W mass: a theory overview

giuseppe bozzi University and INFN, Cagliari

• EW sector uniquely determined by fixing 3 parameters (g, g', ν) in terms of 3 exp. inputs

 \Rightarrow other quantities expressed in terms of them, i.e. $m_W = v |g|/2$, $m_Z = v \sqrt{g^2 + g'^2}/2$, $\theta_W = \tan^{-1}(g'/g)$

- EW sector uniquely determined by fixing 3 parameters (g, g', ν) in terms of 3 exp. inputs
 - \Rightarrow other quantities expressed in terms of them, i.e. $m_W = v |g|/2$, $m_Z = v \sqrt{g^2 + g'^2}/2$, $\theta_W = \tan^{-1}(g'/g)$
- Usual choice: $(g, g', \nu) \leftrightarrow (\alpha, G_{\mu}, m_Z)$
 - → very precisely measured: $\frac{\Delta \alpha}{\alpha} \sim 3 \times 10^{-10}$, $\frac{\Delta G_{\mu}}{G_{\mu}} \sim 5 \times 10^{-7}$, $\frac{\Delta M_Z}{M_Z} \sim 2 \times 10^{-5}$

- EW sector uniquely determined by fixing 3 parameters (g, g', ν) in terms of 3 exp. inputs
 - \Rightarrow other quantities expressed in terms of them, i.e. $m_W = v |g|/2$, $m_Z = v \sqrt{g^2 + g'^2}/2$, $\theta_W = \tan^{-1}(g'/g)$
- Usual choice: $(g, g', \nu) \leftrightarrow (\alpha, G_{\mu}, m_Z)$
 - ⇒ very precisely measured: $\frac{\Delta \alpha}{\alpha} \sim 3 \times 10^{-10}$, $\frac{\Delta G_{\mu}}{G_{\mu}} \sim 5 \times 10^{-7}$, $\frac{\Delta M_Z}{M_Z} \sim 2 \times 10^{-5}$
- Well-known $m_W m_Z$ interdependence: matching of muon decay width within Fermi model and in the full SM

Radiative corrections:
$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{G_\mu \sqrt{2}m_Z^2}} (1 + \Delta r) \right)$$

Radiative corrections:
$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{G_\mu \sqrt{2}m_Z^2} (1 + \Delta r)} \right)$$

Tree level

+

1-loop

+ full 2-loop + partial 3- and 4-loop

 $m_W = 80.934 \text{ GeV}$

 $\Delta m_W = \mathcal{O}(0.5 \text{ GeV})$

 $\Delta m_W = \mathcal{O}(50 \text{ MeV})$

Radiative corrections:
$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{G_\mu \sqrt{2}m_Z^2} (1 + \Delta r)} \right)$$

Tree level

- Missing h.o. uncertainty:
 - $\delta m_W^{OS} = 4 \text{ MeV on-shell scheme [Freitas, Hollik, Walter, Weiglein NPB 632 (2002)]}$
 - $\delta m_W^{\overline{MS}} = 3 \text{ MeV } \overline{MS} \text{ scheme [Degrassi,Gambino,Giardino JHEP 05 (2015)]}$

Radiative corrections:
$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{G_\mu \sqrt{2}m_Z^2}(1 + \Delta r)} \right)$$

Tree level
 V_μ
 $W_\nu e_e$
 V_e
 $V_$

 $m_W = 80.934 \text{ GeV}$ $\Delta m_W = \mathcal{O}(0.5 \text{ GeV})$ $\Delta m_W = \mathcal{O}(50 \text{ MeV})$

- Missing h.o. uncertainty:
 - $\delta m_W^{OS} = 4 \text{ MeV on-shell scheme [Freitas, Hollik, Walter, Weiglein NPB 632 (2002)]}$
 - $\delta m_W^{\overline{MS}} = 3 \text{ MeV } \overline{MS} \text{ scheme [Degrassi,Gambino,Giardino JHEP 05 (2015)]}$
- Parametric uncertainty: $\delta m_W^{par} = 5$ MeV considering 1σ variation of $(\alpha, \alpha_s, G_\mu, m_Z, m_H, m_t)$

 $m_W = 80.934 \text{ GeV}$ $\Delta m_W = \mathcal{O}(0.5 \text{ GeV})$ $\Delta m_W = \mathcal{O}(50 \text{ MeV})$

- Missing h.o. uncertainty:
 - $\delta m_W^{OS} = 4 \text{ MeV on-shell scheme [Freitas, Hollik, Walter, Weiglein NPB 632 (2002)]}$
 - $\delta m_W^{\overline{MS}} = 3 \text{ MeV } \overline{MS} \text{ scheme [Degrassi,Gambino,Giardino JHEP 05 (2015)]}$
- Parametric uncertainty: $\delta m_W^{par} = 5$ MeV considering 1σ variation of $(\alpha, \alpha_s, G_\mu, m_Z, m_H, m_t)$

Radiative corrections:
$$m_W^2 = \frac{m_Z^2}{2} \left(1 + \sqrt{1 - \frac{4\pi\alpha}{G_\mu \sqrt{2}m_Z^2}(1 + \Delta r)} \right)$$

Tree level
 V_μ
 W
 V_e
 V

 $m_W = 80.934 \text{ GeV}$ $\Delta m_W = \mathcal{O}(0.5 \text{ GeV})$ $\Delta m_W = \mathcal{O}(50 \text{ MeV})$

- Missing h.o. uncertainty:
 - $\delta m_W^{OS} = 4 \text{ MeV on-shell scheme [Freitas, Hollik, Walter, Weiglein NPB 632 (2002)]}$
 - $\delta m_W^{\overline{MS}} = 3 \text{ MeV } \overline{MS} \text{ scheme [Degrassi,Gambino,Giardino JHEP 05 (2015)]}$
- Parametric uncertainty: $\delta m_W^{par} = 5$ MeV considering 1σ variation of $(\alpha, \alpha_s, G_\mu, m_Z, m_H, m_t)$ Similar relations available for all other EW observables \longrightarrow Global EW fit

$$\frac{\delta m_W}{m_W} \approx 10^{-4}$$

The electroweak fit

Dull —	Value -	- SM
run —	$\sigma_{ m val}$	ue

Quantity	Value	Standard Model	Pull
$\overline{m_t \; [{ m GeV}]}$	172.83 ± 0.59	173.13 ± 0.56	-0.5
$M_H \; [{ m GeV}]$	125.30 ± 0.13	125.30 ± 0.13	0.0
Γ_H [MeV]	$3.2^{+2.4}_{-1.7}$	4.12 ± 0.05	-0.4
$M_W \; [{ m GeV}]$	80.387 ± 0.016 Tevatron	80.360 ± 0.006	1.7
	80.376 ± 0.033 LEP2		0.5
	$80.366\pm0.017~ extbf{LHC}$		0.4
$\Gamma_W \; [\text{GeV}]$	2.046 ± 0.049	2.089 ± 0.001	-0.9
	2.195 ± 0.083		1.3
$\mathcal{B}(W \to \text{hadrons})$	0.6736 ± 0.0018	0.6751 ± 0.0001	-0.8
$g_V^{ u e}$	-0.040 ± 0.015	-0.0397 ± 0.0001	0.0
$g^{ u e}_A$	-0.507 ± 0.014	-0.5064	0.0
$Q_W(e)$	-0.0403 ± 0.0053	-0.0473 ± 0.0002	1.3
$Q_W(p)$	0.0719 ± 0.0045	0.0709 ± 0.0002	0.2
$Q_W(\mathrm{Cs})$	-72.82 ± 0.42	-73.24 ± 0.01	1.0
$Q_W(\mathrm{Tl})$	-116.4 ± 3.6	-116.90 ± 0.02	0.1
$\widehat{s}_Z^2(ext{eDIS})$	0.2299 ± 0.0043	0.23122 ± 0.00004	-0.3
$ au_{ au} ~ \mathrm{[fs]}$	290.75 ± 0.36	288.90 ± 2.24	0.8
$rac{1}{2}(g_{\mu}-2-rac{lpha}{\pi})$	$(4510.88 \pm 0.60) imes 10^{-9}$	$(4508.61 \pm 0.03) \times 10^{-9}$	3.8

(PDG 2022 before CDF II)

See J.Erler's talk

Electroweak fit

Indirect determination

 $m_W = 80.356 \pm 0.006 \text{ GeV} \text{ (Gfitter)} \text{ [Haller et al. EPJC 78 (2018)]}$

 $m_W = 80.355 \pm 0.006 \text{ GeV} (\text{HEPfit})$ [De Blas et al. PRD 106 (2022)]

See J.Erler's talk

How do we measure m_W ?

