International Forum 2024

BDF/SHiP @CERN: Search for Hidden Particles at a dedicated Beam Dump Facility

Annika Hollnagel on behalf of the SHiP Collaboration

annika.hollnagel@uni-mainz.de Johannes Gutenberg-Universität Mainz, ETAP

2024-08-14

Light Dark World

International Forum 2024

Introduction: (Un)Charted Territory

2024-08-14

Exploring the Hidden Sector

Hidden Sector (HS): HNL / ALPs / dark photons / dark scalars / ...

Mediators (Portals) to Visible Sector: Fermion / axial / vector / Higgs / ...

JGU

Introduction • BDF/SHiP • Physics Reach • Outlook Heavy Neutral Leptons & vMSM

JGU

Neutrino Minimal Standard Model (vMSM): Type I See-Saw

extension of the SM by 3 right-handed (Majorana) Heavy Neutral Leptons (HNL)

Light N₁: Mass O (10keV)

- Dark Matter candidate
- To be studied by X-ray telescopes in space

Heavy N₂, N₃: Mass O (1GeV)

- Origin of neutrino masses
- Leptogenesis & baryon asymmetry of the Universe
- Accessible at colliders (m > 3GeV, energy frontier) or beam dump facilities (m < 3GeV, intensity frontier)

[CERN-SPSC-2015-017, Physics Letters B 631 (2005) 151–156, M. Shaposhnikov Neutrino2024]

4 30

Introduction • BDF/SHiP • Physics Reach • Outlook Heavy Neutral Leptons & vMSM

Neutrino Minimal Standard Model (vMSM): Type I See-Saw

extension of the SM by 3 right-handed (Majorana) Heavy Neutral Leptons (HNL)

Light N₁: Mass O (10keV)

- Dark Matter candidate
- To be studied by X-ray telescopes in space

Heavy N₂, N₃: Mass O (1GeV)

- Origin of neutrino masses
- Leptogenesis & baryon asymmetry of the Universe
- Accessible at colliders (m > 3GeV, energy frontier) or beam dump facilities (m < 3GeV, intensity frontier)

[CERN-SPSC-2015-017, Physics Letters B 631 (2005) 151–156, M. Shaposhnikov Neutrino2024]

JGU

Light Dark World

International Forum 2024

BDF/SHiP@CERN

2024-08-14

Baseline intensity: $4.0 \times 10^{13} \text{ p/spill} \rightarrow 4.0 \times 10^{19} \text{ p.o.t./yr}$ $\rightarrow 6.0 \times 10^{20} \text{ p.o.t.}$ after 15 years

1111111

Introduction • BDF/SHIP • Physics Reach • Outlook BDF/SHiP: Search for Hidden Particles

Search for Hidden Particles (SHiP) at a dedicated Beam Dump Facility (BDF):

SND

- High-Intensity (HI) upgrade of **CERN SPS 400GeV proton facility**
- General-purpose beam dump facility
- Dedicated beam to ECN3

Search for Feebly-Interacting Particles with the Hidden Sector Decay Spectrometer (HSDS):

- Decays of **Heavy Neutral Leptons** (**HNL**), dark photons, dark scalars, **Axion-Like Particles** (**ALP**s)...
- Comprehensive search at the MeV-GeV scale over many orders of magnitude in coupling

Rich program at the Scattering & Neutrino Detector (SND):

- Search for Light Dark Matter (LDM) via scattering of nuclear & electron recoils
- ν_τ physics, ν interactions,
 ν-induced charm production...

