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ALICE@LHC  ALICE@LHC  
AA LLarge IIon CCollider EExperiment

 A short History of Heavy Ions

 ALICE Experiment

 First Results from the Ion Run  
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Progress of Accelerators
 Particle Physics: energy doubling time ~ 4 years

 Heavy Ion Physics: doubling time ~ 2 years

 energy increase by factor  104 in ~ 30 years  

 starting 70’- to early 80’s at Bevalac (LBNL Berkeley USA)

 field started by a few dozen physicists from a handful of countries

 > 2000 physicists active worldwide today 
Total center-of-mass energy versus time

Possible mostly by (re-) using 

particle physics machines.

Field went from the periphery 

into a central activity of 

contemporary Nuclear Physics
(and now gets even some HEP guys excited !) 
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Progress of Experiments

UA5 streamer chamber used in NA35

1986: NA35 at CERN SPS1986: NA35 at CERN SPS 2000: STAR at BNL RHIC2000: STAR at BNL RHIC

STAR TPC



 Experiments at LHC are
 BigBig

 HeavyHeavy

 and took a looong time …and took a looong time …
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Eiffel tower

~ 7300 tons ALICE magnet

~ 8000 tons

1990 2007

ATLAS superimposed to

the 5 floors of building 40



The Life of Collider Experiments
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Time (years)

Design  R&D

Construction   Running

1 y 3 y 9 y UA1 (1977 – 1989)

3 y 2 y 5 y 12 y Delphi (1981 – 2000)
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9 y

ALICE (1990 – ??)
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Paper and Committee work..
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UA1 proposal (154 p.)
sub. Jan ’78, approved June ‘78

Alice:

EoI

LoI + 1 Add

TP + 3 Add

12 TDR’s + 3 Add

3 Vol PPR

------------------------

4422 p.

Delphi LoI, TP, 7 Addenda (500 p.)



ALICE R&D

 Inner Tracking System (ITS)

 Silicon Pixels (RD19)

 Silicon Drift (INFN/SDI)

 Silicon Strips (double sided)

 low mass, high density  interconnects

 low mass support/cooling

 TPC 

 gas mixtures (RD32)

 new r/o plane structures

 advanced digital electronics

 low mass field cage

 em calorimeter

 new scint. crystals (RD18)

 PID

 Pestov Spark counters

 Parallel Plate Chambers

 Multigap RPC's (LAA)

 low cost PM's

 CsI RICH (RD26)

 DAQ & Computing

 scalable architectures with COTS

 high perf. storage media

 GRID computing

 misc

 micro-channel plates

 rad hard quartz fiber calo.

 VLSI electronics
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1990-2002:Strong, well organized, well funded R&D activity

• R&D made effective use of long (frustrating) wait for LHC

• was vital for all experiments to meet LHC challenge !
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Time of Flight DetectorsTime of Flight Detectors
 aim: state-of-the-art TOF  
 requirements: area > 150 m2, channels ~ 150,000

 2 orders of magnitude bigger any other existing TOF array !

 challenge
 state of the art time resolution s < 100 ps (~ 3 cm at speed of light !)

 at < 1/10 of the cost of existing solutions (~ 150 M$)

 after 5 years of R&D and many dead ends
 eg 'Pestov Spark counters', 'Parallel Plate Chambers'

 new technology (‘Multigap Resistive Plate Chambers’)

 s ~ 50 ps, ‘cheap’

 very simple & robust construction/operation

found immediate wide use:

HARP, STAR,PHENIX, HADES/CBM@GSI,.. 

option for time-stamping at ILC/CLIC

medical application (PET scanner) under development

Supermodule (8 m, ~ 8000 TOF channels)



HI @LHC: Constraints and Solutions

 Extreme particle density : dNch/dh expected ~ 2000 – 4000
x 500 compared to pp@LHC;  x 30 compared to 32S@SPS

 high granularity, 3D detectors

 Silicon pixels and drift detectors, TPC with low diffusion gas mixture (Ne-CO2)

 conservative & redundant tracking

 up to ~200 space points per track

 large distance to vertex

 e.g. emcal at 4.5 m (typical is 1-2 m !) 