Observables

• accessible via counting experiments: cross sections and asymmetries

Observables

• accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - m_Z at LEP as pole of the Breit-Wigner resonance factor
 - m_W at hadron colliders as fitting parameter of a *template fit* procedure

Observables

• accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - m_Z at LEP as pole of the Breit-Wigner resonance factor
 - m_W at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

Observables

• accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - m_Z at LEP as pole of the Breit-Wigner resonance factor
 - m_W at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. m_W) vary in a range

Observables

• accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - m_Z at LEP as pole of the Breit-Wigner resonance factor
 - m_W at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

- 1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. m_W) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e.* <u>measured</u>) m_W

Observables

• accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - m_Z at LEP as pole of the Breit-Wigner resonance factor
 - m_W at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

- 1. generate several histograms with <u>highest available theoretical accuracy</u> and best possible detector simulation, and let the fit parameter (e.g. m_W) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e.* <u>measured</u>) m_W
- the result of the fit depends on the hypotheses used to compute the templates (PDFs, scales, non-perturbative, different prescriptions, ...)
- these hypotheses should be treated as theoretical systematic errors

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass

$$m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^\nu|)^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2$$

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass $m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^\nu|)^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2$ endpoint at $m_T = m$ (invariant mass) $m^2 = (|\vec{p}^l| + |\vec{p}^\nu|)^2 - (\vec{p}^l + \vec{p}^\nu)^2$

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass $m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^{\nu}|)^2 - (\vec{p}_T^l + \vec{p}_T^{\nu})^2$ **endpoint** at $m_T = m$ (invariant mass) $m^2 = (|\vec{p}^l| + |\vec{p}^{\nu}|)^2 - (\vec{p}^l + \vec{p}^{\nu})^2$

also expressed as $m_T = \sqrt{2 |\vec{p}_T^l| |\vec{p}_T^\nu| (1 - \cos \Delta \phi)}$

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass	lepton p_T
$m_T^2 = (\vec{p}_T^l + \vec{p}_T^\nu)^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2$	sharp Jacobian peak at $p_T^l \sim m_W^2/2$
endpoint at $m_T = m$ (invariant mass) $m^2 = (\vec{p}^l + \vec{p}^\nu)^2 - (\vec{p}^l + \vec{p}^\nu)^2$	
(P + P) (P + P)	
also expressed as	
$m_T = \sqrt{2 \vec{p}_T^l \vec{p}_T^\nu (1 - \cos \Delta \phi)}$	

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass $m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^{\nu}|)^2 - (\vec{p}_T^l + \vec{p}_T^{\nu})^2$ **endpoint** at $m_T = m$ (invariant mass) $m^2 = (|\vec{p}^l| + |\vec{p}^{\nu}|)^2 - (\vec{p}^l + \vec{p}^{\nu})^2$

also expressed as $m_T = \sqrt{2 |\vec{p}_T^l| |\vec{p}_T^\nu| (1 - \cos \Delta \phi)}$ lepton p_T sharp **Jacobian peak** at $p_T^l \sim m_W/2$

$$p_T^2 = \frac{\hat{s}}{4} \sin^2 \theta \longrightarrow \cos \theta = \sqrt{1 - \frac{4p_T^2}{\hat{s}}}$$

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass $m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^\nu|)^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2$ endpoint at $m_T = m$ (invariant mass) $m^2 = (|\vec{p}^l| + |\vec{p}^\nu|)^2 - (\vec{p}^l + \vec{p}^\nu)^2$ also expressed as $m_T = \sqrt{2 |\vec{p}_T^l| |\vec{p}_T^\nu| (1 - \cos \Delta \phi)}$ lepton p_T sharp **Jacobian peak** at $p_T^l \sim m_W/2$ $p_T^2 = \frac{\hat{s}}{4} \sin^2 \theta \longrightarrow \cos \theta = \sqrt{1 - \frac{4p_T^2}{\hat{s}}}$ $\frac{d\sigma}{dp_T^2} = \frac{d\sigma}{d\cos \theta} \frac{d\cos \theta}{dp_T^2} \approx \frac{1}{\cos \theta}$

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass $m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^\nu|)^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2$ endpoint at $m_T = m$ (invariant mass) $m^2 = (|\vec{p}^l| + |\vec{p}^\nu|)^2 - (\vec{p}^l + \vec{p}^\nu)^2$ also expressed as $m_T = \sqrt{2|\vec{p}_T^l||\vec{p}_T^\nu|(1 - \cos\Delta\phi)}$ lepton p_T sharp **Jacobian peak** at $p_T^l \sim m_W/2$ $p_T^2 = \frac{\hat{s}}{4}\sin^2\theta \longrightarrow \cos\theta = \sqrt{1 - \frac{4p_T^2}{\hat{s}}}$ $\frac{d\sigma}{dp_T^2} = \frac{d\sigma}{d\cos\theta}\frac{d\cos\theta}{dp_T^2} \approx \frac{1}{\cos\theta}$ (enhances sensitivity to m_W)

 m_W extracted from the study of the shape of m_T, p_T^l, p_T^{ν}

transverse mass $m_T^2 = (|\vec{p}_T^l| + |\vec{p}_T^\nu|)^2 - (\vec{p}_T^l + \vec{p}_T^\nu)^2$ endpoint at $m_T = m$ (invariant mass) $m^2 = (|\vec{p}^l| + |\vec{p}^\nu|)^2 - (\vec{p}^l + \vec{p}^\nu)^2$ also expressed as $m_T = \sqrt{2 |\vec{p}_T^l| |\vec{p}_T^\nu| (1 - \cos \Delta \phi)}$ lepton p_T sharp **Jacobian peak** at $p_T^l \sim m_W/2$ $p_T^2 = \frac{\hat{s}}{4} \sin^2 \theta \longrightarrow \cos \theta = \sqrt{1 - \frac{4p_T^2}{\hat{s}}}$ $\frac{d\sigma}{dp_T^2} = \frac{d\sigma}{d\cos \theta} \frac{d\cos \theta}{dp_T^2} \approx \frac{1}{\cos \theta}$ (enhances sensitivity to m_W)

very different dependence on p_T^W and, ultimately, on hadronic uncertainties

Observables and techniques for m_W

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Experimental measurements

Experimental measurements									
D	0								
$\begin{array}{c c} m_T & p \\ PDF & 11 & 1 \\ QED & 7 & \\ Boson p_T & 2 & \end{array}$	${ 5 \atop {} } { } { } { } { } { } { } { } { } $	Ę	$\begin{array}{c} \mathcal{E}_T \\ 14 \\ 9 \\ 2 \end{array}$				68% CL template fit CTEQ6.1 comparison Wgrad/Zgrad vs. Photos NP fit on Z data		
	p_T^e	Į Į	T						
p_T^Z model 0.7	2.3	0.	9 —				NP fit on Z data		
p_T^W/p_T^Z model 0.8	2.3	0.	9 —				propagation of μ_R , μ_F , μ_{res} scale variation		
Parton distributions 3.9	3.9	3.	9 —				CTEQ6.6 vs. ABMP16, CJ15, CT18, MMHT2014, NNPDF3.1		
LHCb									
Parton distribution functions Theory (excl. PDFs) total		9 1	7				average of 3 separate fits: CT18, MSHT20, NNPDF3.1		
Transverse momentum model		1	1 —				spread of Powheg+Pythia/Herwig, DYTurbo, Pythia/Herwig		
QED FSR model		7	<u> </u>				comparison of Herwig, Pythia, Photos		
W-boson charge Kinematic distribution ATLAS	p_{T}^{ℓ}	7 ⁺ m _T	p_{T}^ℓ	7- <i>m</i> T	$\begin{array}{c} \text{Coml} \\ p_{\mathrm{T}}^{\ell} \end{array}$	bined <i>m</i> T	-		
δm_W [MeV] Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7	Hessian on CT10 + quadrature with MMHT2014 and CT14		
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4	propagation of Pythia parameter uncertainty		
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	1.2 5.0	1.5 6.9	1.2 5.0	1.5 6.9	1.2 5.0	1.5 6.9	variation of m_c μ_r variation: simultaneous (independent) for u.d.s (c.b)		
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6	variation of LO PDF sets for Parton Shower		
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3	propagation of Z data uncertainty		
Total	15.9	18.1	14.8	17.2	11.6	12.9			

Perturbative theoretical uncertainties

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure
- data-driven approach: MC tuned to NCDY data (typically for single QCD scale choice) and used to prepare CCDY templates

• Comments on data-driven approach

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure
- data-driven approach: MC tuned to NCDY data (typically for single QCD scale choice) and used to prepare CCDY templates

