

Neutrino experiments as dark sector factories from HNLs to ALPs

Asli M. Abdullahi Light Dark World 2024 KAIST August 12, 2024

Status of Neutrino Physics in 2024

Super-Kamiokande, Borexino, SNO

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

atmospheric

IceCube, Super-Kamiokande

T2K, MINOS, NOvA

 $\begin{array}{c} {}_{\text{mixing angles:}}\\ \sin^2\theta_{12} @ 4\%\\ \sin^2\theta_{13} @ 3\%\\ \sin^2\theta_{23} @ 3\% \end{array}$

mass squared differences: $\Delta m_{21}^2 @ 3\%$ $|\Delta m_{31}^2| @ 1\%$

Future: DUNE, T2HK , JUNO

- Increase the precision
- CP-phase
- Mass hierarchy

Also:

Mass scale? Dirac or Majorana? Sterile?

The flagship DUNE experiment

Fermilab Short Baseline Program

Fermilab Short Baseline Program (SBN) features three LArTPC detectors on the Booster Neutrino Beamline (BNB) \rightarrow SBND (near detector), MicroBooNE, Icarus (far detector)

arXiv/1503.01520

LArTPC Detectors

Improved hadronic vertex ID

Newer neutrino detectors utilising LArTPC technology

Better spatial resolution

Schematic of MicroBooNE TPC and cryotank (HNL upscattering)

LArTPCs are like a digital bubble chamber allowing for 3D images of the neutrino interaction

Mark Ross-Lonergan, NeuTel 2021

Improved calorimetry

LArTPC Detectors

LArTPCs make e^{\pm} and photon final states distinguishable

- **Spatial resolution**
 - a. electrons begin to shower at vertex

 e^+

e

e

e

Similar

Different

Wouter Van De Pontseele

P

b. photons travel ~15cm in Argon before pair converting ВООЛЕ 1307 ВИВ ДАТА : RUN 5370 EVENT 7227. MARCH 10, 2016.

LArTPC Detectors

LArTPCs make e[±] and photon final states distinguishable

The case for neutrino experiments

→ High POT (~1e21)

 \rightarrow large flux of charged and neutral mesons

→ Potentially sizeable flux of BSM particles

→ Large detector masses ~ O(1e2) tonnes

→ Potentially larger interaction cross-sections

The case for neutrino experiments

- \rightarrow Good PID (p, µ, e, γ reconstructed) and calorimetry
- → Parasitic → shared cost with neutrino projects

See talk by Richard Van de Water, U.S. Cosmic Visions 2017

"Future possibilities at Proton fixed target experiments"

Typical setup

Possible search strategies

1. Direct production of new particles and mediators

2. Indirect effects on e.g. neutrino oscillation

Possible search strategies

1. Direct production of new particles and mediators

2. Indirect effects on e.g. neutrino oscillation

Plethora of NP

Among the NP options are:

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"A panorama of new-physics explanations to the MiniBooNE excess" AA, J. Hoefken-Zink, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2308.02543 [hep-ph]

"Constraining light thermal inelastic dark matter with NA64" AA, B. Banto Oberhauser, P. Crivelli, M. Hostert, D. Massaro, L. Molina Bueno, M. Mongillo, S. Pascoli ArXiv: 2302.05414 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2302.05410 [hep-ph]

"A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g - 2), and BaBar" AA, M. Hostert, S. Pascoli ArXiv: 2007.11813 [hep-ph]

Plethora of NP

Among the NP options are:

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"A panorama of new-physics explanations to the MiniBooNE excess" AA, J. Hoefken-Zink, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2308.02543 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, B. Banto Oberhauser, P. Crivelli, M. Hostert, D. Massaro, L. Molina Bueno, M. Mongillo, S. Pascoli ArXiv: 2302.05414 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2302.05410 [hep-ph]

"A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g - 2), and BaBar"
AA, M. Hostert, S. Pascoli
ArXiv: 2007.11813 [hep-ph]

Plethora of NP

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

"A panorama of new-physics explanations to the MiniBooNE excess" AA, J. Hoefken-Zink, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2308.02543 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, B. Banto Oberhauser, P. Crivelli, M. Hostert, D. Massaro, L. Molina Bueno, M. Mongillo, S. Pascoli ArXiv: 2302.05414 [hep-ph]

