

[arXiv:2208.05984, 2306.01844, 2409.XXXXX]

Dark Acoustic Oscillations Faces the Cosmological Tensions Taewook Youn Cornell U, LEPP / Korea U Aug 13th 2024

- Minimal Light Dark World
 - Single Light Dark Matter (e.g. Axion)
 - Might need a coupling to Visible Sector for interesting signals

- Non-minimal but interesting Light Dark World
 - Multiple DM components (e.g. axion, dark proton)
 - + LDF (dark electron, dark photon)
 - W/O any direct coupling to SM fields

- Non-minimal but interesting Light Dark World
 - Multiple DM components (e.g. axion, dark proton)
 - + LDF (dark electron, dark photon)

Tight coupling (e.g. $p_d - \gamma_d$) forms pressure-gravity waves that are imprinted on the clustering signal

- Non-minimal but interesting Light Dark World
 - Multiple DM components (e.g. axion, dark proton)
 - + LDF (dark electron, dark photon)

Tight coupling (e.g. $p_d - \gamma_d$) forms pressure-gravity waves that are imprinted on the clustering signal

- Non-minimal but interesting Light Dark World
 - Multiple DM components (e.g. axion, dark proton)
 - + LDF (dark electron, dark photon)

Tight coupling (e.g. $p_d - \gamma_d$) forms pressure-gravity waves that are imprinted on the clustering signal

Dark Acoustic Oscillation (DAO)

- Non-minimal but interesting Light Dark World
 - Multiple DM components (e.g. axion, dark proton)
 - + LDF (dark electron, dark photon)

Tight coupling (e.g. $p_d - \gamma_d$) forms pressure-gravity waves that are imprinted on the clustering signal

Dark Acoustic Oscillation (DAO)

- Non-minimal but interesting Light Dark World
 - Multiple DM components (e.g. axion, dark proton)
 - + LDF (dark electron, dark photon)
- **Dark Acoustic Oscillation**
 - Unique Imprint on Cosmological Observations **Possibly in** H_0 and S_8 tensions

$v = H_0 D$ Estimate the size and age of universe

Early Universe

CMB fit to ΛCDM

~68 km/s/Mpc Planck '18 [arXiv:1807.06209]

Late Universe

Cosmic Distance Ladder

~72 km/s/Mpc A. G. Riess et al. [arXiv:2112.04510]

Systematic error?

JWST J-region Giant Branch

W. L. Freedman: 67.96 km/s/Mpc

A. J. Lee et al. [arXiv:2408.03474]

A. G. Riess: 74.7 km/s/Mpc

S. Li et al. [arXiv:2401.04777]

Crack in Lambda CDM?

 $H_0 \sim H_{\rm rec} \theta_s \frac{c/(\rho_{\rm late}/\rho_{\rm today})^{1/2}}{c_s/(\rho_{\rm early}/\rho_{\rm rec})^{1/2}}$

To increase H_0 ,

 $H_0 \sim H_{\rm rec} \theta_s \frac{c/(\rho_{\rm late}/\rho_{\rm today})^{1/2}}{c_s/(\rho_{\rm early}/\rho_{\rm rec})^{1/2}}$

To increase H_0 ,

Increase energy density at early times (early-time solutions)

Early Dark Energy $\rightarrow V(\phi) = \Lambda_{\text{EDE}}^4$ [

V. Poulin

P. Agrawal et al. [arXiv:1904.01016]

$$[1 - \cos(\phi/f_{\text{EDE}})]^n$$
, $V(\phi) = V_0 \left(\frac{\phi}{M_{pl}}\right)^{2n} + V_\Lambda$
et al. [arXiv:1806.10608]

 $H_0 \sim H_{\rm rec} \theta_s \frac{c/(\rho_{\rm late}/\rho_{\rm today})^{1/2}}{c_s/(\rho_{\rm early}/\rho_{\rm rec})^{1/2}}$

To increase H_0 ,

Increase energy density at early times (early-time solutions)

Early Dark Energy

Dark Radiation \rightarrow Massless states in Dark Sector

Dark Radiation A Class of Solutions to Hubble tension To increase H_0 , Increase energy density at early times (early-time solutions) Free-streaming (non-interacting) Dark Radiation (DR)

Silk damping (diffusion) + Drag effect

$$\theta_d = \frac{r_d}{D_A} \to \frac{\theta_d}{\theta_s} = \frac{r_d}{r_s} \propto H_e^1$$

