ALICE@LHC A Large Ion Collider Experiment

Progress of Accelerators

- Particle Physics: energy doubling time ~ 4 years
- **Heavy Ion Physics: doubling time ~ 2 years**
 - ⇒ energy increase by factor 10⁴ in ~ 30 years
 - ⇒ starting 70'- to early 80's at Bevalac (LBNL Berkeley USA)
 - field started by a few dozen physicists from a handful of countries
 - > 2000 physicists active worldwide today

Total center-of-mass energy versus time

Possible mostly by (re-) using particle physics machines.

Field went from the periphery into a **central activity** of contemporary **Nuclear Physics** (and now gets even some HEP guys excited!)

LHC: At the Energy Frontier of both **Nuclear and High Energy Physics**

Progress of Experiments 1986: NA35 at CERN SPS 2000: STAR at BNL RHIC

STAR TPC

UA5 streamer chamber used in NA35

NA35 64 TeV

The Life of Collider Experiments

Time (years)

Paper and Committee work...

ALICE R&D

1990-2002: Strong, well organized, well funded R&D activity

- Inner Tracking System (ITS)
 - ⇒ Silicon Pixels (RD19)
 - ⇒ Silicon Drift (INFN/SDI)
 - ⇒ Silicon Strips (double sided)
 - ⇒ low mass, high density interconnects
 - ⇒ low mass support/cooling

- ⇒ gas mixtures (RD32)
- ⇒ new r/o plane structures
- ⇒ advanced digital electronics
- ⇒ low mass field cage

em calorimeter

⇒ new scint. crystals (RD18)

PID

- ⇒ Pestov Spark counters
- ⇒ Parallel Plate Chambers
- ⇒ Multigap RPC's (LAA)
- ⇒ low cost PM's
- ⇒ Csl RICH (RD26)

DAQ & Computing

- ⇒ scalable architectures with COTS
- ⇒ high perf. storage media
- ⇒ GRID computing

- ⇒ micro-channel plates
- ⇒ rad hard quartz fiber calo.
- ⇒ VLSI electronics

- R&D made effective use of long (frustrating) wait for LHC
- was vital for all experiments to meet LHC challenge!

Time of Flight Detectors

- aim: state-of-the-art TOF
 - ⇒ requirements: area > 150 m², channels ~ 150,000
 - ⇒ 2 orders of magnitude bigger any other existing TOF array !

challenge

- \Rightarrow state of the art time resolution $\sigma < 100$ ps (~ 3 cm at speed of light!)
- ⇒ at < 1/10 of the cost of existing solutions (~ 150 M\$)
- after 5 years of R&D and many dead ends
 - ⇒ eg 'Pestov Spark counters', 'Parallel Plate Chambers'
 - ⇒ new technology ('Multigap Resistive Plate Chambers')
 - \Rightarrow σ ~ 50 ps, 'cheap'
 - ⇒ very simple & robust construction/operation

found immediate wide use:

HARP, STAR, PHENIX, HADES/CBM@GSI,..

option for time-stamping at ILC/CLIC

medical application (PET scanner) under development

HI @LHC: Constraints and Solutions

- Extreme particle density : dN_{ch}/dη expected ~ 2000 4000
 x 500 compared to pp@LHC; x 30 compared to ³²S@SPS
 - ⇒ high granularity, 3D detectors
 - Silicon pixels and drift detectors, TPC with low diffusion gas mixture (Ne-CO₂)
 - ⇒ conservative & redundant tracking
 - up to ~200 space points per track
 - ⇒ large distance to vertex
 - e.g. emcal at 4.5 m (typical is 1-2 m!)
- Large dynamic range in momentum p_t:
 from very soft (0.1 GeV) to fairly hard (100 GeV)

- ⇒ very thin detector, modest field **0.5 T** (low p_t),
 - **○** ALICE: ~ 10% X_0 in r < 2.5 m (typical is 50-100% X_0) (10% X_0 ≈ 1.5 mm of Cu)
- ⇒ large lever arm + good hit resolution (large p_t)
 - B = 0.5T, tracking L ~ 3.5m, BL² ~ like CMS!

