Light Dark World, 14.Aug.2024

Novel extensions of Herwig7 BSM Parton Showers

Seoul National University

NE CONTANT

Joon-Bin Lee

KAIST campus on 13.AUG.2024

← KAIST main gate

Meeting room

Duck Pond

DECHALM THE TR

KAIST campus on 13.AUG.2024

← KAIST main gate

Meeting roon

Bridge ≈ Event Generator

Lagrangian

CMS event in real World

Lagrangian

Theory

 $= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ + $i \not\equiv \partial \mu$ + $\chi_i y_{ij} \chi_j \phi$ +h.c. + $|Q_{\mu} \phi|^2 - V(\phi)$

Event Generator (e.g. Herwig7)

- dictating experiments

Experiment

Herwig7

- General-purpose event generator
 - most kinds of <u>collider experients</u>
 - pp, e⁻p, e⁻e⁺, heavy ion collisions ...
- QCD simulation
 - How to control soft & collinear physics (divergences)?
 - For processes involving separate scales $Q \gg Q_0$, higher-order corrections are enhanced by large logarithms

 $\alpha_s^n \ln^m Q/Q_0$

→ Hadron physics needs logarithmic resummation

- Angular-order shower programs
 - handle color coherence
 - QCD shower (<u>1988</u>) \rightarrow QED (<u>2006</u>) \rightarrow EW (<u>2022</u>) \rightarrow "**<u>BSM</u>**" extensions in the parton shower regime

[Lee, Masouminia, Seymour, Yang, JHEP 08 (2024) 064]

Why BSM Parton Shower?

- In high energy colliders, even W/Z bosons can be showered [Masouminia, Richardson, JHEP04(2022)112]
 - The bunch of particles inside a jet can act as a source
 - Why not BSM particles? They can be even lighter?
- Low-scale BSM searches in the LHC are trending in recent years!

- 1. necessitates signal samples in enormous BSM phase spaces
- 2. due to the high trigger threshold, these samples need interplays with balancing jets
- 3. hard to consider all higher-order corrections for new light particles

Why BSM Parton Shower?

- In high energy colliders, even W/Z bosons can be showered [Masouminia, Richardson, JHEP04(2022)112]
 - The bunch of particles inside a jet can act as a source
 - Why not BSM particles? They can be even lighter?
- Low-scale BSM searches in the LHC are trending in recent years!

- necessitates signal samples in enormous BSM phase spaces
- Hard to consider all higher-order corrections for new light particles

Showers in Herwig7

• Goal: Implement BSM showers as general as possible in Herwig7

Currently we only have restricted availability (such as some hidden valley scenarios or specific SUSY scenarios)

BSM showers in Herwig7

- Goal: Implement BSM showers as general as possible in Herwig7
- Step by step guidelines
 - 1) Calculate new splitting functions
 - master formula by Altarelli and Parisi

$$P_{0 \to 12}(z, \tilde{q}) = rac{1}{2(q_0^2 - m_0^2)} \sum_{s_0, s_1, s_2} |\mathcal{M}_{s_0, s_1, s_2}|^2$$
 [NPB 126, 2 (1977) 298-318]

* Only depends on spins, masses, and ordering variables of participating particles in the splitting

- 2) Herwig7 reads BSM model information and calculate all necessary ingredients automatically from UFO model files
- Splitting scenarios all combinations with spin-0, 1/2, 1
 - 1. Splitting out of scalar bosons: $\phi \to \phi' \phi'', f \to f' \phi, V \to V' \phi$
 - 2. Splitting out of vector bosons: $\phi \to \phi' V, f \to f' V, V \to V' V''$
 - 3. All the other combinations can be calculated by symmetries

model independent

 No needs to calculate splitting functions for each BSM model/particle individually

A cheating sheet for you

• upto $m^2(p_T^2)$ order in quasi-collinear limit(m, $p_T \rightarrow 0$)