- Comments on data-driven approach
 - MC usually (N)LL+NLO \rightarrow large reweighing w.r.t. N3LL+NNLO

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure
- data-driven approach: MC tuned to NCDY data (typically for single QCD scale choice) and used to prepare CCDY templates

- Comments on data-driven approach
 - MC usually (N)LL+NLO \rightarrow large reweighing w.r.t. N3LL+NNLO
 - tuning should be done in association to scale variation (different scales → different reweighing functions → different propagation to CCDY)

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure
- data-driven approach: MC tuned to NCDY data (typically for single QCD scale choice) and used to prepare CCDY templates

- Comments on data-driven approach
 - MC usually (N)LL+NLO \rightarrow large reweighing w.r.t. N3LL+NNLO
 - tuning should be done in association to scale variation (different scales → different reweighing functions → different propagation to CCDY)
 - underlying differences NCDY-CCDY (masses, charges, acceptances, PDFs, heavy quarks, intrinsic- k_T)

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure
- data-driven approach: MC tuned to NCDY data (typically for single QCD scale choice) and used to prepare CCDY templates

QCD scale variation

covariance matrix

prepare CCDY templates

set of equally good templates

 $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!

result in an extremely unstable procedure

data-driven approach: MC tuned to NCDY data

(typically for single QCD scale choice) and used to

Non-statistical nature of Th Sys \rightarrow not included in χ^2

including scale variations in predictions would

- Comments on data-driven approach
 - MC usually (N)LL+NLO \rightarrow large reweighing w.r.t. N3LL+NNLO
 - tuning should be done in association to scale variation (different scales → different reweighing functions → different propagation to CCDY)
 - underlying differences NCDY-CCDY (masses, charges, acceptances, PDFs, heavy quarks, intrinsic- k_T)
 - BSM physics possibly reabsorbed in tuning

14

- Comments on data-driven approach
 - MC usually (N)LL+NLO \rightarrow large reweighing w.r.t. N3LL+NNLO
 - tuning should be done in association to scale variation (different scales → different reweighing functions → different propagation to CCDY)
 - underlying differences NCDY-CCDY (masses, charges, acceptances, PDFs, heavy quarks, intrinsic- k_T)
 - BSM physics possibly reabsorbed in tuning
 - fitted value not necessarily the SM lagrangian parameter

- QCD scale variation
 - set of equally good templates
 - $\mathcal{O}(1\%)$ width $\rightarrow 10x$ larger than required!
- Non-statistical nature of Th Sys \rightarrow not included in χ^2 covariance matrix
 - including scale variations in predictions would result in an extremely unstable procedure
- data-driven approach: MC tuned to NCDY data (typically for single QCD scale choice) and used to prepare CCDY templates

Non-perturbative theoretical uncertainties

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

$$\sigma(P_1, P_2, Q) = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F) \ f_{b,h_2}(x_2, \mu_F) \ \hat{\sigma}(x_1 P_1, x_2 P_2, \mu_R, \mu_F)$$

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

$$\sigma(P_1, P_2, Q) = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F) \ f_{b,h_2}(x_2, \mu_F) \ \hat{\sigma}(x_1 P_1, x_2 P_2, \mu_R, \mu_F)$$

• PDFs fitted from experimental data \rightarrow inherit their uncertainties

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

$$\sigma(P_1, P_2, Q) = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F) \ f_{b,h_2}(x_2, \mu_F) \ \hat{\sigma}(x_1 P_1, x_2 P_2, \mu_R, \mu_F)$$

- PDFs fitted from experimental data \rightarrow inherit their uncertainties
- PDF uncertainty represented by different sets (Hessian eigenvectors language: CTEQ, MSHT, ...) or different replicas (Monte Carlo language, NNPDF)

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

$$\sigma(P_1, P_2, Q) = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F) \ f_{b,h_2}(x_2, \mu_F) \ \hat{\sigma}(x_1 P_1, x_2 P_2, \mu_R, \mu_F)$$

- PDFs fitted from experimental data \rightarrow inherit their uncertainties
- PDF uncertainty represented by different sets (Hessian eigenvectors language: CTEQ, MSHT, ...) or different replicas (Monte Carlo language, NNPDF)
- templates used to fit m_W suffer from 2 kind of PDF-related uncertainties

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

$$\sigma(P_1, P_2, Q) = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F) \ f_{b,h_2}(x_2, \mu_F) \ \hat{\sigma}(x_1 P_1, x_2 P_2, \mu_R, \mu_F)$$

- PDFs fitted from experimental data \rightarrow inherit their uncertainties
- PDF uncertainty represented by different sets (Hessian eigenvectors language: CTEQ, MSHT, ...) or different replicas (Monte Carlo language, NNPDF)
- templates used to fit m_W suffer from 2 kind of PDF-related uncertainties
 - 1. spread of predictions due to different choice of PDFs

 $PP \longrightarrow \ell^{\pm} \ell^{\mp} X$

$$\sigma(P_1, P_2, Q) = \sum_{a,b} \int_0^1 dx_1 dx_2 \ f_{a,h_1}(x_1, \mu_F) \ f_{b,h_2}(x_2, \mu_F) \ \hat{\sigma}(x_1 P_1, x_2 P_2, \mu_R, \mu_F)$$

- PDFs fitted from experimental data \rightarrow inherit their uncertainties
- PDF uncertainty represented by different sets (Hessian eigenvectors language: CTEQ, MSHT, ...) or different replicas (Monte Carlo language, NNPDF)
- templates used to fit m_W suffer from 2 kind of PDF-related uncertainties
 - 1. spread of predictions due to different choice of PDFs
 - 2. propagation of PDF errors to prediction of observables

Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

• **pseudodata** with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed</u> m_{W0}

Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

- **pseudodata** with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed</u> m_{W0}
- **templates** with a reference PDF set (CTEQ6.6): <u>high-statistics</u> (1B) and <u>different</u> m_W

Bozzi, Rojo, Vicini PRD 83 (2011) Bozzi, Citelli, Vicini PRD 91 (2015) Bozzi, Citelli, Vesterinen, Vicini EPJC 75 (2015)

- **pseudodata** with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed</u> m_{W0}
- **templates** with a reference PDF set (CTEQ6.6): <u>high-statistics</u> (1B) and <u>different</u> m_W
- same code used to generate both pseudodata and templates \rightarrow only effect probed is the PDF one

- PDF: largest uncertainty on m_W , impact on several terms
 - choice of different sets
 - choice of different eigenvectors/replica

- PDF: largest uncertainty on m_W , impact on several terms
 - choice of different sets
 - choice of different eigenvectors/replica
 - limited impact on m_T [Bozzi,Rojo,Vicini, PRD 83 (2011)], relevant on p_T^{ℓ} [Bozzi,Citelli,Vicini PRD 91 (2015)]

- PDF: largest uncertainty on m_W , impact on several terms
 - choice of different sets
 - choice of different eigenvectors/replica
 - limited impact on m_T [Bozzi,Rojo,Vicini, PRD 83 (2011)], relevant on p_T^{ℓ} [Bozzi,Citelli,Vicini PRD 91 (2015)]
 - reduction 1: anti-correlation forward/central detectors [Bozzi,Citelli,Vesterinen,Vicini EPJC 975 (2015)]

PDFs	Experiments	$\delta_{ m PDF}$
PDF4LHC(2-sets)	$2 \times \text{GPD}$	10.5
PDF4LHC(2-sets)	$2 \times \text{GPD} + \text{LHCb}$	7.7
PDF4LHC(3-sets)	$2 \times \text{GPD}$	16.9
PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$	12.7
NNPDF30	$2 \times \text{GPD}$	5.2
NNPDF30	$2 \times \text{GPD} + \text{LHCb}$	3.6
MMHT2014	$2 \times \text{GPD}$	9.2
MMHT2014	$2 \times \text{GPD} + \text{LHCb}$	4.6
CT10	$2 \times \text{GPD}$	11.6
CT10	$2 \times \text{GPD} + \text{LHCb}$	6.3

Considerable reduction of PDF uncertainty when combining measurements!

