
 - 90 GHz (W-band), Kinetic Induction Detectors JCAP 11 044 (2022)

Summary

- Axion could address two fundamental questions
 - Strong CP problem & dark matter mystery
- Enormous experimental effort to explore the parameter space
 - Different technologies targeting at different mass ranges
- Haloscope is among the most sensitive search methods
 - Resonant effects to enhance detection sensitivity
 - New results, new groups and new ideas
- Progress is gradual yet unwavering
 - Endurance within the scientific community is essential.
 - Next few decades are promising to unveil the nature of dark matter

Magnetic field (B₀)

LDM2024

vs. photon counting

Total noise

 $T_{\text{noise}} = T_{\text{phy}}$

1

T_{phy} [K]

Bosonic occupation

Standard Quantum Limit

10

100

(w/ single photon detector)

Quantum squeezing ($T_N < T_{SQL}$)

Single photon counting **Not subject to SQL** $(T_N << T_{SQL})$

SPD schemes

	Excitation	Intereference	Bolometer
Basis	Qubit	JJ-Qubit	JJ-TES
Quantity	Electron	Phase	Heat
Pros	High sensitivity	Non-demolition	Wide bandwith Robust
Cons	Bandwidth vs. Dark cout rate Low tunability	Narrow bandwidth Low tunability	High noise level Dead (relaxation) time

Axion haloscopes

Low temperature Axion Chiral Magnetic Effect

 $\frac{df}{dt} \sim B^4 V^2 C^2 \frac{Q_L}{Q_L}$

+ 3D body = SC cavity

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

Flux-driven Josephson parametric amplifiers (JPAs)

QNL amplification

U. of Tokyo & RIKEN

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

• Flux-driven Josephson parametric amplifiers (JPAs)

QNL amplification

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

• Flux-driven Josephson parametric amplifiers (JPAs)

Parallel-Serial configuration

QNL amplification

But, ... limited bandwidth!

U. of Tokyo & RIKEN