PLC 20J. Schukraft

HI @LHC: Constraints and Solutions

Both partons & hadrons matter:

fragmentation (i.e. hadrons) is part of the signal, not of the problem

- ⇒ partons (heavy quarks): secondary vertices, lepton ID
- ⇒ hadrons: use of essentially all known PID technologies
 - dE/dx, Cherenkov & transition rad., TOF, calorimeters, muon filter, topological
- Modest Luminosity and interaction rates; short runs
 10 kHZ (Pb-Pb), (< 1/10000 of pp@10³⁴) ~ 1 month/year
 - ⇒ allows slow detectors (TPC, SDD), moderate radiation hardness moderate trigger selectivity, no pipelines (mostly 'track & hold' electronics)
 - ⇒ large event size (~ 100 MB) + short runs => high throughput DAQ (> 1GB/s)
- Single dedicated heavy ion experiment
 combine capabilities of a handful of more specialized HI expts at AGS/SPS/RHIC
 18 detector technologies, several smaller 'special purpose' detectors
 - ◆ 18 detector technologies, several smaller 'special purpose' detectors (HMPID, PHOS, PMD, FMD, ZDC..)
 - central barrel + forward muon arm

Early ALICE Designs

Evian Workshop 1992

Ascot = 395 MCMS = 395 MALICE = 395N

> Construction: '94 1st beam: '98

Fast Forward to

000D3BBE693

September 2008:

⇒ LHC starts with a 'Big Bang'

23rd November, ~16:41 One of the very first LHC collisions pp at 900 GeV

November 2009:

November 2010:

⇒ First Pb-Pb heavy ion ru

PRL 105, 252302 (2010)

Selected for a Viewpoint in Physics
PHYSICAL REVIEW LETTERS

17 DECEMBER 2010

Elliptic Flow of Charged Particles in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

K. Aamodt et al.*

(ALICE Collaboration)

(Received 18 November 2010; published 13 December 2010)

Physics 3, 105 (2010)

DOI: 10.1103/Physics.3.105

A "Little Bang" arrives at the LHC

Edward Shuryak

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Published December 13, 2010

The first experiments to study the quark-gluon plasma at the LHC reveal that even at the hottest temperatures ever produced at a particle accelerator, this extreme state of matter remains the best example of an ideal liquid.

Heavy Ion Physics at the LHC

Hadronic Matter

 $\epsilon(\text{nucleus}) \approx 0.15 \text{ GeV/fm}^3$ $\epsilon(\text{proton}) \approx 0.3 \text{ GeV/fm}^3$ q's confined q's large effective mass $m_u, m_d \approx 1/3 m_p \approx 300 \text{ MeV}$ $m_s \approx 500 \text{ MeV}$

Phase Transition

composite hadrons 'melt'

Quark Gluon Plasma

 ε_c > 1 - 2 GeV/fm³

 $\rho_c \approx 5 - 10 \rho (nucleus)$

q's are deconfined chiral symmetry restored

 $m_u \approx m_d \approx few MeV$ $m_s \approx 150 MeV$

Matter under extreme conditions

QCD prediction:

increase energy density (T, P)

 \rightarrow

new state of matter QGP:

The 'primordial' state of matter in the early Universe (at high Temperature & energy density)

Physics is QCD:

strong interaction sector of the Standard Model

(where its very strong!)

Big Bang

Large Scale Structure
Density Fluctuations

Microwave BG
T at decoupling

Thermal Radiation (γ, ℓ⁺ℓ)
Temp. evolution ∫T dt

Temperature Fluctuations signal from the earliest phase

Colour Screening (J/Y, Y)

Characterizing the Little Bang (1)

Particle production

at RHIC (BNL)

6**00** 8**00** 1**000** 12**00** 14**00** 16**00**

- Particle Production and Energy density ε:
 - ⇒ Produced Particles:dN_{ch}/dη ~ 1600 ± 76 (syst)
 - ~ 30,000 particles in total, ~ 400 times pp!
 - somewhat on high side of expectations
 - © growth with energy faster in AA than pp (√s --- anchay, Au+Au, y=0, s = = 2500 AGE v
 - \Rightarrow Energy density ε > 3 x RHIC (fixed τ_0)

Characterizing the Little Bang (2)

Volume and Lifetime:

- ⇒ Identical particle interferometry
 - Quantum effect, leading to Bose Einstein Condensate at zero temperature
- ⇒ Volume ≈ 2 x RHIC (≈ $(2\pi)^{3/2}$ xR³ ≈ 5000 fm³)
 - observable 'comoving' volume!
- ⇒ Lifetime $\approx +30-40\%$ (> 10 fm/c ~ $3x10^{-23}$ s)

'Little Bang' lives some 10⁴⁰ less than current age of Universe..