"Semi-Visible Dark Photon Phenomenology at the GeV Scale" AA, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2302.05410 [hep-ph]

"A dark seesaw solution to low energy anomalies: MiniBooNE, the muon (g - 2), and BaBar"
AA, M. Hostert, S. Pascoli
ArXiv: 2007.11813 [hep-ph]

Heavy neutral leptons are the typical BSM extension studied at neutrino experiments

• Singlet N couples to SM leptons through Higgs

$$\mathcal{L} \supset -y ar{L} \left(i \sigma^2 H^*
ight) N - rac{M_N}{2} \overline{N^c} N$$

 \rightarrow The only renormalizable coupling to a singlet fermion

Heavy neutral leptons are the typical BSM extension studied at neutrino experiments

- Mass mixing with SM neutrinos and active-sterile neutrino oscillations
- Could explain neutrino mass → **Type 1 seesaw**

Breitbach, Buonocore, Frugiuele, Kopp, Mittnacht, JHEP (2022)

ROADBLOCK: Production and detection through neutrino mixing

Event rate suppressed by $|U_{\alpha N}|^4$

Typically **long-lived** and have **weaker-than-weak** interactions

 \rightarrow Challenging to probe seesaw region and below

ROADBLOCK: Production and detection through neutrino mixing

Event rate suppressed by $|U_{\alpha N}|^4$

How to bypass the roadblock?

A bigger dark sector

HNLs: A new option

Option:

Magnetic Focusing Horns

Option:

New pseudoscalar, a, that is mixed with the SM neutral pion and eta meson

$$\pi^0 o \pi^0 + g_{\pi a} a$$

 $\eta o \eta^0 + g_{\eta a} a$

"Dark Matter and Neutrino Mass from the Smallest Non-Abelian Chiral Dark Sector" J. M. Berryman, A. de Gouvea, K. J. Kelly, Y. Zhang ArXiv: 1706.02722 [hep-ph]

Magnetic Focusing Horns

Option:

New pseudoscalar, a, that is mixed with the SM neutral pion and eta meson

Analogous to $\pi^+
ightarrow l^+ +
u$ in SM

Magnetic Focusing Horns

"Heavy Neutral Leptons via Axion-Like Particles at Neutrino Facilities" AA, A. de Gouvea, B. Dutta, I. Shoemaker and Z. Tabrizi ArXiv: 2311.07713 [hep-ph]

Option:

New pseudoscalar, a, couples to HNLs directly

Sensitivity at DUNE

Potential to probe seesaw region

Sensitivity doesn't vary significantly between flavours

SM Neutrino fluxes

 $\phi_{\nu_e} \sim 2 \times 10^{-2} \phi_{\nu_{\mu}} \sim 10^4 \phi_{\nu_{\tau}}$

Neutrino fluxes dependent on kaon, pion and charmed meson fluxes which vary significantly

- v- Total

 $\cdots v_{\tau}$ from D_S^+

15

20

 v_{τ} from D^{\dagger}

Sensitivity at DUNE

Weak dependence on flavour significant for tau mixing

HNLs: Light mediator

Option: Scattering in detector through a *light new mediator*, e.g. dark photon

Enhanced scattering cross-section compensates $|U_{\alpha N}|^4$ suppression

"A panorama of new-physics explanations to the MiniBooNE excess" AA, J. Hoefken-Zink, M. Hostert, D. Massaro, S. Pascoli ArXiv: 2308.02543 [hep-ph]

HNLs: Light mediator

Transition Magnetic Moment

 $F^{\mu\nu}\left(\frac{\mu_{\nu}^{\alpha j}}{2}\overline{\nu_{\alpha}}\sigma_{\mu\nu}N_{j}+\frac{\mu_{\nu}^{ij}}{2}\overline{N_{i}}\sigma_{\mu\nu}N_{j}\right)$

Dark Photon

$$Z'_{\mu}\left(V^{\alpha j}\overline{\nu_{\alpha}}\gamma^{\mu}N_{j}+V^{ij}\overline{N_{i}}\gamma^{\mu}N_{j}+d^{\ell}_{V}\,\overline{\ell}\gamma^{\mu}\ell\right)$$

Dark Scalar

$$h'\left(S^{\alpha j}\overline{\nu_{\alpha}}N_{j}+S^{ij}\overline{N_{i}}N_{j}+d_{S}^{\ell}\overline{\ell}\ell\right)$$

* Model independent parameterization.