 $r_s \propto H_{ea}$

e γ γ e e

-1 arly

 ℓ

Dark Radiation A Class of Solutions to Hubble tension

- To increase H_0 ,
 - **Increase energy density at early times (early-time solutions) Free-streaming (non-interacting)** Dark Radiation (DR) Silk damping (diffusion) + Drag effect **Good: Self-interacting DR** N. Blinov et al. [arXiv:2003.08387] Silk damping (diffusion)

Dark Radiation A Class of Solutions to Hubble tension

- To increase H_0 ,
 - **Increase energy density at early times (early-time solutions) Free-streaming (non-interacting)** Dark Radiation (DR) Silk damping (diffusion) + Drag effect **Good: Self-interacting DR** N. Blinov et al. [arXiv:2003.08387] Silk damping (diffusion) **Better: need more (DAO)**

Stepped Partially Acoustic Dark Matter A Toy model for DAO + SIDR Standard CDM Interacting Dark Matter (iDM): χ $f_{\rm CDM} + f_{\chi} = 1$ Self-interacting Dark Radiation: ψ, A $m_{\psi} \sim \mathrm{eV}$

M. A. Buen-Abad, Z. Chacko, C. Kilic, **G.** Marques-Tavares, **TY** [2208.05984]

	$U(1)_A$
χ	1
Ψ	1

Stepped Partially Acoustic Dark Matter A Toy model for DAO + SIDR Standard CDM Interacting Dark Matter (iDM): χ $f_{\rm CDM} + f_{\chi} = 1$ Self-interacting Dark Radiation: ψ , A $m_{\psi} \sim \mathrm{eV}$

M. A. Buen-Abad, Z. Chacko, C. Kilic, **G.** Marques-Tavares, **TY** [2208.05984]

SPartAcous Details of Model Standard CDM Interacting Dark Matter (iDM): χ $f_{\rm CDM} + f_{\chi} = 1$ Self-interacting Dark Radiation: ψ , A **Mass Threshold** $m_{\psi} \sim \mathrm{eV}$ **Turn off iDM-DR interaction to avoid**

overly suppressed structure formation

	$U(1)_A$
χ	1
Ψ	1

SPartAcous iDM-DR interaction

Prevent too long DAO

SPartAcous Stepped Dark Radiation Entropy dump / Reheating in DS **Step** increase in ΔN_{eff} Different ℓ modes experience different Silk damping **Stepped DR** D. Aloni et al. [arXiv:2111.00014] A possible H_0 solution

KOREA UNIVERSITY **SPartAcous Stepped Dark Radiation** Entropy dump / Reheating in DS **Step** increase in ΔN_{eff} Different ℓ modes experience different Silk damping **Stepped DR** D. Aloni et al. [arXiv:2111.00014] A possible H_0 solution

SPartAcous: DAO + SIDR w/ Step

KOREA UNIVERSITY

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO BOSS DR12, BAO small z, PANTHEON, SH0ES

Model:

~40% Step Size, iDM-DR interaction coupling $\alpha_d = 10^{-3}$

3 Free Parameters: f_{χ} , $\Delta N_{\rm IR}$, $z_{\rm t} = \frac{m_{\chi}}{T_{d0}} - 1$

M. A. Buen-Abad, Z. Chacko, C. Kilic, G. Marques-Tavares, TY [2306.01844]

Best fit

Model	$\Delta \chi^2$	ΔAIC	fχ	H_0
LCDM	_	_	_	68.64
SPartAcous	-23.24	-17.24	0.1%	71.66

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO BOSS DR12, BAO small z, PANTHEON, SH0ES

Model:

~40% Step Size, iDM-DR interaction coupling $\alpha_d = 10^{-3}$

3 Free Parameters:
$$f_{\chi}$$
, $\Delta N_{\rm IR}$, $z_{\rm t} = \frac{m_{\chi}}{T_{d0}} - 1$

Be

est fit

Model	$\Delta \chi^2$	ΔAIC	fx	H_0
LCDM	_	-	_	68.64
SPartAcous	-23.24	-17.24	0.1%	71.66

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO BOSS DR12, BAO small z, PANTHEON, SH0ES

Model:

~40% Step Size, iDM-DR interaction coupling $\alpha_d = 10^{-3}$

3 Free Parameters:
$$f_{\chi}$$
, $\Delta N_{\rm IR}$, $z_{\rm t} = \frac{m_{\chi}}{T_{d0}} - \frac{1}{2}$

Be

Ś

est fit

Model	$\Delta \chi^2$	ΔAIC	fx	H_0
LCDM	-	-	_	68.64
SPartAcous	-23.24	-17.24	0.1%	71.66

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO BOSS DR12, BAO small z, PANTHEON, SH0ES

Model:

~40% Step Size, iDM-DR interaction coupling $\alpha_d = 10^{-3}$

3 Free Parameters:
$$f_{\chi}$$
, $\Delta N_{\rm IR}$, $z_{\rm t} = \frac{m_{\chi}}{T_{d0}} - 1$

Be

est fit

Model	$\Delta \chi^2$	ΔAIC	fx	H_0
LCDM	_	-	_	68.64
SPartAcous	-23.24	-17.24	0.1%	71.66

No step needed!