Characterizing the Matter (1)

- RHIC discovery in 2005: The QGP is a (almost) perfect liquid
 - ⇒ **perfect liquid** → **Viscosity** $\eta \approx 0$ ('response to pressure gradients') (→ strong interactions in the liquid)
 - \Rightarrow QGP almost ideal fluid, η /S < 0.2 0.5
 - usually use Viscosity/Entropy (η/S dimensionless number)
- unexpected result
 - ⇒ QGP though to behave like a gas (weakly interacting)
 - ⇒ closest Theory prediction $\eta/S > 1/4\pi \approx 0.08$
 - AdS/CFT:

SUSY string theory in 5 dimensions!

BNL Press release, April 18, 2005:

QGP = "Perfect" Liquid

New state of matter more remarkable than predicted – raising many new questions

Does the QGP 'flow' at LHC?

- 'Elliptic Flow'
 - ⇒ Pressure gradients & the nuclear collision geometry lead to a characteristic 'sideway splash' of the produced particles
- Hydrodynamics
 - ⇒ predicts flow pattern as function of geometry (initial conditions)& fluid properties (e.g. η/S, speed of sound, EoS, ..)
- Answers anticipated from LHC
 - ⇒ is Hydro actually the correct description?
- 1) only successful at RHIC, not at any other energy tested so far
 - testable prediction: flow at LHC ~ flow at RHIC (for same fluid properties)
 - ⇒ is the matter still a fluid?
- or does it become more like a gas at higher T
 - ⇒ how perfect a fluid: precision measurement of n/€
- 3 current uncertainty from RHIC is about factor 2-5
 - is it at the quantum limit stipulated by AdŚ/CFT?

First Elliptic Flow Measurement at LHC

- Elliptic Flow as function of momentum:
 practically no change with energy!
- 1) ⇒ 1) Hydro prediction confirmed!
 - ⇒ 2) QGP still behaves like a liquid even at Temperature of LHC
 - ⇒ some small differences, to be investigated further
 - extends towards more distant collisons/higher p_t?

Towards Precision Measurements

- Precision: Why?
 - \Rightarrow current RHIC limit: $\eta/S\sim (2-5) \times 1/4\pi$
- $\eta/S < 1/4\pi =>$ conjectured limit is wrong
 - $\Rightarrow \eta/S > 1/4\pi => \text{measure } \sigma$
 - $\Rightarrow \eta/S \approx 1/4\pi => \text{ quantum corrections O}(10-30\%)!$
 - 20% in $v_2 \sim 1/4\pi \Rightarrow$ need few % precision
- Precision: How?
 - ⇒ fix initial conditions
 - irregular shapes, fluctuations captured by higher order Fourier Coefficients (v₂,v₃, ..)
 - ⇒ non flow background, theory improvements,

Precision measurements now underway, it looks like we can get there!

Characterizing the Matter (2)

- ⇒ how much energy is lost? (measures 'interaction strength' of QGP)
 - look at high momentum ('hard') part of jets
- ⇒ how is it lost?
 - many soft or few hard scatterings
 - look at low momentum ('soft') part
- ⇒ 'response of QGP'??
 - shock waves, Mach cones ??
 - look at average ('very soft') particles of the medium

'Jet Quenching' seen in single high pt particles

- Strong suppression of high momentum particles (~ jet fragments)
 - ⇒ on first sight, **seems stronger** than at RHIC
 - distinct (and very interesting) dependence on momentum

Jet Quenching seen by high p_T Correlations

- classic 'jet quenching signal'
 - ⇒ away side correlation in central Pb-Pb disappears
 - seems stronger than at RHIC
 - 2 Correlation between 'leading' and soft jet particles

Looking for Structures

Jet Quenching (?) seen via Multiparticle Correlations

Particle Production in Pb-Pb

Anti-Nuclei in Pb-Pb

LHC: Matter ≈ anti-matter

Time of flight (sensitive to m/Z-ratio):
$$m = \frac{z \cdot R}{\sqrt{\gamma^2 - 1}}$$

Charm in Pb-Pb

Even QED becomes strong at LHC

 very large em cross sections relativistic Lorentz boost amplifies electromagnetic field of nuclei

- ⇒ em dissociation ~ 200 barn
 - one or several neutrons at zero degree
 - 208-xPb 'beams' limits LHC intensity (magnet quench)

