Gauged Quintessence	Decay Signal of X	

Non-gravitational signals of dark energy under a gauge symmetry

Jaeok Yi

Department of Physics, KAIST

August 13, 2024

based on JCAP 02 (2023) 005 [arXiv:2208.09229] JCAP 09 (2023) 017 [arXiv:2306.01291] JCAP 03 (2024) 048 [arXiv:2312.09717] with Kunio Kaneta, Hye-Sung Lee, and Jiheon Lee

Gauged Quintessence	Decay Signal of X 0000000	

Overview

1 Introduction

- 2 Gauged Quintessence
- 3 Production of Dark Gauge Boson
- 4 Decay Signal of Dark Gauge Boson
- 5 Summary

Introduction	Gauged Quintessence	Decay Signal of X	
0000			

I. Introduction

Introduction ○●○○	Gauged Quintessence	Decay Signal of X 0000000	

Dark Matter Research

Introduction 0000	Gauged Quintessence	Decay Signal of X 0000000	

Implication of Dark Energy

Introduction 0000	Gauged Quintessence		Decay Signal of X 0000000	
In This Ta	lk			
Dark E	nergy	Dark Matter		
Quintes	sence Da	rk Gauge Boson		
ϕ	$ \longleftrightarrow $	$oldsymbol{X}^{\mu}$		

Gauged Quintessence

Gauged Quintessence	Decay Signal of X	
000000		

II. Gauged Quintessence

Gauged Quintessence ○●○○○○○	Decay Signal of X	

Quintessence

Dynamic dark energy model proposed by Ratra and Peebles.

[Bharat Ratra and P. J. E. Peebles PRD37(1988)3406]

• A scalar ϕ rolls down a potential slowly in the present universe.

• Equation of state assuming slow roll condition $\frac{1}{2}\dot{\phi}^2 \ll V(\phi)$

$$w = \frac{p}{\rho} = \frac{\frac{1}{2}\dot{\phi}^2 - V(\phi)}{\frac{1}{2}\dot{\phi}^2 + V(\phi)} \approx -1$$

8/30

Gauged Quintessence	Decay Signal of X 0000000	

Tracking Behavior

The initial value of \u03c6 does not really matter. Only the potential determines the the present time value of and its equation of state (addressing the cosmological coincidence problem).

[Steinhardt, Wang, Zlatev PRL82(1999)896]

Gauged Quintessence	Decay Signal of X	
000000		

Gauged Quintessence

The gauged quintessence model includes complex scalar $\Phi = \phi e^{i\eta}/\sqrt{2}$ and $U(1)_{dark}$ gauge boson \mathbb{X}_{μ} . Φ is charged under the $U(1)_{dark}$ gauge symmetry and ϕ behaves as dark energy.

[KK, HL, JL, and JY JCAP02(2023)005]

• Under the unitary gauge, $\eta = 0$ and $X_{\mu} = X_{\mu} + \frac{1}{g_{X}} \partial_{\mu} \eta$, the Lagrangian of gauged quintessence model is given by

$$\mathcal{L} \supset \sqrt{-g} \Big[-rac{1}{2} (\partial_\mu \phi) (\partial^\mu \phi) - rac{1}{4} X_{\mu
u} X^{\mu
u} - V_0(\phi) - rac{1}{2} (g_X \phi)^2 X_\mu X^\mu \Big]$$

where g_X is the dark gauge coupling constant.

Gauged Quintessence	Decay Signal of X 0000000	

Potential

Gauged Quintessence	Decay Signal of X 0000000	

Potential

Gauged Quintessence	Decay Signal of X	

Mass-varying Effect

• The masses of ϕ and X are given as

$$m_{\phi}^2 = \frac{\partial^2 V_{\text{eff}}}{\partial \phi^2}, \quad m_X^2 = \frac{g_X^2 \phi^2}{g_X^2}$$

Dynamic ϕ makes m_X vary over time.

• When the tracking and rolling of quintessence begin, m_X increases.

Gauged Quintessence	Decay Signal of X 0000000	

Mass-varying Effect

- If n_X is large, then ϕ can be trapped in the potential minimum.
- When ϕ is trapped in the potential minimum, m_X depends on n_X .

Gauged Quintessence	Production of X •0000000	Decay Signal of X	

III. Production of Dark Gauge Boson

Gauged Quintessence	Production of <i>X</i> ○●○○○○○○	Decay Signal of X	

Kinetic Mixing

To connect SM sector and dark sector, introduce the kinetic mixing.

$$\mathcal{L} \supset -rac{arepsilon}{2} F^{\mu
u} X_{\mu
u}$$

- Photon in the thermal bath obtains the effective mass m_{γ} .
- The diagonalization of mass terms of γ and X leads the effective kinetic mixing $\overline{\varepsilon}$ given as

$$|\overline{\varepsilon}|^2 = \varepsilon^2 rac{m_X^4}{(m_X^2 - m_\gamma^2)^2 + (\omega D)^2}.$$

where ωD is the imaginary part of the effective photon mass.