SPartAcous+ A Toy model for DAO + SIDR w/ small step Standard CDM Interacting Dark Matter (iDM): χ $f_{\rm CDM} + f_{\chi} = 1$ Self-interacting Dark Radiation ψ, A ψ', Α' 0, 3 ψ' flavors: ~40, 7% jump in $\Delta N_{\rm eff}$

M. A. Buen-Abad, Z. Chacko, C. Kilic, **G.** Marques-Tavares, **TY** [2306.01844]

	$U(1)_A$	$U(1)_{A'}$
χ	1	0
Ψ	1	1
ψ'	0	1

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO BOSS DR12, BAO small z, PANTHEON, SH0ES

Model:

~40% Step Size, iDM-DR interaction coupling $\alpha_d = 10^{-3}$

3 Free Parameters: f_{χ} , $\Delta N_{\rm IR}$, $z_{\rm t} = \frac{m_{\chi}}{T_{d0}} - 1$

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO BOSS DR12, BAO small z, PANTHEON, SH0ES

Model:

~40% Step Size, iDM-DR interaction coupling $\alpha_d = 10^{-3}$

3 Free Parameters: f_{χ} , $\Delta N_{\rm IR}$, $z_{\rm t} = \frac{m_{\chi}}{T_{d0}} - 1$

Model	$\Delta \chi^2$	ΔAIC	fχ	H_0
SPartAcous	-23.24	-17.24	0.1%	71.66
PartAcous+	-26.89	-20.89	3.2%	71.98

DAO at work

VADN Another Toy model for DAO + SIDR w/o any step Standard CDM Atomic DM: X Dark Proton p_d , Dark Electron e_d $f_{\text{CDM}} + f_{\chi} = 1$ Self-interacting Dark Radiation Dark Photon A_d , Dark Neutrino ν_d , $U(1)_{\nu}$ gauge boson X $\mathscr{L} \supset -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\epsilon}{2}F_{\mu\nu}X^{\mu\nu} + \bar{p}(i\partial - m_p)p + \bar{e}(i\partial - m_e)e + \bar{\nu}i\partial\nu + \bar{e}A_{\mu}(\bar{p}\gamma^{\mu}p - \bar{e}\gamma^{\mu}e) + \bar{g}X_{\mu}\bar{\nu}\gamma^{\mu}\nu$

M. A. Buen-Abad, Z. Chacko, I. Flood, C. Kilic, G. Marques-Tavares, TY [2409.XXXXX]

	$U(1)_A$	$U(1)_{\nu}$
χ	1	0
ν_d	0	1

ν ADM Atomic DM + Dark ν
Standard CDM
Atomic DM: \chi
Dark Proton p_d , Dark Electron e_d
$f_{\rm CDM} + f_{\chi} = 1$
Self-interacting Dark Radiation
Dark Photon A_d , Dark Neutrino ν_d , $U(1)$
$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + \bar{p}(i\partial - i\partial A) + \bar{p}(i\partial A - i\partial A) + \bar{p}(i$

	$U(1)_A$	$U(1)_{\nu}$
χ	1	0
ν_d	0	1

 $m_p)p + \bar{e}(i\partial - m_e)e + \bar{\nu}i\partial\nu + \bar{e}A_\mu(\bar{p}\gamma^\mu p - \bar{e}\gamma^\mu e) + \bar{g}X_\mu\bar{\nu}\gamma^\mu\nu$

VADM **Dark Recombination**

iDM-DR interaction is off by dark recombination (no step reheating in DS)

Radiative recombination to the ground state, and its inverse photoionization

$$p + e \leftrightarrow H(1s) + \gamma$$

Free photon falls into thermal bath quickly thanks x^{w} to the self-interaction

Direct recombination to the ground state is included (Case A recombination)

$$a_A = \sum_{n=1}^{\infty} \sum_{l=0}^{n-1} \left\langle \sigma[p + e \to H(nl) + \gamma \right\rangle$$

VADM MCMC fit

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO eBOSS DR16, BAO small z, PANTHEON+, SH0ES

Model:

 $m_p = 1$ GeV, iDM-DR interaction coupling $\alpha_e = 10^{-2}$, 1 ν flavor

3 Free Parameters: f_{χ} , $\Delta N_{\rm eff}$, m_e/m_p

M. A. Buen-Abad, Z. Chacko, I. Flood, C. Kilic, G. Marques-Tavares, **TY** [2409.XXXXX]

DAO at work

DAO at Work In other literature

N. Schöneberg et al. [2306.12469]

K. Greene, F.-Y. Cyr-Racine [2403.05619]

Cosmological Tensions S_8 tension (~2-3 σ)

 σ_8 : amplitude of matter density fluctuations on the scale of 8 Mpc/h (~ galaxy cluster scale)

 $S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{1/2}$:

Cosmological Tensions

S_8 tension (~2-3 σ)

Early Universe

CMB fit to ΛCDM

~0.83 Planck '18 [arXiv:1807.06209]

Late Universe

Local measurements

~0.76 DES '21 [arXiv:2105.13544, 2105.13543]

Cosmological Tensions

S_8 tension (~2-3 σ)

More likely systematic errors

H. G. Escudero et al. [arXiv:2208.14435] M. Tristram et al. [arXiv:2309.10034]

Early universe solutions worsen S_8 tension

with fixed $z_{eq}, \Omega_r \uparrow \to \Omega_m \uparrow$

Early-time solutions need to deal with S_8

Dark Matter interaction with DR A Class of Solutions to S_8 tension

Dark Radiation worsens S_8 tension

with fixed $z_{eq}, \Omega_r \uparrow \rightarrow \Omega_m \uparrow$

Dark Matter interaction with DR A Class of Solutions to *S*₈ **tension**

Dark Radiation worsens S_8 tension

with fixed $z_{eq}, \Omega_r \uparrow \rightarrow \Omega_m \uparrow$

Solution: Dark Matter interaction with Dark Radiation

Dark Matter interaction with DR A Class of Solutions to S_8 tension

Dark Radiation worsens S_8 tension

with fixed $z_{eq}, \Omega_r \uparrow \to \Omega_m \uparrow$

Solution: Dark Matter interaction with Dark Radiation

Weak interaction + entire dark matter interacting

Strong interaction + partial dark matter interacting

G. Marques-Tavares, TY

M. Joseph et al. [arXiv:2207.03500]

M. A. Buen-Abad, Z. Chacko, C. Kilic, [arXiv:2208.05984, 2306.01844]

N. Schöneberg et al. [arXiv:2306.12469]

Dark Matter interaction with DR A Class of Solutions to S_8 tension

Dark Radiation worsens S_8 tension

with fixed $z_{eq}, \Omega_r \uparrow \to \Omega_m \uparrow$

Solution: Dark Matter interaction with Dark Radiation

Weak interaction + entire dark matter interacting

Strong interaction + partial dark matter interacting

G. Marques-Tavares, TY

DAO models (SpartAcous, *v***ADM)**

M. Joseph et al. [arXiv:2207.03500]

M. A. Buen-Abad, Z. Chacko, C. Kilic, [arXiv:2208.05984, 2306.01844]

N. Schöneberg et al. [arXiv:2306.12469]

Dark Matter interaction with DR Impacts on Matter / CMB Power Spectrum

Massive A Ma

 ψ , $A \in$ Self-interacting DR

Massive ψ

N. Schöneberg et al. [arXiv:2306.12469]

Dark Matter interaction with DR Impacts on Matter / CMB Power Spectrum

Weak: Only slowing down growth \rightarrow the longer inside the horizon, the larger suppression

Strong: No structure growth until decoupling, all modes grows by the same amount

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO eBOSS DR16, BAO small z, PANTHEON+, SH0ES, KIDS-1000x, DES-Y3

Best fit

Model	$\Delta \chi^2$	ΔAIC	H_0	S_8
LCDM	_	-	68.94	0.797
Weak	-25.78	-19.78	71.84	0.79
Strong	-24.56	-18.56	72.26	0.803

Data:

Plank high ℓ TTTEEE, Planck low ℓ EE, Planck low ℓ TT, Plank lensing, BAO eBOSS DR16, BAO small z, PANTHEON+, SH0ES, KIDS-1000x, DES-Y3

Best fit

Model	$\Delta \chi^2$	ΔAIC	H_0	S_8
LCDM	_	-	68.94	0.797
Weak	-25.78	-19.78	71.84	0.79
Strong	-24.56	-18.56	72.26	0.803

DAO alone takes of both tensions

Conclusions **Summary and Outlook**

Non-trivial DS with LDF is highly motivated

Dark Acoustic Oscillation leave unique signatures on cosmological observables

DAO toy models with different iDM-DR interaction switch

SPartAcous (Decay / Annihilation)

 ν ADM (recombination)

DAO as Possible solutions to Hubble / S_8 tensions in Λ CDM

Now fitting EFTofLSS to ν ADM (entire scale of MPS)

DAO will be probed in the future experiments!