 Large dynamic range in momentum pt: 
from very soft (0.1 GeV) to fairly hard (100 GeV)

 very thin detector, modest field 0.5 T (low pt), 

 ALICE: ~ 10%X0 in r < 2.5 m (typical is 50-100%X0)      (10%X0 ≈ 1.5 mm of Cu)

 large lever arm + good hit resolution (large pt)

 B= 0.5T, tracking L ~ 3.5m, BL2 ~ like CMS ! 
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HI @LHC: Constraints and Solutions

 Both partons & hadrons matter:  
fragmentation (i.e. hadrons) is part of the signal, not of the problem

 partons (heavy quarks): secondary vertices, lepton ID

 hadrons: use of essentially all known PID technologies

 dE/dx, Cherenkov & transition rad., TOF, calorimeters, muon filter, topological

 Modest Luminosity and interaction rates; short runs 
10 kHZ (Pb-Pb),  (< 1/10000 of pp@1034) ~ 1 month/year 

 allows slow detectors (TPC, SDD), moderate radiation hardness

 moderate trigger selectivity, no pipelines (mostly ‘track & hold’ electronics)

 large event size (~ 100 MB) + short runs => high throughput DAQ (> 1GB/s)

 Single dedicated heavy ion experiment
combine capabilities of a handful of more specialized HI expts at AGS/SPS/RHIC

 18 detector technologies, several smaller ‘special purpose’ detectors
(HMPID, PHOS, PMD, FMD, ZDC..)

 central barrel + forward muon arm
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Early ALICE Designs
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literally drawn on a paper napkin in the CERN Cafeteria

First Design (ca 1990 )

1992 EoI (Evian)

1994 Mega-Alice

Note the approx. zero mass support structures, cables and services !

1995 Technical proposal
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Evian Workshop 1992

Summary by C. Rubbia:

Ascot = 395 M  CHF

CMS =  395 M  CHF

ALICE = 395M  FF

Construction: ‘94  

1st beam: ‘98  
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Detector:

Size: 16 x 26 meters

Weight: 10,000 tons

Collaboration:

> 1000 Members
> 100 Institutes 
> 30 countries

ALICEALICE

Technologies:18

Tracking: 7

PID: 6

Calo.: 5

Trigger, Nch:11
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TPC 
Time Projection Chamber TPC
~ 5 m length, 5.6 m diamter, 90 m3

500 x 106 3D space points
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Inner Tracking System
~ 10 m2 Si detectors, 6 layers 

Pixels, Drift, double sided Strips

Strips

Drift

Pixels
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TPC

SSD/SDD

SPD

SPD cone

SPD barrel
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PMD

Muon Chambers

~ 100 m2, > 106 channels
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Spring 2002Spring 2002 Spring 2008Spring 2008



Fast Forward to
 September 2008:
 LHC starts with a ‘Big Bang’

 November 2009:
 Start of Physics @ LHC

 November 2010:
 First Pb-Pb heavy ion run
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23rd November, ~16:41

One of the very first LHC collisions

pp at 900 GeV
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Heavy Ion Physics at the LHC

Phase Transition

composite hadrons ‘melt’

AGS, 

SPS 

RHIC, 

LHC 
Quark Gluon Plasma

ec > 1 - 2 GeV/fm3

rc 5 - 10 r(nucleus)

q’s are deconfined

chiral symmetry restored  

mu  md  few MeV

ms 150 MeV

Hadronic Matter

e(nucleus) 0.15 GeV/fm3

e(proton) 0.3 GeV/fm3

q’s confined

q’s large effective mass

mu,md  1/3 mp 300 MeV

ms 500 MeV

Matter under extreme conditionsMatter under extreme conditions

QQCCDD prediction:

increase energy density (T, P) 


new state of matter 

QQGGPP: 

The ‘primordial’ state of matter 
in the early Universe 

(at high Temperature & energy density)

Physics is QCD:

strong interaction sector of the 

Standard Model

(where its very strong !)
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Big Bang Little Bang

Expansion (Galaxies)

Hubble Flow

Expansion (Hadrons)

Particle Flow

Pion Interferometry 

Large Scale Structure

Density Fluctuations

Nucleosynthesis (H, He, Li)

Thermodynamics at t ~100 s

Particle Ratios (p, K, p, ..)

Thermodynamics at t ~3x10-23 s

Event Structures

Correlations & Fluctuations

Microwave BG

T at decoupling

Thermal Radiation (g, l+l-)

Temp. evolution T dt

Temperature Fluctuations

signal from the earliest phase

Jet Quenching

Colour Screening (J/Y, Y)

Global Characteristcs

Mass density W, Age

Global Characteristics

Energy Density, Size, Lifetime
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Characterizing the Little Bang (1)
 Particle Production and Energy density e:
 Produced Particles:dNch/dh ~ 1600 ± 76 (syst) 

 ~ 30,000 particles in total, ~ 400 times pp !  

 somewhat on high side of expectations 

 growth with energy faster in AA than pp   (√s dependent ‘nuclear amplification’)

 Energy density e > 3 x RHIC (fixed t0)

 Temperature + 30%

 lower limit, likely t0(LHC)  < t0(RHIC)

Particle production

at RHIC (BNL)

Data

Matter under extreme conditions:Matter under extreme conditions:

e > 15 GeV/fm3

~ 50 times core of a neutron star

(40 billion tons/cm3)

50 protons packed into the volume of one p !