19

- PDF: largest uncertainty on m_W , impact on several terms
 - choice of different sets
 - choice of different eigenvectors/replica
 - limited impact on m_T [Bozzi,Rojo,Vicini, PRD 83 (2011)], relevant on p_T^{ℓ} [Bozzi,Citelli,Vicini PRD 91 (2015)]
 - reduction 1: anti-correlation forward/central detectors [Bozzi,Citelli,Vesterinen,Vicini EPJC 975 (2015)]
 - reduction 2: bin-to-bin correlation with respect to PDF variation [Bagnaschi, Vicini PRL 126 (2021)]

- PDF: largest uncertainty on m_W , impact on several terms
 - choice of different sets
 - choice of different eigenvectors/replica
 - limited impact on m_T [Bozzi,Rojo,Vicini, PRD 83 (2011)], relevant on p_T^{ℓ} [Bozzi,Citelli,Vicini PRD 91 (2015)]
 - reduction 1: anti-correlation forward/central detectors [Bozzi,Citelli,Vesterinen,Vicini EPJC 975 (2015)]
 - reduction 2: bin-to-bin correlation with respect to PDF variation [Bagnaschi, Vicini PRL 126 (2021)]
- Heavy quarks: 4FS vs. 5FS
 - distortion on p_T^Z at 1% level (\rightarrow 3-5 MeV shift) [Bagnaschi, Maltoni, Vicini, Zaro JHEP 07 (2018)]

- PDF: largest uncertainty on m_W , impact on several terms
 - choice of different sets
 - choice of different eigenvectors/replica
 - limited impact on m_T [Bozzi, Rojo, Vicini, PRD 83 (2011)], relevant on p_T^{ℓ} [Bozzi, Citelli, Vicini PRD 91 (2015)]
 - reduction 1: anti-correlation forward/central detectors [Bozzi,Citelli,Vesterinen,Vicini EPJC 975 (2015)]
 - reduction 2: bin-to-bin correlation with respect to PDF variation [Bagnaschi, Vicini PRL 126 (2021)]
- Heavy quarks: 4FS vs. 5FS
 - distortion on p_T^Z at 1% level (\rightarrow 3-5 MeV shift) [Bagnaschi, Maltoni, Vicini, Zaro JHEP 07 (2018)]
- Intrinsic- k_T
 - impact of flavour-dependence comparable to PDF variations
 [Bacchetta,Bozzi,Radici,Ritzmann,Signori PLB 788 (2019) + Bozzi,Signori AHEP 2526897 (2019)]

• New Observables: asymmetry around the p_T^{ℓ} jacobian peak [Rottoli, Torrielli, Vicini - EPJC 83 (2023)]

- New Observables: asymmetry around the p_T^{ℓ} jacobian peak [Rottoli, Torrielli, Vicini EPJC 83 (2023)]
- Flavour-dependent intrinsic- k_T : preliminary study with arbitrary form factors [Bacchetta et al. -PLB 788 (2019)] \rightarrow more realistic study thanks to global fit [Bacchetta et al. (MAP Collaboration - 2405.13833]

- New Observables: asymmetry around the p_T^{ℓ} jacobian peak [Rottoli, Torrielli, Vicini EPJC 83 (2023)]
- Flavour-dependent intrinsic- k_T : preliminary study with arbitrary form factors [Bacchetta et al. -PLB 788 (2019)] \rightarrow more realistic study thanks to global fit [Bacchetta et al. (MAP Collaboration - 2405.13833]
- Brand New! CMS measurement: $m_W = 80360.2 \pm 9.9 \text{ MeV}$

- New Observables: asymmetry around the p_T^{ℓ} jacobian peak [Rottoli, Torrielli, Vicini EPJC 83 (2023)]
- Flavour-dependent intrinsic- k_T : preliminary study with arbitrary form factors [Bacchetta et al. -PLB 788 (2019)] \rightarrow more realistic study thanks to global fit [Bacchetta et al. (MAP Collaboration) - 2405.13833]
- Brand New! CMS measurement: $m_W = 80360.2 \pm 9.9 \text{ MeV}$
- Dedicated effort: [https://twiki.cern.ch/twiki/bin/view/LHCPhysics/THuncertainties]

Ongoing studies on the assessment of theoretical uncertainties in the precision determination of SM parameters

The following studies are currently ongoing, the active people involved (coordinators) are indicated in each case.

Modelling of non-perturbative corrections in extraction of α_s

Main coordinators

Bacchetta, Bertone, Bozzi, Camarda

Description

Assessment of the impact of the choice of the non-perturbative model in the α_s extraction

State of the art predictions for of ptW/ptZ ratio

Main coordinators

Neumann, Rottoli, Tackmann

Description

Assessment of theoretical uncertainties in the ratio using state-of-the-art predictions for the kinematical distributions

Correlation between α_s and the gluon PDF

Main coordinators

Camarda, D'Enterria, Giuli

Description

Study of the correlation for different proton PDF sets to assess potential biases in the extraction of $\boldsymbol{\alpha}_s$

PDF profiling in M_W extraction

Main coordinators Amoroso, Cridge Description

Assessment of tolerance factor in PDF profiling, and impact on M_W uncertainties and consistency with global PDF sets

Propagation of theory uncertainties through tuning of MC generators

Main coordinators Torrielli, Vicini Description

Assessment of the residual uncertainties and impact on M_{W} extraction

Proposal of future multi-differential measurements

Main coordinators

[TBA] Description

Feasibility study for future measurements of DY transverse momentum distribution in bins of invariant mass and rapidity

- New Observables: asymmetry around the p_T^{ℓ} jacobian peak [Rottoli, Torrielli, Vicini EPJC 83 (2023)]
- Flavour-dependent intrinsic- k_T : preliminary study with arbitrary form factors [Bacchetta et al. -PLB 788 (2019)] \rightarrow more realistic study thanks to global fit [Bacchetta et al. (MAP Collaboration) - 2405.13833]
- Brand New! CMS measurement: $m_W = 80360.2 \pm 9.9 \text{ MeV}$
- Dedicated effort: [https://twiki.cern.ch/twiki/bin/view/LHCPhysics/THuncertainties]

Ongoing studies on the assessment of theoretical uncertainties in the precision determination of SM parameters

The following studies are currently ongoing, the active people involved (coordinators) are indicated in each case.

Modelling of non-perturbative corrections in extraction of α_s

Main coordinators

Bacchetta, Bertone, Bozzi, Camarda

Description

Assessment of the impact of the choice of the non-perturbative model in the α_s extraction

State of the art predictions for of ptW/ptZ ratio

Main coordinators

Neumann, Rottoli, Tackmann

Description

Assessment of theoretical uncertainties in the ratio using state-of-the-art predictions for the kinematical distributions

Correlation between α_s and the gluon PDF

Main coordinators

Camarda, D'Enterria, Giuli

Description

Study of the correlation for different proton PDF sets to assess potential biases in the extraction of $\alpha_{\!s}$

PDF profiling in M_W extraction

Main coordinators *Amoroso, Cridge* Description Assessment of tolerance factor in PDF profiling, and impact on M_W uncertainties and consistency with global PDF sets

Assessment of tolorance factor in the promiting, and impact of two and consistency with global the sol

Propagation of theory uncertainties through tuning of MC generators

Main coordinators Torrielli, Vicini Description Assessment of the residual uncertainties and impact on M_W extraction

Proposal of future multi-differential measurements

Main coordinators [TBA] Description

Feasibility study for future measurements of DY transverse momentum distribution in bins of invariant mass and rapidity

Backup

Observables and techniques for m_W

Observables and techniques for m_W

Lepton p_T : moderate detector smearing effects, high sensitivity to p_{TW} modelling
Observables and techniques for m_W

Lepton p_T : **moderate** detector smearing effects, **high** sensitivity to p_{TW} modelling Transverse mass: **important** detector smearing effects, **low** sensitivity to p_{TW} modelling

Observables and techniques for m_W

Lepton p_T : **moderate** detector smearing effects, **high** sensitivity to p_{TW} modelling Transverse mass: **important** detector smearing effects, **low** sensitivity to p_{TW} modelling

 p_{TW} modelling depends on intrinsic- k_T and all-order treatment of QCD corrections

Observables and techniques for m_W

Lepton p_T : **moderate** detector smearing effects, **high** sensitivity to p_{TW} modelling Transverse mass: **important** detector smearing effects, **low** sensitivity to p_{TW} modelling

 p_{TW} modelling depends on intrinsic- k_T and all-order treatment of QCD corrections

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

• 2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

Template fit

Given an experimental distribution:

compute corresponding theory distribution 1. at highest available accuracy (QCD N3LL, QCD NNLO, mixed QCD-EW, \ldots) for several $m_{W}^{(k)}$ values

 p_{\perp}^l [GeV]

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

Template fit

Given an experimental distribution:

- compute corresponding theory distribution 1. at highest available accuracy (QCD N3LL, QCD NNLO, mixed QCD-EW, \ldots) for several $m_W^{(k)}$ values
- compute a χ_k^2 for each $m_W^{(k)}$ in a certain fitting 2. interval

 $p_{\perp}^l~[{\rm GeV}]$

45

 p_{\perp}^l [GeV]

55

60

70

• Measurement performed in leptonic decays only (overwhelming multi-jet bkg)

70

• Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

Template fit

Given an experimental distribution:

- compute corresponding theory distribution at highest available accuracy (QCD N3LL, QCD NNLO, mixed QCD-EW, ...) for several m_W^(k) values
- 2. compute a χ_k^2 for each $m_W^{(k)}$ in a certain fitting interval
- 3. find the minimum of the χ^2 distribution \rightarrow measured m_W

1.002

100

65

70

Measurement performed in leptonic decays only (overwhelming multi-jet bkg)

70

30

25

³⁵9

40

45

 p_{\perp}^{l} [GeV]

50

Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

Template fit

Given an experimental distribution:

- compute corresponding theory distribution 1. at highest available accuracy (QCD N3LL, QCD NNLO, mixed QCD-EW, \ldots) for several $m_W^{(k)}$ values
- compute a χ_k^2 for each $m_W^{(k)}$ in a certain fitting 2. interval
- find the minimum of the χ^2 distribution 3. \rightarrow measured m_W
- the result of the fit depends on the hypotheses used to compute the templates (perturbative scales, PDFs, non-perturbative, ...)