• Original Proposal (2013): Developed for new cavern EHN4

Refined Proposal (2023): Adaptation to existing ECN3 facility

[CERN-SPSC-2013-024, CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

Baseline intensity: $4.0 \times 10^{13} \, p/\text{spill} \rightarrow 4.0 \times 10^{19} \, \text{p.o.t./yr}$ $\rightarrow 6.0 \times 10^{20} \, \text{p.o.t.}$ after 15 years

90m

JGU

HS Detector

International Forum 2024

2024-08-14

Introduction • BDF/SHiP • Physics Reach • Outlook SPS Beam Delivery to ECN3

New dedicated operational scenario (T4 bypass):

000000000

beam transported through TT20 and TCC2 and delivered exclusively onto experimental target

10 | 30 JOHANNES GUTENBERG

Light Dark World

International Forum 2024

BDF/SHiP: Facility & Detector Technology

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-PBC-Notes-2021-005, CERN-PBC-REPORT-2023-003, CERN-SPSC-2023-033 / SPSC-P-369]

1111111111

- High-density proton target: 12λ
 Ti-Zr-Mo (TZM) + W blocks, clad by Ta
- Optimised for heavy meson production
- Shielding: Cast iron & concrete, water-cooled & vacuum-confined
- 5m-long magnetised hadron stoppper

Introduction • BDF/SHiP • Physics Reach • Outlook BDF/SHiP: Facility & Detector Technology (Superconducting) Magnetic Muon Shield

[CERN-SHiP-NOTE-2016-005, 2017 JINST-12-P05011, CERN-SPSC-2019-049 / SPSC-SR-263, EPJC-80(2020)3-284, CERN-SPSC-2023-033 / SPSC-P-369]

00000000

- Alternate-polarity scheme: Split of positive & negative μ to left & right of decay volume
- **ECN3 optimisation (hybrid SC / NC):** 5.1T Shortened, preserving experiment sensitivity
- Initial (& fallback) design (NC): 1.7T
- Ongoing ML-assisted optimisation campaign

Introduction BDF/SHIP Physics Reach Outlook BDF/SHiP: Facility & Detector Technology

[CERN-SPSC-2019-049 / SPSC-SR-263, CERN-LHCC-2020-002, CERN-SPSC-2023-033 / SPSC-P-369, EPJC(2024)84:562, CERN-LHCC-2024-007 / LHCC-I-040]

annin 1

- Emulsion Cloud Chamber (ECC) bricks: AgBr nuclear emulsions interleaved with W
- Target Tracker (TT): 18 layers of SciFi
- *µ* **spectrometer:** Drift tubes (4 stations)
- Air core dipole magnet: 1 T
- Re-optimisation study for realtime readout using CMS TOB silicon modules (AdvSND)

Introduction BDF/SHiP Physics Reach Outlook BDF/SHiP: Facility & Detector Technology

[CERN-SPSC-2019-049 / SPSC-SR-263, ACME (2021) 21:3, CERN-STUDENTS-Note-2023-122, CERN-SPSC-2023-033 / SPSC-P-369]

manne

He at atmospheric pressure

Initial design: Evacuated vessel at < 10⁻² bar

- Lightweight structure (AI / stainless steel)
- Low material budget to
 minimise μ and ν interactions
- + **Support** for **LS-SBT** integration

ununun.

- Segmented geometry: 850 cells
- Filled with 145 000l state-of-the-art
 Liquid Scintillator (LS) made from LAB + PPO
- Instrumented with 1 500 Wavelength-Shifting Optical Modules (WOMs)
- Read out by circular arrays of SiPMs

, annun

- **Cu/Au-coated Mylar drift tubes (NA62 design):** 4m length, 2cm diameter, 36µm wall thickness, Ar:CO₂ mixture (70:30)
- Low material budget
- 2x 2 stations of 4 double layers at 10° stereo angle,10 000 channels altogether
- Magnet (NC baseline): 0.65Tm / 0.15T
 SC options being studied (MgB₂)

Introduction BDF/SHiP Physics Reach Outlook BDF/SHiP: Facility & Detector Technology

HS Detector: Timing Detector (TD) Suppression of µ combinatorial BG High time resolution: < 100ps [CERN-SPSC-2019-049 / SPSC-SR-263, CERN-SPSC-2023-033 / SPSC-P-369]

- EJ200 plastic scintillator bars: 135cm x 6cm x 1cm
- Readout at both ends by SiPM arrays
- 3 columns of 111 vertically staggered bars (5mm overlap),
 666 channels altogether
- Timestamp for SST