Temperature > 4 x 1012 0K

> 200,000 times center of Sun !
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Characterizing the Little Bang (2)
 Volume and Lifetime: 
 Identical particle interferometry  

 Quantum effect, leading to Bose Einstein Condensate at zero temperature

 Volume ≈ 2 x RHIC (≈ (2p)3/2xR3 ≈ 5000 fm3)

 observable ‘comoving’ volume !

 Lifetime ≈ +30-40% (> 10 fm/c ~ 3x10-23 s)

RHIC

Volume

at decoupling

x 2

Multiplicity

Lifetime: from collision to

‘freeze-out’  (hadron decoupling)

RHIC

+ 40%

Multiplicity1/3

‘Little Bang’ lives some 1040 less than

current age of Universe..

17 Dec: arXiv:1012.4035, PLB 696:337,2011
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Characterizing the Matter (1)
 RHIC discovery in 2005: The QGP is a (almost) perfect liquid
 perfect liquid  Viscosity h  0 (‘response to pressure gradients’)

(strong interactions in the liquid)

 QGP almost ideal fluid, h/S < 0.2 - 0.5

 usually use Viscosity/Entropy (h/S dimensionless number)

 unexpected result
 QGP though to behave like a gas 
(weakly interacting)

 closest Theory prediction h/S > 1/4p≈ 0.08

 AdS/CFT: 

SUSY string theory in 5 dimensions !

BNL Press release, April 18, 2005:

QGP = "Perfect" Liquid

New state of matter more remarkable than predicted –

raising many new questions
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Does the QGP ‘flow’ at LHC ? 
 ‘Elliptic Flow’
 Pressure gradients & the nuclear collision geometry lead to a characteristic 
‘sideway splash’ of the produced particles

 Hydrodynamics
 predicts flow pattern as function of 

geometry (initial conditions)& fluid properties (e.g. h/S, speed of sound, EoS, ..)

 Answers anticipated from LHC
 is Hydro actually the correct description ?

 only successful at RHIC, not at any other energy tested so far

 testable prediction: flow at LHC ~ flow at RHIC (for same fluid properties)

 is the matter still a fluid ?

 or does it become more like a gas at higher T 

 how perfect a fluid: precision measurement of h/S

 current uncertainty from RHIC is about factor 2- 5

 is it at the quantum limit stipulated by AdS/CFT ?

11

22

33
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First Elliptic Flow Measurement at LHC

 Elliptic Flow as function of momentum:

practically no change with energy ! 
 1) Hydro prediction confirmed !

 2) QGP still behaves like a liquid even at Temperature of LHC

 some small differences, to be investigated further

 extends towards 
more distant collisons/higher pt ?

STAR at RHIC

CERN Press release, November 26, 2010:

‘confirms that the much hotter plasma 
produced at the LHC behaves as a 
very low viscosity liquid (a perfect fluid)..’
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17 Nov: arXiv:1011.3914, PRL 105, 252302 (2010)



 Precision: Why ?
 current RHIC limit: h/S~ (2-5) x 1/4p

 h/S < 1/4p => conjectured limit is wrong

 h/S > 1/4p => measure s

 h/S ≈ 1/4p => quantum corrections O(10-30%) !

 20% in v2 ~ 1/4p need few % precision

 Precision: How ?   
 fix initial conditions

 irregular shapes, fluctuations
captured by higher order 
Fourier Coefficients (v2,v3, ..)

 non flow background,  
theory improvements, ....

CERN, 2 Dec  2010 J. Schukraft28

Towards Precision Measurements

Precision measurements 
now underway, 

it looks like 
we can get there ! 