60

55

65

70

25

30

35

40

45

 p_{\perp}^l [GeV]

50

55

65

70

60

ratio

90

100

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

Template fit

Given an experimental distribution:

- compute corresponding theory distribution ≈ at highest available accuracy (QCD N3LL, QCD NNLO, mixed QCD-EW, ...) for several m_W^(k) values
- 2. compute a χ_k^2 for each $m_W^{(k)}$ in a certain fitting interval
- 3. find the minimum of the χ^2 distribution \rightarrow measured m_W
- the result of the fit depends on the hypotheses used to compute the templates (perturbative scales, PDFs, non-perturbative, ...)
- these hypotheses should be treated as theoretical systematic errors

- Measurement performed in leptonic decays only (overwhelming multi-jet bkg)
- Reconstruction of the lepton-neutrino invariant mass is not possible

2 main observables: p_T^{ℓ} and $m_T = \sqrt{2|p_T^{\ell}||p_T^{\nu}|(1 - \cos \Delta \phi)}$

determination at 10⁻⁴ level requires control of the shape at permille level

Template fit

Given an experimental distribution:

- 1. compute corresponding theory distribution at highest available accuracy (QCD N3LL, QCD NNLO, mixed QCD-EW, ...) for several $m_W^{(k)}$ values
- 2. compute a χ_k^2 for each $m_W^{(k)}$ in a certain fitting interval
- 3. find the minimum of the χ^2 distribution \rightarrow measured m_W
- the result of the fit depends on the hypotheses used to compute the templates (perturbative scales, PDFs, non-perturbative, ...)
- these hypotheses should be treated as theoretical systematic errors

• p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T

- p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T
- PDF uncertainties (both different sets and error propagation)

- p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T
- PDF uncertainties (both different sets and error propagation)
- Heavy-quark-induced processes: collinear-log resummation, mass effects, differences between W and Z production

- p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T
- PDF uncertainties (both different sets and error propagation)
- Heavy-quark-induced processes: collinear-log resummation, mass effects, differences between W and Z production
- QED radiation and the transverse momentum of the lepton pair

- p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T
- PDF uncertainties (both different sets and error propagation)
- Heavy-quark-induced processes: collinear-log resummation, mass effects, differences between W and Z production
- QED radiation and the transverse momentum of the lepton pair
- QED DGLAP evolution of the proton PDFs

- p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T
- PDF uncertainties (both different sets and error propagation)
- Heavy-quark-induced processes: collinear-log resummation, mass effects, differences between W and Z production
- QED radiation and the transverse momentum of the lepton pair
- QED DGLAP evolution of the proton PDFs

LHCb

ATLAS	
δm_W [MeV]	
Fixed-order PDF uncertainty	8.7
AZ tune	3.4
Charm-quark mass	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	6.9
Parton shower PDF uncertainty	1.6
Angular coefficients	5.3

9		
17		
11		
10		
7	D 0	
5	PDF	11
	QED	7
	Boson p_T	$\overline{5}$
	9 17 11 10 7 5	9 17 11 10 7 DO 5 PDF 3 QED $Boson p_T$

- p_T^W -modelling: q_T -resummation / TMD factorisation, matching with fixed order results, (flavour-dependent) intrinsic- k_T
- PDF uncertainties (both different sets and error propagation)
- Heavy-quark-induced processes: collinear-log resummation, mass effects, differences between W and Z production
- QED radiation and the transverse momentum of the lepton pair
- QED DGLAP evolution of the proton PDFs

LHCb

		Parton distribution functions	9		
		Theory (excl. PDFs) total	17		
		Transverse momentum model	11		
AILAS		Angular coefficients	10		
δm_W [MeV]		QED FSR model	7	D 0	
Fixed-order PDF uncertainty	8.7	Additional electroweak corrections	5	ססס	
AZ tune	3.4			PDF	11
Charm-quark mass	1.5	CDF II		QED	$\overline{7}$
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	6.9		1.0	Roson no	
Parton shower PDF uncertainty	1.6	p_T^2 model	1.8	Doson p_T	Э
Angular coefficients	5.3	p_T^W/p_T^Z model	1.3		
		Parton distributions	3.9		
		QED radiation	2.7		

- default samples for predictions: **POWHEG + PYTHIA 8**
- **reweighing** to include higher-order effects

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{1}\,\mathrm{d}p_{2}} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^{2}\theta) + \sum_{i=0}^{7} A_{i}(p_{\mathrm{T}},y)P_{i}(\cos\theta,\phi)\right]$$

- default samples for predictions: **POWHEG + PYTHIA 8**
- **reweighing** to include higher-order effects

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right]$$

• $d\sigma/dy$: **DYNNLO** ($\mathcal{O}(\alpha_s^2)$) [comparison with Z data \rightarrow *exclusion of PDF sets*]

- default samples for predictions: **POWHEG + PYTHIA 8**
- **reweighing** to include higher-order effects

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right]$$

- $d\sigma/dy$: **DYNNLO** ($\mathcal{O}(\alpha_s^2)$) [comparison with Z data \rightarrow *exclusion of PDF sets*]
- $d\sigma/dp_T$: (AZ k_T, α_s, p_{T0}) [comparison with alt. modelling \rightarrow *reduced* $p_{T\ell}$ *fitting range*]

- default samples for predictions: **POWHEG + PYTHIA 8**
- **reweighing** to include higher-order effects

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_1\,\mathrm{d}p_2} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y} \left(\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right)^{-1}\right] \left[(1+\cos^2\theta) + \sum_{i=0}^7 A_i(p_{\mathrm{T}},y)P_i(\cos\theta,\phi)\right]$$

- $d\sigma/dy$: **DYNNLO** ($\mathcal{O}(\alpha_s^2)$) [comparison with Z data \rightarrow *exclusion of PDF sets*]
- $d\sigma/dp_T$: (AZ k_T, α_s, p_{T0}) [comparison with alt. modelling \rightarrow *reduced* $p_{T\ell}$ *fitting range*]
- A_i : **DYNNLO** ($\mathcal{O}(\alpha_s^2)$) [large deviations for $A_2 \rightarrow additional \ source \ of \ uncertainty$]

W-boson charge	W^+		W	7-	Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower μ_F with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0-14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV

W-boson charge	W^+		W^-		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0\text{-}14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on *dσ/dy* (DYNNLO): negligible (0.1% 0.3%)

ATL	_AS
-----	-----

W-boson charge	W^+		W^-		Com	oined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0-14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on $d\sigma/dy$ (DYNNLO): negligible (0.1% 0.3%)
- **AZ tune:** propagation of k_T, α_s, p_{T0} uncertainties \rightarrow (3.0, 3.4) **MeV** [*flavour blind*]

ATL	AS
-----	----

W-boson charge	W^+		W^-		Com	bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0-14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on $d\sigma/dy$ (DYNNLO): negligible (0.1% 0.3%)
- **AZ tune:** propagation of k_T , α_s , p_{T0} uncertainties \rightarrow (3.0, 3.4) **MeV** [*flavour blind*]
- Charm mass: $1.5 \pm 0.5 \text{ GeV} \rightarrow (1.2, 1.5) \text{ MeV}(m_b \text{ variation} \rightarrow \text{negligible})$

AT	LAS
----	-----

W-boson charge	W^+		W^-		Com	oined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0\text{-}14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on *dσ/dy* (DYNNLO): negligible (0.1% 0.3%)
- AZ tune: propagation of k_T, α_s, p_{T0} uncertainties \rightarrow (3.0, 3.4) MeV [*flavour blind*]
- Charm mass: $1.5 \pm 0.5 \text{ GeV} \rightarrow (1.2, 1.5) \text{ MeV}(m_b \text{ variation} \rightarrow \text{negligible})$
- **PS** μ_F : variation of $\mu_F^2 = p_{T0}^2 + p_T^2$ simultaneously for q = u, d, s, independently for $c\bar{c}, b\bar{b} \to Z, c\bar{d}, c\bar{s} \to W$
 - \rightarrow (5.0, 6.9) MeV [30 MeV if correlated btw flavours but uncorrelated W,Z prod.]