8m

4m

unanna a

• **ToF identification** of particle decay products

- Electromagnetic sampling calorimeter (ECal): 40 layers of thin Fe absorbers (1/20 λ each) & plastic scintillators
- Compact hadron sampling calorimeter (HCal):
 5 layers of thick Fe absorbers (1λ each) & plastic scintillators
- Total length: 7λ (> 99.5% π interaction probability)
- 1 3 MicroMeGaS high-precision layers
- Possible 1m-air gap for **additional** μ stations

JGU

International Forum 2024

SHiP Physics Reach: Hidden Sector Decay Spectrometer

2024-08-14

Signal vs Background

Fully / partially* reconstructed signal events:

Physics model	Final state
HNL	$\ell^+\ell'^-\nu$, $\pi\ell$, $\rho\ell$, $\pi^0\nu$, $q\bar{q}'\ell$
ALPs (fermion coupling)	ℓ+ℓ- , 3π , ηππ , qq
ALPs (gluon coupling)	ππγ , 3π , ηππ , γγ
ALPs (photon coupling)	YY
Dark photon	$\ell^+\ell^-$, 2 π , 3 π , 4 π , KK , $qar q$, $Dar D$
Dark scalar	ℓℓ , ππ , KK , qq̄ , DD̄ , GG
SUSY neutralino	$\ell^{\pm}\pi^{\mp}$, $\ell^{\pm}K^{\mp}$, $\ell^{\pm}\rho^{\mp}$, $\ell^{+}\ell^{-}v$
SUSY sgoldstino	ℓγ, ℓ+ℓ ⁻ , 2π, 2K
Axino	ℓ+ℓ-v

*) Wider distribution of impact parameters

Tracker > Decay vertex of charged particles
Calorimeter > Neutral particles & invariant mass
pID > Model distinction

[CERN-SPSC-2023-033 / SPSC-P-369]

1111110

BG sources & rejection: Wall μ combinatorial n bear μ -shield decay vesse spectrometer μ DIS μ -shield decay vessel Wall v DIS p bear u-shield decay vessel > μ Shield **UBT & SBT** > > Timing detector

Remaining expected BG (6x 10²⁰ p.o.t.):

BG source	Expected BG events to						
	partially rec. events	fully rec. events					
μ combinatorial	(1.3 ± 2.	1)x 10 ⁻⁴					
μDIS	< 0.2	5x 10 ⁻³					
v DIS (vacuum)	< 0.3	< 0.1					
v DIS (helium)	~ 1.0	~ 0.6					

HSDS Physics Reach: ALPs

Sensitivity to Axion-Like Particles (ALPs):

90% CL, assuming 6x 10²⁰ p.o.t.

manne

- SensCalc computation & FairSHiP simulation
- **Production processes:** *B* meson decays, pseudoscalar mixing, Primakoff scattering

[, CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

 g_v (BC10): Exclusive fermion coupling

HSDS Physics Reach: HNL

Sensitivity to Heavy Neutral Leptons (HNL):

90% CL, assuming 6x 10²⁰ p.o.t.

- SensCalc computation & FairSHiP simulation
- **Production processes:** *D* & *B* mesons decays

[JHEP04(2019)077, CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

munner

Introduction • BDF/SHiP • Physics Reach • Outlook HSDS Physics Reach

HNL & Lepton Number Violation (LNV):

11111111111

distinguish between Majorana- and Dirac-type HNL in significant fraction of parameter space

[JHEP04(2020)005, CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

Sensitivity to dark scalars: θ^2 (BC4)

90% CL, assuming 6x 10²⁰ p.o.t., Higgs portal

24 30 JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Light Dark World

International Forum 2024

SHiP Physics Reach: Scattering & Neutrino Detector

2024-08-14

SND Physics Reach

Direct Search for Light Dark Matter (LDM):

90% CL, assuming 6x 10²⁰ p.o.t.