33 s
h

mkT2


AdS/CFT limit: h/Entropy = 1/4p
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 How strongly interacting is the matter ?: ‘Jet quenching’

 quarks/gluons traveling through QGP loose energy DE

 some unusual properties, e.g. DE ~ Length2

(not DE ~ L, as in normal matter !)

 how much energy is lost ? (measures ‘interaction strength’ of QGP)

 look at high momentum (‘hard’) part of jets

 how is it lost ?

 many soft or few hard scatterings 

 look at low momentum (‘soft’) part

 ‘response of QGP’  ??

 shock waves, Mach cones ??

 look at average (‘very soft’) particles of the medium

Characterizing the Matter (2)

‘Jet’ breaking the sound barrier

q

q

11

33
22

Hard

Soft
Medium
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Jets 

47 GeV

102 GeV

0-10% central

DhDf

192 GeV
168 GeV

10-20% peripheral

Dh
Df bin size: 0.1x0.1

Unlike at RHIC, the effect is readily 
and directly visible at LHC.

Quantifying energy loss now

under way

q

q

Jet = Sum of (most) particles

‘near’ side

‘away’ side

11

Atlas

Atlas: PRL.105 (2010) 252303

CMS: arXiv:1102.1957 Spatial distribution of charged tracks in TPC
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‘Jet Quenching’ seen in single high pt particles

 Strong suppression of high momentum particles ( ~ jet fragments)

 on first sight, seems stronger than at RHIC

 distinct (and very interesting) dependence on momentum

2 Dec:  arXiv:1012.1004, PLB 696 (2011) 30-39,

Expected Momentum Distribution

Observed Momentum Distribution

Suppression factor  up to ~10 

q

q

Most energetic (‘leading’) jet particle

11
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Jet Quenching seen by high pT Correlations 

 classic ‘jet quenching signal’
 away side correlation in central Pb-Pb disappears

 seems stronger than at RHIC

PT associated 2 – 6 GeV

Df

Star@RHIC

pT,trig 8-15 GeV

Df

Pb-Pb central

Df

‘away’ side

‘near’ side

pp 7 TeV

‘near’ side

q

q

Correlation between ‘leading’ and soft jet particles

‘away’ side

22
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Looking for Structures

q

q

Correlation between all particles

33q

q

Correlation between all particles

33

Similar to looking for structures in the Galaxy distribution

via 'Auto-correlations' (neighbour separation)

Look for structures in

d2Nch/dDhdDf (data)/d2Nch/dDhdDf (random)

http://upload.wikimedia.org/wikipedia/commons/b/b3/2dfdtfe.gif
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Jet Quenching (?) seen via Multiparticle Correlations

 ‘Autocorrelation’: 

PbPb

peripheral 

PbPb

central

near

away

q

q

Correlation between all particles

33q

q

Correlation between all particles

33

pp 7 TeV

Correlation 
from Jets

near

away

‘near side ridge’:

- striking effect, not fully understood

- very 'long' & flat ridge  

- smeared 'leftover' of jet ?

‘away-side structure’:

- shape changes very quickly with impact parameter

- flow fluctuations, medium response (Mach cone) ?

Recent and rapid progress in understanding these structures

(Alice/CMS => Quark Matter conference)



CERN, 2 Dec  2010 J. Schukraft35

Particle Production in Pb-Pb

K0
s pp pp

ppp pWpp 

Particle Ratios (p, K, p, ..)

Thermodynamics at t ~3x10-23 s

Nucleosynthesis (H, He, Li)

Thermodynamics at t ~100 s



 LHC: Matter ≈ anti-matter

Anti-Nuclei in Pb-Pb

Time of flight (sensitive to m/Z-ratio): 

May 24, 2011
36

105th LHCC Meeting, ALICE Collaboration

5 4He candidates

4 with TOF

3 with correct mass

TPC   dE/dx

Energy Loss Distribution

7 TeV:    p/p = 0.990±0.006(stat) ±0.014(syst)

Phys. Rev. Lett., 105: 072002, 2010.
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J/Y → m+m-

D+→ pp

Charm in Pb-Pb

‘Jet quenching’ with heavy quarks:

Energy loss depends on 

- color charge (quark/gluon)

- mass (light/heavy quarks)

‘J/Y & Y suppression’

- smoking gun for deconfinement ?