1. Splitting out of spin-0 particles

$$P_{f \to f'\phi'}(z, \tilde{q}) = \frac{1}{2(q_0^2 - m_0^2)} \sum_{\text{pol}} |\mathcal{M}|^2 \qquad P_{\phi \to \phi'\phi''}(z, \tilde{q}) = \frac{g^2}{2Sz(1-z)\tilde{q}^2}$$

$$= \frac{g^2}{2} \Big[(\rho_+|\kappa+\tilde{\kappa}|^2 + \rho_-|\kappa-\tilde{\kappa}|^2) \left[(1-z) - m_{2,t}^2 \right] + (\rho_+ + \rho_-) [|\kappa|^2 (m_{0,t} + m_{1,t})^2 + |\tilde{\kappa}|^2 (m_{0,t} - m_{1,t})^2] + 2(\rho_+ - \rho_-) \Re(\kappa\tilde{\kappa}^*) \left[(1-2z)m_{0,t}^2 + m_{1,t}^2 \right] \Big], \qquad P_{f \to f'V}(z, \tilde{q}) = (|g_R|^2 \rho_+ + |g_L|^2 \rho_-) \left(\frac{1+z^2}{1-z} (1+m_{0,t}^2) - \frac{1+z}{1-z} m_{1,t}^2 - m_{2,t}^2 \right) \\ + |\tilde{\kappa}|^2 (m_{0,t} - m_{1,t})^2] + 2(\rho_+ - \rho_-) \Re(\kappa\tilde{\kappa}^*) \left[(1-2z)m_{0,t}^2 + (1+z)m_{1,t}^2 - zm_{2,t}^2 \right] \\ + (|g_R|^2 \rho_- + |g_L|^2 \rho_+) zm_{0,t}^2 - 2\Re(g_L g_R^*)(\rho_+ + \rho_-) m_{0,t} m_{1,t}. \\ + \frac{\rho_0}{2^2 m_0^2} \left[z(1-z) + z(1-z)m_{0,t}^2 - (1-z)m_{1,t}^2 - zm_{2,t}^2 \right] \\ + \frac{\rho_0 (1-z)^2 (m_{0,t}^2 - (1-z)(1+m_{0,t}^2) - (1-z)m_{1,t}^2 - zm_{2,t}^2) \\ + \rho_0 \frac{(1-2z)^2}{2} m_{0,t}^2 \right]. \qquad P_{\phi \to \phi'V}(z, \tilde{q}) = g^2 \left[\frac{2z}{1-z} (1+m_{0,t}^2) - \frac{2}{1-z} m_{1,t}^2 + \frac{1}{2} m_{2,t}^2 \right].$$

 $\Big] = \bar{u}(q_1) \Big[-ig(\kappa + i\tilde{\kappa}\gamma_5) \Big] u(p)$

• Matrix element of $f \rightarrow f' \phi$

 $\bar{u}(q_1)$

 $-i\mathcal{M}igg\lfloor u(p) \ u(p)$

• Spin-dependent matrix elements in terms of kinematic variables

• Spin-dependent splitting function

$$P_{f \to f'\phi}(z, \ \tilde{q}) = \frac{g^2}{2} \Big[\left(\rho_+ |\kappa + i\tilde{\kappa}|^2 + \rho_- |\kappa - i\tilde{\kappa}|^2 \right) \cdot \left[(1-z) - m_{2,t}^2 \right] + \left(\rho_+ + \rho_- \right) \left[|\kappa|^2 (m_{0,t} + m_{1,t})^2 + |\tilde{\kappa}|^2 (m_{0,t} - m_{1,t})^2 \right] + 2(\rho_+ - \rho_-) \Im(\kappa \tilde{\kappa}) \left[(1-2z)m_{0,t}^2 + m_{1,t}^2 \right] \Big],$$

• Matrix element of $q \rightarrow q \phi$

Performance test

(c)

(d)