Conclusions Summary and Outlook

A. Riess and L. Breuval [arXiv:2308.10954]

Thank You for Listening!

IAU Symposium 376

Supplements

SPartAcous Parameter Space

Atomic DM + SIDR Impact on the CMB

$$\left(\frac{\Delta T(\mathbf{k},\eta)}{T_{\text{CMB}}}\right)_{\text{SW}} \simeq \zeta(\mathbf{k}) \left[e^{-k^2/k_D^2} \left\{ -\cos\left(\frac{k\eta}{\sqrt{3}}\right) \right\} \right]$$

 $\Psi = (\phi + \psi)/2$ $r_s(\eta) \simeq \eta/\sqrt{3}$

N. Schöneberg et al. [arXiv:2306.12469]

53

N. Schöneberg et al. [arXiv:2306.12469]

54

Large redshift in high- ℓ

Atomic DM + Dark ν Requirements

A in equilibrium with ν (DR is self-interacting)

$$\Gamma_{A-\nu} \sim \epsilon^2 \alpha_g^2 T > H \sim \frac{T^2}{M_{pl}} \Rightarrow \epsilon \alpha_g \gtrsim \sqrt{\frac{T}{M_{pl}}} \sim 10^{-13}$$

e - v not efficient (DM-DR stops after recombination)

$$\Gamma_{e-\nu} \sim \epsilon^2 \alpha_e \alpha_g \frac{T^2}{m_p} < H \sim \frac{T^2}{M_{pl}} \Rightarrow \epsilon^2 \alpha_e \alpha_g < \frac{m_p}{M_{pl}} \sim 10^{-16}$$

$$\mathscr{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} - \frac{\epsilon}{2} F_{\mu\nu} Z^{\mu\nu} + \bar{p}(i\partial - n)$$

 $m_p)p + \bar{e}(i\partial - m_e)e + \bar{\nu}i\partial\nu + \bar{e}A_\mu(\bar{p}\gamma^\mu p - \bar{e}\gamma^\mu e) + \bar{g}Z_\mu\bar{\nu}\gamma^\mu\nu$

 ν_d

 ν_d

SPartAcousBoltzmann equations

$$\begin{split} \dot{\delta}_{\rm idm} &= -\,\theta_{\rm idm} + 3\dot{\phi} \\ \dot{\theta}_{\rm idm} &= -\,\mathcal{H}\theta_{\rm idm} + k^2\psi + a\Gamma(\theta_{\rm dr} - \theta_{\rm idm}) \\ \dot{\delta}_{\rm dr} &= -\,(1+w)(\theta_{\rm dr} - 3\dot{\phi}) - 3\mathcal{H}(c_s^2 - w) \\ \dot{\theta}_{\rm dr} &= -\left[(1-3w)\mathcal{H} + \frac{\dot{w}}{1+w}\right]\theta_{\rm dr} + k^2 \\ \Gamma &= \frac{4}{3\pi}\alpha_d^2\log(\star)\frac{T_d^2}{m_\chi}e^{-m_\psi/T_d}\left[2 + \frac{m_\psi}{T_d}\right] \\ \end{split}$$

$$r_g = \frac{g_*^{\text{UV}} - g_*^{\text{IR}}}{g_*^{\text{IR}}} = \left(\frac{\Delta N_{\text{eff}}^{\text{IR}}}{\Delta N_{\text{eff}}^{\text{UV}}}\right)^3 - \frac{1}{2} \frac{1}$$

 $v)\delta_{\rm dr}$

Cornell University

Cornell University

Cornell University

SPartAcous+3 **Best-fit**

SPartAcous+3 **Best-fit**

63

How does CMB data measure H0?

• Inference of H_0 from the CMB is model dependent. • It comes from the measurement of three angular scales $\theta_{s}, \theta_{d}, \theta_{eq}$.

V. Poulin - LUPM & JHU

θ_s sound horizon at last scattering ~1.0404

How does CMB data measure H0?

• Inference of H_0 from the CMB is model dependent. It comes from the measurement of three angular scales $\theta_{s}, \theta_{d}, \theta_{eq}$. 0 θ_{eq} horizon size at matter-radiation equality ~ 0.81

V. Poulin - LUPM & JHU