- SPS/RHIC results ambiguous

- LHC could give a decisive answer

D0→ p

Phys.Lett.B697:294-312,2011



Even QED becomes strong at LHC
 very large em cross sections 

relativistic Lorentz boost amplifies electromagnetic field of nuclei

 QED e+e- pair production: hundreds of kbarn  (>105 nuclear s)

 em dissociation ~ 200 barn

 one or several neutrons at zero degree 


208-xPb 'beams' limits LHC intensity (magnet quench)

 photonuclear reactions: tens of barns (kinematics very similar to pA)

 Gamma energy several 100 GeV

CERN, 2 Dec  2010 J. Schukraft38

LHC is a very versatile collider:

pp, AA, pA (2013?)

gg, gA, g-Pomeron

1n 2n
3n

Pb + 208Pb → Pb + 208-xPb + x n 

https://aliceinfo.cern.ch/Figure/sites/aliceinfo.cern.ch.Figure/files/Figures/coppedis/2011-May-09-fitSingleEMDResults5pNoPedC.gif


Heavy Ions at LHC
 1) Global characteristics & Quantitative differences @ LHC

 significantly different state of QGP in terms of energy density, lifetime, volume

 large rate for ‘hard probes’ :  jets, heavy quark states (b,c,U,J/Y ),…

 2) Test & validate the HI ‘Standard Model’   (< 10 years old !)

QGP = very strongly interacting (almost) perfect liquid

 Test predictions/extrapolations from RHIC to LHC

 examples: flow (‘soft’)   jet quenching (‘hard’)

 3) ‘Precision’ measurements of QGP parameters now starting

 Quantitative and systematic study of the new state of matter

 Equation-of-State f(e,p,T),  viscosity h (flow), transport coefficient q (jet quenching), Debye 

screening mass (Quarkonia suppression), … 

 4) Clarify status of some 'Beyond the HI Standard Model' ideas

 support, but no smoking gun yet: CGC, quark coalescence, ..

 some hints, maybe ?: Chiral magnetic effect ('strong CP violation'), Mach cones, ...

 5) Surprises ?

 we are dealing with QCD in the strong coupling limit !

CERN, 2 Dec  2010 J. Schukraft39

> 10 year program

where are we after few months* ?

* Results presented here correspond to status of ~ Jan 2011, 

new results will be released at Quark Matter 2011 next week !
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Energy Frontier (Higgs, Susy, ..)
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 Common Questions
 generation of mass

 elementary particles => Higgs => Atlas/CMS

 composite particles  => QGP => Alice

 broken symmetries

 SuperSymmetry: matter <=> forces => Atlas/CMS

 ChiralSymmetry: matter <=> QCD vacuum => Alice

 CP Symmetry: matter <=> antimatter => LHCb

 Different Approaches
 ‘Concentrated Energy’   => Atlas/CMS

=> new high mass particles

 ‘Distributed Energy’ => Alice

=> heat and melt matter  

 ‘Borrowed Energy’ => LHCb
=> indirect effects of virtual high mass particles

Physics at the LHC

Atlas/CMS

LHCb

Alice

Versatility of LHC & Complementarily of Experiments

make the whole of LHC larger than the sum of its parts
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Conclusion

 LHC is a fantastic ‘Big Bang’ machine
 significant step beyond RHIC

 even for LHC standards, quality of first ion run was outstanding

 very powerful and complementary set of detectors (Atlas/CMS/Alice)

 Looking forward to 
continue the journey further
into the ‘terra incognita’ 
of HI at LHC

PLC 20J. Schukraft41

Hic sunt Leones !

There is plenty of exciting physics (and fun)

at the LHC

exploring QCD in a new domain, 
where the strong interaction is really strong !
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Near (and medium) Term Future
 We have barely scratched the surface, few months into a 10 year program

 need factor ~ 100 in integrated luminosity for rare signals 

 next year we should approach design luminosity (~20 x higher than 2010)

 Quarkonia suppression (J/Y, Y’, Y, Y’,Y’), heavy Quarks (b,c), g-jet, ….

 running at full LHC energy 

 gain of 10-15% in energy density, larger cross section for rare probes

 p – Nucleus comparison data

 to distinguish QGP effects from nuclear effects (‘shadowing’)

 study of Color Glass Condensate

(yet another exotic dense matter at ‘zero temperature’)

 running with lower mass ions (Ar-Ar ?)

 study volume effects

 LHC can achieve much higher luminosity with lighter ions

Plenty of work (and exciting physics) ahead !



Theory Tools

43

Tc ~ 180 MeV

ec ~ 6 Tc
4

(e-3P) 0

Tc ~ 176 MeV

mc =41 MeV

 Lattice QCD
 ideal for thermodynamics(static), EoS, Tc

 Pert. QCD
 cross sections, dynamical coefficients

 Phenomenology
 hydrodynamics, thermal models

 event generators (Phytia, Hijing, ..)

 Duality: AdS/CFT
 4D gauge theory equivalent to SuSY YM in 5D

 strong coupling => reduced to class. gravity

 remarkable results: h/s = 1/4p; e(l)/e(l0)=3/4; ..

 Color Glass Condensate 
 initial state: classsical FT in high density limit