HNLs: Light mediator

MicroBooNE Single γ Searches

Search for photon-like LEE has already been performed

SM NC $\Delta \rightarrow$ **Ny** (PRL 128, 111801 2022)

With no excess observed compatible with MiniBooNE!

Signal prediction for selected models

Contribution to 1g0p selection sizeable suggesting the search for <u>NC Δ radiative decays</u> is highly constraining for coherent-like benchmarks

Signal prediction for selected models

Contribution to 1g0p selection sizeable suggesting the search for <u>NC Δ radiative decays</u> is highly constraining for coherent-like benchmarks

What is the impact of improved selection cuts? e.g. improved angular resolution for e⁺e⁻

e.g. heavy dark photon model (1 GeV mediator)

Main Takeaways

- Neutrino experiments are excellent place to search for new physics
 → large flux of charged and neutral mesons
- Minimal HNL models face strong mixing suppression
- Enhanced HNL production rate by:
 - Decoupling the production and detection
 - flavour insensitive
 - Introducing new light mediators
- Potentially strong constraints from existing searches
- Potentially strong sensitivities as DUNE ND-like experiments

Thank you for your attention!

ALP flux

Contributions from:

$$\pi^0 o \pi^0 + g_{\pi a} a ,$$

 $\eta o \eta^0 + g_{\eta a} a ,$

To obtain ALP flux

HNL flux

BSM in NC Δ -radiative search

- 54.7% of true 1γ events
- **9%** reconstruction efficiency with 0 track and 1 shower requirement and pre-selection cuts

2. $\Delta^0 \rightarrow n \gamma \rightarrow 1\gamma 0p$

Caveat: 1γ Op selection has larger bkg, as proton kinematics cannot be leveraged for bkg rejection

BSM Benchmark models

Transition Magnetic Moment

 $F^{\mu\nu}\left(\frac{\mu_{\nu}^{\alpha j}}{2}\overline{\nu_{\alpha}}\sigma_{\mu\nu}N_{j}+\frac{\mu_{\nu}^{ij}}{2}\overline{N_{i}}\sigma_{\mu\nu}N_{j}\right)$

 e^+

N

Carbon

Dark Photon

$$Z'_{\mu}\left(V^{\alpha j}\overline{\nu_{\alpha}}\gamma^{\mu}N_{j}+V^{ij}\overline{N}_{i}\gamma^{\mu}N_{j}+d_{V}^{\ell}\,\overline{\ell}\gamma^{\mu}\ell\right)$$

Dark Scalar

 $h'\left(S^{\alpha j}\overline{\nu_{\alpha}}N_{j}+S^{ij}\overline{N_{i}}N_{j}+d_{S}^{\ell}\overline{\ell}\ell'\right)$

* Model independent parameterization.

We consider three BSM models

Where mediator is massive, we consider light and heavy scenarios

	Vector	Scalar
Light mediator	А	В
Heavy mediator	С	D
Transition mag. moment	ТММ	

DarkNews

Signal events generated by DarkNews

(A. Abdullahi, J. Hoefken, M. Hostert, D. Massaro, S. Pascoli)

DarkNews is a light-weight Python generator for neutrino-nucleus upscattering to heavy neutrinos.

- Supports up to 3 (Dirac or Majorana) HNLs
- Scalar, vector, or transition magnetic moment contributions.
- Event output weighted (fast) or unweighted (slower).
- Pandas or numpy, as well as HepEvt, HepMC2 and 3.
- Simple detector geometry for MiniBooNE and MicroBooNE.
- Several neutrino fluxes implemented.

Public and documented!

Paper:arxiv.org/abs/2207.04137GitHub:github.com/mhostert/DarkNews-generatorPyPI:pypi.org/project/DarkNews/

pip install DarkNews

Kathryn Sutton, DPF 2019

Kathryn Sutton, DPF 2019

Pre-selection Cuts

2. Find candidate vertices with **topological selection** and pre-selection cuts 1. Reconstructed shower energy

2. Shower start position from SCB

Taking light dark photon model as an example, *energy distribution* of the e^+e^- approaches that of NC Δ photon for > 20°