W-boson charge	W^+		<i>W</i> ⁻			bined
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0-14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on $d\sigma/dy$ (DYNNLO): negligible (0.1% 0.3%)
- AZ tune: propagation of k_T, α_s, p_{T0} uncertainties \rightarrow (3.0, 3.4) MeV [*flavour blind*]
- Charm mass: $1.5 \pm 0.5 \text{ GeV} \rightarrow (1.2, 1.5) \text{ MeV}(m_b \text{ variation} \rightarrow \text{negligible})$
- **PS** μ_F : variation of $\mu_F^2 = p_{T0}^2 + p_T^2$ simultaneously for q = u, d, s, independently for $c\bar{c}, b\bar{b} \to Z, c\bar{d}, c\bar{s} \to W$
 - \rightarrow (5.0, 6.9) MeV [30 MeV if correlated btw flavours but uncorrelated W,Z prod.]
- **PS PDF:** variation of LO sets
 - largest spread among CTEQ6L1, CT14LO, NNPDF2.3LO, MMHT2014LO \rightarrow 3.8-2.5 MeV
 - + anti-correlation between W^+ and $W^- \rightarrow (1.0, 1.6)$ MeV

AILAU						
W-boson charge	W^+		W^-		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0\text{-}14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on $d\sigma/dy$ (DYNNLO): negligible (0.1% 0.3%)
- **AZ tune:** propagation of k_T, α_s, p_{T0} uncertainties \rightarrow (3.0, 3.4) **MeV** [*flavour blind*]
- Charm mass: $1.5 \pm 0.5 \text{ GeV} \rightarrow (1.2, 1.5) \text{ MeV}(m_b \text{ variation} \rightarrow \text{negligible})$
- **PS** μ_F : variation of $\mu_F^2 = p_{T0}^2 + p_T^2$ simultaneously for q = u, d, s, independently for $c\bar{c}, b\bar{b} \to Z, c\bar{d}, c\bar{s} \to W$ \to (5.0, 6.9) **MeV** [30 MeV if correlated btw flavours but uncorrelated W,Z prod.]
- **PS PDF:** variation of LO sets
 - largest spread among CTEQ6L1, CT14LO, NNPDF2.3LO, MMHT2014LO \rightarrow 3.8-2.5 MeV
 - + anti-correlation between W^+ and $W^- \rightarrow (1.0, 1.6)$ MeV
- Angular coefficients:
 - propagation of Z-data uncertainty used to measure A_i
 - + quadrature with propagation of A_2 data-theory mismatch \rightarrow (5.8, 5.3) MeV

W-boson charge	W^+		W^-		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

- simultaneous variation of $d\sigma/dy$ and $A_i \rightarrow 12.0-14.0 \text{ MeV}$
- + anti-correlation between W^+ and $W^- \rightarrow 7.4 \text{ MeV}$
- + quadrature with MMHT2014 and CT14 → (8.0, 8.7) MeV
- Scale variation on *dσ/dy* (DYNNLO): negligible (0.1% 0.3%)
- AZ tune: propagation of k_T, α_s, p_{T0} uncertainties \rightarrow (3.0, 3.4) MeV [*flavour blind*]
- Charm mass: $1.5 \pm 0.5 \text{ GeV} \rightarrow (1.2, 1.5) \text{ MeV}(m_b \text{ variation} \rightarrow \text{negligible})$
- **PS** μ_F : variation of $\mu_F^2 = p_{T0}^2 + p_T^2$ simultaneously for q = u, d, s, independently for $c\bar{c}, b\bar{b} \to Z, c\bar{d}, c\bar{s} \to W$ \to (5.0, 6.9) **MeV** [30 MeV if correlated btw flavours but uncorrelated W,Z prod.]
- **PS PDF:** variation of LO sets
 - largest spread among CTEQ6L1, CT14LO, NNPDF2.3LO, MMHT2014LO \rightarrow 3.8-2.5 MeV
 - + anti-correlation between W^+ and $W^- \rightarrow (1.0, 1.6)$ MeV
- Angular coefficients:
 - propagation of Z-data uncertainty used to measure A_i
 - + quadrature with propagation of A_2 data-theory mismatch \rightarrow (5.8, 5.3) MeV
- **Data-driven check** (based on p_{TW}/p_{TZ}) among Pythia/POWHEG+Pythia/DYRes
 - **DYRes** include $(\mu_{res}, \mu_F, \mu_R)$ variations \rightarrow would induce $\Delta M_W \sim 60 \,\text{MeV} \rightarrow not \, considered$

W-boson charge	W^+		W^-		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	3.0	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

LHCb

LHCb

Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5

LHCb

- codes considered for predictions:
 - Pythia, Herwig, POWHEG+Pythia, POWHEG+Herwig, DYTurbo

LHCb

Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
LHCb

• codes considered for predictions:

- Pythia, Herwig, POWHEG+Pythia, POWHEG+Herwig, DYTurbo
- $d\sigma/dp_T$: tune of NP parameters to p_{TZ} data \rightarrow best description: POWHEG+Pythia
 - default samples for predictions: **POWHEG+Pythia 8**
 - spread from alternative descriptions $\rightarrow 11 \text{ MeV}$

LHCb

Theory (excl. PDFs) total17Transverse momentum model11Angular coefficients10QED FSR model7Additional electroweak corrections5	Parton distribution functions	9
Transverse momentum model11Angular coefficients10QED FSR model7Additional electroweak corrections5	Theory (excl. PDFs) total	17
Angular coefficients10QED FSR model7Additional electroweak corrections5	Transverse momentum model	11
QED FSR model7Additional electroweak corrections5	Angular coefficients	10
Additional electroweak corrections 5	QED FSR model	7
	Additional electroweak corrections	5

LHCb

codes considered for predictions:

- Pythia, Herwig, POWHEG+Pythia, POWHEG+Herwig, DYTurbo
- $d\sigma/dp_T$: tune of NP parameters to p_{TZ} data \rightarrow best description: POWHEG+Pythia
 - default samples for predictions: **POWHEG+Pythia 8**
 - spread from alternative descriptions → **11 MeV**
- A_i : **DYTurbo** ($\mathcal{O}(\alpha_s^2)$) scale variation (instead of DYNNLO, because negligible sensitivity to A_0, A_2)
 - A_3 main source of uncertainty \rightarrow **10 MeV**

LHCb

Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5

LHCb

codes considered for predictions:

- Pythia, Herwig, POWHEG+Pythia, POWHEG+Herwig, DYTurbo
- $d\sigma/dp_T$: tune of NP parameters to p_{TZ} data \rightarrow best description: POWHEG+Pythia
 - default samples for predictions: **POWHEG+Pythia 8**
 - spread from alternative descriptions → **11 MeV**
- A_i : **DYTurbo** ($\mathcal{O}(\alpha_s^2)$) scale variation (instead of DYNNLO, because negligible sensitivity to A_0, A_2)
 - A_3 main source of uncertainty \rightarrow **10 MeV**
- **PDF:** separate fits
 - NNPDF3.1 (8.3 MeV replica + 2.4 α_s variation \rightarrow 8.6 MeV)
 - CT18 (11.5 MeV Hessian + 1.4 α_s variation \rightarrow 11.6 MeV)
 - MSHT20 (6.5 MeV Hessian + 2.1 α_s variation \rightarrow 6.8 MeV)
 - assumption: fully correlated uncertainties → **arithmetic average: 9 MeV**

LHCb

Theory (excl. PDFs) total17Transverse momentum model11Angular coefficients10QED FSR model7Additional electroweak corrections5	Parton distribution functions	9
Transverse momentum model11Angular coefficients10QED FSR model7Additional electroweak corrections5	Theory (excl. PDFs) total	17
Angular coefficients10QED FSR model7Additional electroweak corrections5	Transverse momentum model	11
QED FSR model7Additional electroweak corrections5	Angular coefficients	10
Additional electroweak corrections 5	QED FSR model	7
	Additional electroweak corrections	5

m_T p_T^e \not{E}_T PDF111114QED779Boson p_T 252

• default samples for predictions: **RESBOS(1)@NNLL (CTEQ6Mnlo)**

- default samples for predictions: RESBOS(1)@NNLL (CTEQ6Mnlo)
- **Boson** p_T : **NP modelling** $e^{S_{NP}(b)}$