- Important BSM phenomena: FCNC!
- **b** → **sH splitting** in general 2HDM
 - m(H) = 10 GeV
- $e^+e^- \rightarrow b\overline{b}$ as a baseline @ 1 TeV

- RS: $e^+e^- \rightarrow b\overline{b}$ (MG5) + b $\rightarrow sH$ (HW7)
- FO: $e^+e^- \rightarrow s\overline{b}H$ (MG5) + counter part (All irrelevant diagrams are removed)

* Wonderful overall agreements

(c)

Phenominology of Showered Dark Photons

• BSM parton shower can change event shapes

[Curtin, Essig, Gori, Shelton, JHEP 02 (2015) 157]

• parton shower (+ rivet analysis) time for 100K events

with Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz

hard process (MG5)	pp → jj (4-flavor scheme)			
parton shower (HW7)	QCD only	QCD+QED	QCD+QED+EW	QCD+QED+EW <u>+BSM</u>
shower time [s]	547	610	609	612
No ewk radiation due to small coupling & large mass (i.e. identical with QCD+QED shower)				

only q→qZ' splittings available (x100 larger coupling)

* note – 82 Z' bosons are generated from this run

Take home messages

- Anyone can easily utilize BSM parton showers with Herwig7.4 -- main feature of Herwig7.4 The <u>only thing you need to prepare is the UFO model</u> file and do
 - Translate a UFO into a Herwig model file:

```
ufo2herwig <UF0_directory> --enable-bsm-shower --allow-fcnc
```

Model properties written into "FRModel.model" file:
 read FRModel.model

 \rightarrow These are the only things you need to do!

- Efficient way to simulate light BSM particles in soft & collinear regime
 - will make your valuable time more valuable
 - now we can control all types of showers!
- The paper is still warm! (published on last Thursday) [Lee, Masouminia, Seymour, Yang, JHEP 08 (2024) 064] Do not miss the golden hour for k-chickens and BSM PS

Special Thanks to

MCnet

funded by Marie Curie Actions, as a part of MCnet project

Monte Carlo

net

 $(x) \, \mathrm{d}x = R \int_{x_{\mathrm{pin}}}^{x_{\mathrm{pin}}} f(x) \, \mathrm{d}x$

 $(x_{\min}) + R(F(x_{\max}) - F(x_{\min})))$

ΩZ

MARIE CURIE

Light Dark World, 14.Aug.2024

Thanks for your concentration Technical inquiry: joon.bin.lee@cern.ch

Seoul National University

HERICAL MAC

Joon-Bin Lee

$1 \rightarrow 10$ spltting function

• We can restore an interesting feature of the goldstone mode in $V \rightarrow V \varphi$ splitting

$$P_{V \to V'\phi}(z, \tilde{q}) = \frac{g_{BSM}^2}{2} \left[\frac{\rho_+ + \rho_-}{2m_1^2} \left(z(1-z) + z(1-z)m_{0,t}^2 + (1+z)m_{1,t}^2 - zm_{2,t}^2 \right) + \frac{\rho_0}{z^2 m_0^2} \left(z(1-z) + z(1-z)m_{0,t}^2 - (1-z)m_{1,t}^2 - zm_{2,t}^2 \right) \right]$$

* massless case No longitudinal polarization & mass

<u>!? The goldstone mode in the vector bosons pop up ?!</u>

Current status of hidden valley simulations

- Limited availability
 - Mostly recycling of SM QCD splitting functions (not generalized)
 - All in the massless limit (massive particles decay imediately after production from the hard process)
 - $f \rightarrow f' \varphi$ splittings recycle $f \rightarrow f' V$ splitting functions
- BSM PS
 - correct descriptions of all kinds of BSM splittings
 - can control massive particles
 - more flexible couplings
- BSM PS + Hidden Valley
 - handling of dark colors and dark hadronizations
 - [Kulkarni, Papaefstathioi, Platzer, Siódmok, Stafford, AM, Work in Progress]