Gamma energy several 100 GeV

LHC is a very versatile collider:
 pp, AA, pA (2013?)
 γγ, γΑ, γ-Pomeron

Heavy Ions at LHC

- 1) Global characteristics & Quantitative differences @ LHC
- ⇒ significantly different state of QGP in terms of energy density, lifetime, volume
- ⇒ large rate for 'hard probes': jets, heavy quark states (b,c,Y,J/Ψ),...
- 2) Test & validate the HI 'Standard Model' (< 10 years old !)</p>
 - perfect <u>liquid</u>
- ⇒ Test prediction
- examples:

> 10 year program

where are we after few months*?

- 3) 'Precision' measurements of QGP parameters now starting
- ⇒ Quantitative and systematic study of the new state of matter
- **Equation-of-State** f(ε,p,T), **viscosity** η (flow), **transport coefficient q** (jet quenching), Debye **screening mass** (Quarkonia suppression), ...
- 4) Clarify status of some 'Beyond the HI Standard Model' ideas
- ⇒ support, but no smoking gun yet: CGC, quark coalescence, ...
- ⇒ some hints, maybe ?: Chiral magnetic effect ('strong CP violation'), Mach cones, ...
- 5) Surprises?
- ⇒ we are dealing with QCD in the strong coupling limit!
 - * Results presented here correspond to status of ~ Jan 2011, new results will be released at Quark Matter 2011 next week!

Versatility of LHC & Complementarily of Experiments make the whole of LHC larger than the sum of its parts

Common Questions

- ⇒ generation of mass
 - elementary particles => Higgs
 - composite particles => QGP
- ⇒ broken symmetries
 - SuperSymmetry: matter <=> forces
 - ChiralSymmetry: matter <=> QCD vacuum
 - CP Symmetry: matter <=> antimatter
- Different Approaches
 - ⇒ 'Concentrated Energy' => Atlas/CM => new high mass particles
 - ⇒ 'Distributed Energy' => Alice
 - => heat and melt matter
 - ⇒ 'Borrowed Energy' => LHCb
 - => indirect effects of virtual high mass particles

=> LHCb

Alice

LHCb

Atlas/CMS

Energy Frontier (Higgs, Susy, ..)

=> Atlas/CMS

=> Atlas/CMS

=> Alice

=> Alice

Conclusion

- LHC is a fantastic 'Big Bang' machine
 - ⇒ significant step beyond RHIC
 - ⇒ even for LHC standards, quality of first ion run was outstanding
 - ⇒ very powerful and complementary set of detectors (Atlas/CMS/Alice)

There is plenty of exciting physics (and fun) at the LHC

exploring QCD in a new domain, where the strong interaction is really strong!

 Looking forward to continue the journey further into the 'terra incognita' of HI at LHC

Near (and medium) Term Future

- We have barely scratched the surface, few months into a 10 year program
 - ⇒ need factor ~ 100 in integrated luminosity for rare signals
 - next year we should approach design luminosity (~20 x higher than 2010)
 - Quarkonia suppression (J/Ψ, Ψ', Y, Y',Y'), heavy Quarks (b,c), γ-jet,
 - □ running at full LHC energy
 - gain of 10-15% in energy density, larger cross section for rare probes
 - ⇒ p Nucleus comparison data
 - to distinguish **QGP** effects from **nuclear** effects ('shadowing')
 - study of Color Glass Condensate (yet another <u>exotic dense matter at 'zero temperature'</u>)
 - ⇒ running with lower mass ions (Ar-Ar ?)
 - study volume effects
 - LHC can achieve much higher luminosity with lighter ions

Plenty of work (and exciting physics) ahead!

CERN, 2 Dec 2010 J. Schukraft

Theory Tools

⇒ ideal for thermodynamics(static), EoS, T_c

Pert. QCD

cross sections, dynamical coefficients

Phenomenology

- ⇒ hydrodynamics, thermal models
- ⇒ event generators (Phytia, Hijing, ..)

Duality: AdS/CFT

- ⇒ strong coupling => reduced to class. gravity
- \Rightarrow remarkable results: $\eta/s = 1/4\pi$; $\epsilon(\lambda_{\infty})/\epsilon(\lambda_{\infty}) = 3/4$; .PHENIX

Color Glass Condensate

initial state: classsical FT in high density timit

Model re-fit T = 176 MeV