• BLNY parameterisation
$$S_{NP}(b) = \left[-g_1 - g_2 \log\left(\frac{\sqrt{s}}{2Q_0}\right) - g_1 g_3 \log\left(\frac{100\hat{s}}{s}\right) \right] b^2$$

- use BLNY fitted values (2003)
- weak sensitivity to $g_1, g_3 \rightarrow \text{propagate } g_2 \text{ uncertainty} \rightarrow (2,5,2) \text{ MeV for } (m_T, p_{T\ell}, p_{T\nu})$

		D 0	
	m_T	p_T^e	
PDF	11	11	14
QED	7	7	9
Boson p	$_T$ 2	5	2

- default samples for predictions: RESBOS(1)@NNLL (CTEQ6Mnlo)
- **Boson** p_T : **NP modelling** $e^{S_{NP}(b)}$

• BLNY parameterisation
$$S_{NP}(b) = \left[-g_1 - g_2 \log\left(\frac{\sqrt{s}}{2Q_0}\right) - g_1 g_3 \log\left(\frac{100\hat{s}}{s}\right) \right] b^2$$

- use BLNY fitted values (2003)
- weak sensitivity to $g_1, g_3 \rightarrow \text{propagate } g_2 \text{ uncertainty} \rightarrow (2,5,2) \text{ MeV for } (m_T, p_{T\ell}, p_{T\nu})$
- PDF: Pythia with CTEQ6.1 LO (40 error sets)
 - template fit 68% C.L. \rightarrow (11,11,14) MeV for $(m_T, p_{T\ell}, p_{T\nu})$

	[00	
PDF QED Boson p_T	m_T 11 7 2	$p^e_T \ 11 \ 7 \ 5$	$ \begin{array}{c c} $

CDF

 $m_T \mid p_T^e \mid E_T$

p_T^Z model	0.7	2.3	0.9
p_T^W/p_T^Z model	0.8	2.3	0.9
Parton distributions	3.9	3.9	3.9

• default samples for predictions: **RESBOS(1)@NNLL (CTEQ6Mnlo)**

CDF

CDF			
	m_T	p_T^e	
p_T^Z model	0.7	2.3	0.9
$p_T^W/p_T^Z { m model}$	0.8	2.3	0.9
Parton distributions	3.9	3.9	3.9

CDFII

- default samples for predictions: **RESBOS(1)@NNLL (CTEQ6Mnlo)**
- p_T^Z model : NP modelling $e^{S_{NP}(b)}$

• BLNY parameterisation
$$S_{NP}(b) = \left[-g_1 - g_2 \log\left(\frac{\sqrt{s}}{2Q_0}\right) - g_1 g_3 \log\left(\frac{100\hat{s}}{s}\right) \right] b^2$$

- use BLNY fitted values (2003) for g₁, g₃
 fit g₂ on Z data (Δg₂ = 0.007 GeV²)
- $\Delta g_3 = 0.03$ from BLNY fit equivalent to an additional $\Delta g_2 = 0.007 \,\text{GeV}^2$ in terms of ΔM_W
- propagate g_2, g_3 uncertainty $\rightarrow (0.5, 2.2, 0.5)$ MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- α_s tuning to Z data \rightarrow (1.0,3.2,1.2) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- anti-correlation between α_s and g_2 uncertainties \rightarrow (0.7,2.3,0.9) MeV for $(m_T, p_{T\ell}, p_{T\nu})$

CI	DF	

	m_T	p_T^e	$\not \!$
p_T^Z model	0.7	2.3	0.9
p_T^W/p_T^Z model	0.8	2.3	0.9
Parton distributions	3.9	3.9	3.9

CDF II

- default samples for predictions: RESBOS(1)@NNLL (CTEQ6Mnlo)
- p_T^Z model : NP modelling $e^{S_{NP}(b)}$

• BLNY parameterisation
$$S_{NP}(b) = \left[-g_1 - g_2 \log\left(\frac{\sqrt{s}}{2Q_0}\right) - g_1 g_3 \log\left(\frac{100\hat{s}}{s}\right) \right] b^2$$

- use BLNY fitted values (2003) for g_1, g_3
- fit g_2 on Z data ($\Delta g_2 = 0.007 \text{ GeV}^2$)
- $\Delta g_3 = 0.03$ from BLNY fit equivalent to an additional $\Delta g_2 = 0.007 \text{ GeV}^2$ in terms of ΔM_W
- propagate g_2, g_3 uncertainty $\rightarrow (0.5, 2.2, 0.5)$ MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- α_s tuning to Z data \rightarrow (1.0,3.2,1.2) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- anti-correlation between α_s and g_2 uncertainties \rightarrow (0.7,2.3,0.9) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- scale variation in ResBos (μ_R, μ_F): negligible (0.4 MeV shift)

	m_T	p_T^e	
p_T^Z model	0.7	2.3	0.9
$p_T^W/p_T^Z { m model}$	0.8	2.3	0.9
Parton distributions	3.9	3.9	3.9

CDF II

- default samples for predictions: RESBOS(1)@NNLL (CTEQ6Mnlo)
- p_T^Z model : NP modelling $e^{S_{NP}(b)}$

• BLNY parameterisation
$$S_{NP}(b) = \left[-g_1 - g_2 \log\left(\frac{\sqrt{s}}{2Q_0}\right) - g_1 g_3 \log\left(\frac{100\hat{s}}{s}\right) \right] b^2$$

- use BLNY fitted values (2003) for g_1, g_3
- fit g_2 on Z data ($\Delta g_2 = 0.007 \,\text{GeV}^2$)
- $\Delta g_3 = 0.03$ from BLNY fit equivalent to an additional $\Delta g_2 = 0.007 \text{ GeV}^2$ in terms of ΔM_W
- propagate g_2, g_3 uncertainty $\rightarrow (0.5, 2.2, 0.5)$ MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- α_s tuning to Z data \rightarrow (1.0,3.2,1.2) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- anti-correlation between α_s and g_2 uncertainties \rightarrow (0.7,2.3,0.9) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- scale variation in ResBos (μ_R, μ_F): negligible (0.4 MeV shift)
- p_T^W/p_T^Z model: use of DYqT
 - scale variation (1/4 < $(\mu_{res}, \mu_R, \mu_F)/m_{W,Z} < 1$) central scale $m_Z/2 \rightarrow (3.5, 10.1, 3.9)$ MeV for $(m_T, p_{T\ell}, p_{T\nu})$
 - reduction by factor 4.4 when comparing with p_T^W data \rightarrow (0.8,2.3,0.9) MeV for $(m_T, p_{T\ell}, p_{T\nu})$

CDF	m_T	p_T^e	
p_T^Z model	0.7	2.3	0.9
p_T^W/p_T^Z model	0.8	2.3	0.9
Parton distributions	3.9	3.9	3.9

CDF II

- default samples for predictions: RESBOS(1)@NNLL (CTEQ6Mnlo)
- p_T^Z model : NP modelling $e^{S_{NP}(b)}$

• BLNY parameterisation
$$S_{NP}(b) = \left[-g_1 - g_2 \log\left(\frac{\sqrt{s}}{2Q_0}\right) - g_1 g_3 \log\left(\frac{100\hat{s}}{s}\right) \right] b^2$$

- use BLNY fitted values (2003) for g_1, g_3
- fit g_2 on Z data ($\Delta g_2 = 0.007 \,\text{GeV}^2$)
- $\Delta g_3 = 0.03$ from BLNY fit equivalent to an additional $\Delta g_2 = 0.007 \text{ GeV}^2$ in terms of ΔM_W
- propagate g_2, g_3 uncertainty $\rightarrow (0.5, 2.2, 0.5)$ MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- α_s tuning to Z data \rightarrow (1.0,3.2,1.2) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- anti-correlation between α_s and g_2 uncertainties \rightarrow (0.7,2.3,0.9) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- scale variation in ResBos (μ_R, μ_F): negligible (0.4 MeV shift)
- p_T^W/p_T^Z model: use of DYqT
 - scale variation (1/4 < $(\mu_{res}, \mu_R, \mu_F)/m_{W,Z} < 1$) central scale $m_Z/2 \rightarrow (3.5, 10.1, 3.9)$ MeV for $(m_T, p_{T\ell}, p_{T\nu})$
 - reduction by factor 4.4 when comparing with p_T^W data \rightarrow (0.8,2.3,0.9) MeV for $(m_T, p_{T\ell}, p_{T\nu})$
- **PDF:** pseudodata generated with ABMP16, CJ15, CT18, MMHT2014, NNPDF3.1 (NLO & NNLO)
 - single PDF uncertainty: 25 symmetric NNPDF3.1(NNLO) eigenvectors → **3.9 MeV**
 - all other NNLO sets within uncertainty band of NNPDF3.1
 - shift between NNPDF3.1 and CTEQ6m \rightarrow (3.3,3.6,3.0) MeV for $(m_T, p_{T\ell}, p_{T\nu})$