• **Expected BG:** *v* elastic & QE scattering

manna

	V_e	$\overline{\nu_e}$	v_{μ}	$\overline{\nu_{\mu}}$	Total
elastic (<i>e</i>)	156	81	192	126	555
QE	-	27	-	-	27
RES	-	-	-	-	-
DIS	-	-	-	-	-
Total	156	108	192	126	582

[CERN-SPSC-2022-032 / SPSC-I-258, CERN-SPSC-2023-033 / SPSC-P-369]

Neutrino physics performance: *assuming 6x 10²⁰ p.o.t.*

 $ussumming ox 10 \quad p.o.t.$

• Expected CC DIS interactions:

	<e> [GeV]</e>	CC DIS interactions	CC DIS charm production
N V _e	63	2.8x 10 ⁶	1.7x 10 ⁵
Ν ν _μ	40	8.0x 10 ⁶	3.5x 10⁵
N v_{τ}	54	8.8x 10 ⁴	
N $\overline{v_e}$	49	5.9x 10 ⁵	0.3x 10 ⁵
N $\overline{\nu_{\mu}}$	33	1.8x 10 ⁶	0.7x 10 ⁵
N $\overline{\nu_{ au}}$	74	6.1x 10 ⁴	

• Expected observed v_{τ} (\overline{v}_{τ}) signal events:

Decay channel	$v_{ au}$	$\overline{ u_{ au}}$
$\tau \rightarrow e$	8 00	0
$\tau \Rightarrow \mu$	4 000	3 000
$\tau \Rightarrow h$	27 00	00
$\tau \rightarrow 3h$	11 00	00
Total	53 00	00
$\tau \rightarrow h$ $\tau \rightarrow 3h$ Total	4 000 27 00 11 00 53 00	00 00

6 30 JOHANNES GUTENBERG UNIVERSITÄT MAINZ

SND Physics Reach

High-statistics v_{τ} physics:

- v_{τ} cross section
- First direct measurement of $\overline{\nu}_{\tau}$
- v_{τ} magnetic moment

DIS structure functions:

measurement of F_4 and F_5 in $v_{\tau} / \overline{v_{\tau}}$ interactions

$$\begin{split} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \bigg((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ &\pm \left[xy (1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu} M} F_5 \bigg), \end{split}$$

negligible in v_{μ} interactions, but accessible for v_{τ} interactions (LO / NLO)

[CERN-SPSC-2015-017, CERN-SPSC-2023-033 / SPSC-P-369]

100000

Neutrino-induced charm production:

limited $v_{\mu} / \overline{v}_{\mu}$ statistics so far, no charm from v_e yet...

CKM precision measurement: $|V_{cd}|$ tagging of inclusive c / \overline{c} production in $\mu / \overline{\mu}$ DIS

• Independent of knowledge of branching fractions

27 30 JOHANNES GUTENBERG

Light Dark World

International Forum 2024

Summary & Timeline: BDF/SHiP @ECN3

State-of-the-art general-purpose intensity-frontier beam-dump facility:

a diverse programme complementary to the energy frontier

- Take *full advantage* of the 4 × 10¹⁹ p.o.t./year at 400 GeV offered by the CERN SPS
- Search for FIPs in a region of mass & coupling that is only accessible with a dedicated beam-dump configuration
- Search for new physics via *both* decay and scattering signatures
- Comprehensive neutrino physics program

Early 2023: Experiment-*agnostic* SPSC recommendation for ECN3 High-Intensity facility 🗸

Advanced beam delivery studies and refined experiment proposals

Early 2024: Experiment-*specific* SPSC recommendation & CERN Research Board decision for BDF/SHiP 🗸

- Go-ahead for ECN3 High-Intensity facility in 2024 2028 CERN Medium-Term Plan
- Immediate start of TDR & PRR phase...

			now			TDR					1st dat	а	
Accelerator schedule	2022	2023	2024	2025	202	2027	2	028	2029	2030	2031	2032	2033
LHC			Run 3			LS	3				Run 4		LS4
SPS (North Area)													
BDF / SHiP	Study		esign and p	ototyping		//// Pr	oluction	n/Const	fuction /	Installatio <mark>n</mark>		Operation	
Milestones BDF			DR studies							Ć	B		
Milestones SHiP			TDR stuc	es		<i>∭</i> ₽R	R			Ć	β		

International Forum 2024

2024-08-14