COSINE dark matter search Resolving DAMA/LIBRA

CENTER FOR _____

RGROUND PHYSICS Institute for Basic Science

Center for Underground Physics

Light Dark World 2024 KAIST, August 13, 2024

Annual modulation signal from DAMA/LIBRA

However...

World-wide efforts on Nal(TI)

COSINE collaboration

COSINE-100 experiment (2016~2023)

- YangYang underground laboratory
 October/2016 ~ March/2023
- Decommissioning
 - Move to Yemilab
 - Upgrade of detector for high light yield

Background understanding

Rule out DAMA/LIBRA by COSINE-100

Model-dependent comparison

Model independent annual modulation searches could not resolve DAMA/LIBRA yet

- 1.7 years data analysis Phys. Rev. Lett. 123, 031302 (2019)
- 3 years data analysis Phys. Rev. D 106, 052005 (2022)

Full 6.4 years data are available

Dark matter search with spectral shape fit

Hyun Su Lee,

Boosted dark matter

Bosonic superWIMP, solar dark bosonic particles..

3 years data for the modulation search

Background components

Time-dependent background models

Time-dependent background models

Caveat : Understanding of time-dependent background is crucial for the annual modulation analysis

COSINE-100 is **an unique experiment** achieving precise background understanding of Nal(TI) crystals

COSINE-100 full dataset

Importance : Apple-to-apple comparison with DAMA/LIBRA

Comparison with DAMA : Energy calibration

Comparison with DAMA : Energy calibration

Comparison with DAMA : Energy calibration

Nuclear-recoil energy calibration (keV_{nr})

Quenching factor (QF)

Measured electron-equivalent energy/True nuclear recoil energy

Signal region : 6.7-20 keV_{nr} DAMA/LIBRA : 2-6 keV_{ee} COSINE-100 : 0.85-3.12 keV_{ee}

Modulation fit

22

Modulation fit

2023

Sn113

Cd109

Na22

Crystal 7

COSINE-100 full dataset fits

Simulated experiments (25,000) assuming DAMA/LIBRA modulation signals

COSINE-100 full dataset disfavors DAMA/LIBRA in both electron recoil and nuclear recoil

COSINE-100 full dataset fits

Phase floated 2-dimensional fit for COSINE-100 full dataset

COSINE-100 full dataset disfavors DAMA/LIBRA in both electron recoil and nuclear recoil

COSINE-100 full dataset fits

COSINE-100 full dataset disfavors DAMA/LIBRA in both electron recoil and nuclear recoil

Model-dependent searches

World best limit from COSINE-100

- Na (Z = 11) and I (Z = 53)
 - Good for spin-dependent WIMPproton interactions
 - ♦ Si (Z = 14), Ge (Z = 32), Ar (Z = 18), Xe(Z = 54)
 - Good for low-mass (sodium)
- Reduced threshold?
 - Current threshold : 8 NPE (0.7 keV)
 - COSINE-100 goal : 5 NPE (0.5 keV)
 - □Waveform simulation
 - Improving machine learning
 - Employ deep learning

WIMP-proton spin-dependent interaction

NPE = number of photoelectrons

Moving forward to COSINE-100Ugrade

Upgrade detector assembly for high light yield

Crystal machine

8.26 kg

→ 7.19 kg

Deliver to glove box

COSINE crystal-1

Above ground measurement

Hyun Su Lee,

Cover design

NIMA 981 (2020) 164556 arXiv:2404.03691

nstitute for Basic Science (IBS)

COSINE-100U : Detector upgrade

• Light yield @ 59.54 keV

Hyun Su Lee, Center for Underground Physics (CUP),

energy [keV]

COSINE-100U : Detector upgrade

COSINE-100U : Yemilab installation

Freeze room for -30°C operation

Astropart. Phys. 141, 102709 (2022)

Liquid scintillator veto Lead shield

Crystal installation

COSINE-100U schedule

	2024-(1-3)		2	.024-(4-6) 2024-(07-08)		2024-09			2024-10	2024-11	
Crystals				Assembling &	Installation		Ţ				
Liquid Scintillator		PMT LS Pro	- Install oduction			Pouring LS	S T				
Lead Shield	Bottom		Side					Тор		Physics	operation!!
Electronics				Serve	er, HVS, Mo	nitoring					
Muon detector				holder			ŀ	PS install			

- All crystals were encapsulated already
- We plan to start COSINE-100U in September/2024

Sensitivity of COSINE-100U

WIMP-Proton spin-dependent interaction

COSINE-200 crystal development

Machining

Hyun Su Lee,

Powder purification performance K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)

K.A. Shin et al., JINST 15, C07031 (2020)

K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	<0.01	<0.01
Purified Nal	<16	0.4	<0.01	<0.01

We produced ~ 400 kg low-background NaI powder

(Maximum production rate ~ 100 kg/month)

Large crystal growing is going on 35

Summary

 COSINE-100 ruled out DAMA/LIBRA with significance above 3 sigma in model-independent analysis

 COSINE-100 searched various dark matter candidates in wide energy ranges

 COSINE-100U will have world competitive sensitivities for low-mass dark matter searches

Backup

Ongoing works : Event selection update

• Multivariable machine learning training

Ongoing works : Waveform simulation

Single photoelectron tuning

- Waveform simulation is developed to describe lowenergy events (sub-keV)
- Simulation describe the data reasonably well
- Currently, the waveform simulation cross checked the trigger/selection efficiencies
- The waveform simulation will be used as signal sample of the multivariable analysis

Meantime Parameter

COSINE-100U @ Yemilab

Astropart. Phys. 141, 102709 (2022)

- 5% gamma light yield increase
- 10% alpha quenching increase
 Will measure nuclear recoil quenching
- Pulse shape discrimination is significantly improved

Warehouse freezer at Yemilab

Shielding base for muon detector

To start COSINE-100U at Yemilab September/2024

COSINE-100 Upgrade : New encapsulation

Center for Underground Physics

Hyun Su Lee,