[Javier Redondo JCAP07(2008)008]

• Note that $\overline{\varepsilon}$ resonantly increases when $m_{\gamma} = m_X$.

Gauged Quintessence	Production of X 00●00000	Decay Signal of X 0000000	

Production of X

 Assuming m_X is small initially, X can be produced from the thermal bath via Compton-like scattering.

[Javier Redondo and Marieke Postma JCAP02(2009)005]

• The production of X dominantly occurs when the resonant condition $m_{\chi} = m_{\gamma}$ is satisfied.

Gauged Quintessence	Production of X	Decay Signal of X	
	0000000		

U(1) Model with Fixed Mass

17 / 30

Gauged Quintessence	Production of X	Decay Signal of X 0000000	

U(1) Model with Fixed Mass

Resonance occurs at a single moment.

17 / 30

Gauged Quintessence	Production of X	Decay Signal of X 0000000	

Trapped Scenario

ϕ can be trapped at the minimum

Gauged Quintessence	Production of X	Decay Signal of X 0000000	

Trapped Scenario

18 / 30

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Gauged Quintessence 0000000	Production of X	Decay Signal of X 0000000	

Trapped Scenario

Gauged Quintessence	Production of X 00000●00	Decay Signal of X 0000000	

Extended Resonance

- Decreasing m_X can follow the behavior of m_{γ} .
- Resonance period is extended to a time interval.

[KK, HL, JL, and **JY** JCAP03(2024)048]

Production of X

Extended Resonance Produce More X

 $Y_X = \frac{n_X}{s} \qquad \begin{pmatrix} n_X : \text{ number density of dark gauge boson} \\ s : \text{ entropy density of the photon thermal bath} \end{pmatrix}$

Gauged Quintessence	Production of <i>X</i> 0000000●	Decay Signal of X 0000000	

Produced Y_X

米 医下 米 医下

A 10

Gauged Quintessence	Decay Signal of X ●000000	

IV. Decay Signal of Dark Gauge Boson

(□) (圖) (필) (필) (이) 22/30

If $m_X < 2m_e$, only $X \to \gamma\gamma\gamma$ channel is available.

- If $m_X > 2m_e$, both channels are available but $X \to e^+e^-$ channel highly dominates $X \to \gamma\gamma\gamma$.
- For the fixed mass case, only one of the channels is effective.
- Either $\gamma\gamma\gamma$ signal or e^+e^- signal can be detected.

Both Signals Are Available in Gauged Quintessence

- After production, m_X increases over time.
- Early universe when $m_X < 2m_e$, $\gamma\gamma\gamma$ signal is produced.
- As time goes by m_X can become larger than $2m_e$, and then e^+e^- signal is produced.

Gauged Quintessence	Decay Signal of <i>X</i> 000●000	

Produced Signals

 $\rho_{\gamma\gamma\gamma}^0/\rho_{\rm crit}$

 $\rho_{e^+e^-}^0/\rho_{\rm crit}$

Both $\gamma\gamma\gamma$ signal and e^+e^- signal are sizable.

[KK, HL, JL, and JY JCAP03(2024)048]

▶ < ∃ >

ъ

Gauged Quintessence	Decay Signal of <i>X</i> 0000●00	

Constraints

26 / 30

Gauged Quintessence	Decay Signal of X	

Characteristics of $\gamma\gamma\gamma$ Signals

- $\Gamma_{X \to \gamma \gamma \gamma}$ highly depends on m_X ($\propto m_X^9$).
- When the mass becomes larger, the decay rate increases, resulting in more energetic signals and the appearance of a steeper spectrum.

Characteristics of e^+e^- Signals

- Due to the kinematic threshold $m_X = 2m_e$, the decay occurs much later than the case of usual U(1) model.
- Right after the threshold $m_X = 2m_e$ is overcame, $\Gamma_{X \to e^+e^-} \gg H$ is achieved.
- Then the decay extinguishes X and produce e^+e^- pair extremely quickly.
- The resulting e^+e^- -pair is highly non-relativistic.

Gauged Quintessence	Decay Signal of X 0000000	Summary ●0

V. Summary

<□▶ <圕▶ < ె>▶ < 王▷ < 王▷ 된 = 의 Q (~ 29 / 30

Gauged Quintessence	Decay Signal of X 0000000	Summary ○●

Summary

- Gauged Quintessence model is a U(1) charged quintessence model.
- Gauged Quintessence can affect the dark sector signal.
- The production of dark gauge boson can be enhanced due to the extended resonance.
- Unlike the typical U(1) model, both $\gamma\gamma\gamma$ signal and e^+e^- signal can be detected.
- $\gamma\gamma\gamma$ signal and e^+e^- signal have characteristic features.

Thank you for listening

Back-up Slides

Back-up Slides 000

Two Behaviors of m_X

Back-up Slides 000

Two Behaviors of m_X

Back-up Slides 000

Two Behaviors of m_X

Extended Resonance