CDF			
•=-	m_T	p_T^e	$\not\!$
p_T^Z model	0.7	2.3	0.9
$p_T^W/p_T^Z { m model}$	0.8	2.3	0.9
Parton distributions	3.9	3.9	3.9

$\tilde{T}_{g/A}(x,b_T;\mu,\zeta) = \sum_{j=q,\bar{q},g} \tilde{C}_{g/j}^T(x,b_T;\mu,\zeta) \otimes t_{j/A}(x;\mu) + \mathcal{O}(b_T\Lambda_{QCD})$

 The q_T-distribution of a generic high-mass (Q) system produced in hadronic collisions has two main regimes:

$$\tilde{T}_{g/A}(x,b_T;\mu,\zeta) = \sum_{j=q,\bar{q},g} \tilde{C}_{g/j}^T(x,b_T;\mu,\zeta) \otimes t_{j/A}(x;\mu) + \mathcal{O}(b_T\Lambda_{QCD})$$

- The q_T-distribution of a generic high-mass (Q) system produced in hadronic collisions has two main regimes:
 - for $q_T \ge Q$ collinear factorisation at fixed perturbative order is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \frac{d\hat{\sigma}}{dq_T} + \mathcal{O}\left[\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^n\right]$$

$$\tilde{T}_{g/A}(x,b_T;\mu,\zeta) = \sum_{j=q,\bar{q},g} \tilde{C}_{g/j}^T(x,b_T;\mu,\zeta) \otimes t_{j/A}(x;\mu) + \mathcal{O}(b_T\Lambda_{QCD})$$

- The q_T-distribution of a generic high-mass (Q) system produced in hadronic collisions has two main regimes:
 - for $q_T \ge Q$ collinear factorisation at fixed perturbative order is appropriate:

$$\left(\frac{d\sigma}{dq_T}\right)_{\text{f.o.}} = \int_0^1 dx_1 \int_0^1 dx_2 f_1(x_1, Q) f_2(x_2, Q) \frac{d\hat{\sigma}}{dq_T} + \mathcal{O}\left[\left(\frac{\Lambda_{\text{QCD}}}{Q}\right)^n\right]$$

• for $q_T \ll Q$ TMD factorisation or q_T -resummation are appropriate:

$$\begin{split} \tilde{T}_{g/A} \begin{pmatrix} d\sigma \\ dq_T \end{pmatrix}_{\text{res.}} \mu, \zeta^{\text{TMD}} &= \sigma_0 \sum_{Q} Q \int \tilde{\mathcal{Q}}_{g/j}^{2} (h^{\mathbf{b}_T} \cdot \mathbf{b}_T \cdot \mathbf{b}_T) \mathcal{D}_{f} (\mu, \xi), Q \mathcal{D}_{f} (\mathbf{a}_{g/j}^{2} \cdot \mathbf{b}_T) \mathcal{D}_{f} (\mathbf{a}_{g/$$

• Precise p_T^W measurement not available: rely on p_T^Z and extrapolate

- Precise p_T^W measurement not available: rely on p_T^Z and extrapolate
- p_T^Z also used to tune non-perturbative modelling

NP modelling	TMD factorisation	matching	collinear factorisation	Q'
$q_T \sim \Lambda_{ m QCD}$	$q_T \ll Q$	$q_T \sim Q$	$q_T \gg Q$	

- Precise p_T^W measurement not available: rely on p_T^Z and extrapolate
- p_T^Z also used to tune non-perturbative modelling

NP modelling	TMD factorisation	matching	collinear factorisation	q'
$q_T \sim \Lambda_{ m QCD}$	$q_T \ll Q$	$q_T \sim Q$	$q_T \gg Q$	

NP modelling of intrinsic-
$$k_T$$

 $\begin{pmatrix} \frac{d\sigma}{dq_T} \end{pmatrix}_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$
 $q_T = \sigma_0 \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} e^{-S(\mathbf{b}_T, Q)} [\mathcal{C} \otimes f_1](x_1, \mathbf{b}_T, Q) [\mathcal{C} \otimes f_2](x_2, \mathbf{b}_T, Q) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$

$$\tilde{T}_{g/A}(x,b_T;\mu,\zeta) = \sum_{j=q,\bar{q},g} \tilde{C}_{g/j}^T(x,b_T;\mu,\zeta) \otimes t_{j/A}(x;\mu) + \mathcal{O}(b_T\Lambda_{QCD})$$

$$q_T \sim \Lambda_{QCD}$$
 $q_T \ll Q$ $q_T \gg Q$ NP modellingTMD factorisation
qT-resummationmatchingcollinear factorisation q_T

NP modelling of intrinsic-
$$k_T$$

 $\begin{pmatrix} \frac{d\sigma}{dq_T} \end{pmatrix}_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$
 $q_T - \text{res.} \quad \sigma_0 \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} e^{-S(\mathbf{b}_T, Q)} \left[\mathcal{C} \otimes f_1\right](x_1, \mathbf{b}_T, Q) \left[\mathcal{C} \otimes f_2\right](x_2, \mathbf{b}_T, Q) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$

Intrinsic- k_T effects parametrised with additional Gaussian factors: $e^{-gb_T^2}$

$$\tilde{T}_{g/A}(x,b_T;\mu,\zeta) = \sum_{j=q,\bar{q},g} \tilde{C}_{g/j}^T(x,b_T;\mu,\zeta) \otimes t_{j/A}(x;\mu) + \mathcal{O}(b_T\Lambda_{QCD})$$

NP modelling of intrinsic-
$$k_T$$

 $\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$
 $q_T = \sigma_0 \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} e^{-S(\mathbf{b}_T, Q)} \left[\mathcal{C} \otimes f_1\right](x_1, \mathbf{b}_T, Q) \left[\mathcal{C} \otimes f_2\right](x_2, \mathbf{b}_T, Q) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$

Intrinsic- k_T effects parametrised with additional Gaussian factors: $e^{-gb_T^2}$ g measured on Z data and used to predict W distributions, <u>assuming universality</u>

$$\tilde{T}_{g/A}(x,b_T;\mu,\zeta) = \sum_{j=q,\bar{q},g} \tilde{C}_{g/j}^T(x,b_T;\mu,\zeta) \otimes t_{j/A}(x;\mu) + \mathcal{O}(b_T\Lambda_{QCD})$$

NP modelling of intrinsic-
$$k_T$$

 $\left(\frac{d\sigma}{dq_T}\right)_{\text{res.}} \stackrel{\text{TMD}}{=} \sigma_0 H(Q) \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} F_1(x_1, \mathbf{b}_T, Q, Q^2) F_2(x_2, \mathbf{b}_T, Q, Q^2) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$
 $q_T = \sigma_0 \int d^2 \mathbf{b}_T e^{i\mathbf{b}_T \cdot \mathbf{q}_T} e^{-S(\mathbf{b}_T, Q)} [\mathcal{C} \otimes f_1](x_1, \mathbf{b}_T, Q) [\mathcal{C} \otimes f_2](x_2, \mathbf{b}_T, Q) + \mathcal{O}\left[\left(\frac{q_T}{Q}\right)^m\right]$

Intrinsic- k_T effects parametrised with additional Gaussian factors: $e^{-gb_T^2}$

g measured on Z data and used to predict W distributions, assuming universality

$$q_T \sim \Lambda_{QCD}$$
 $q_T \ll Q$ $q_T \sim Q$ $q_T \gg Q$ NP modellingTMD factorisation
qT-resummationmatchingcollinear factorisation q_T

Flavour-dependent intrinsic-k_T

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-gb_T^2\}$

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-gb_T^2\} \qquad \longrightarrow \qquad \text{Fit to } \mathbb{Z}/\!\!/^* \text{ Tevatron data: } g \sim 0.8 \text{ GeV}^2 \\ \text{[Guzzi, Nadolsky, Wang (2014)]} \end{cases}$

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-gb_T^2\} \qquad \longrightarrow \qquad \text{Fit to } \mathbb{Z}/\!\!/^* \text{ Tevatron data: } g \sim 0.8 \text{ GeV}^2 \\ \text{[Guzzi, Nadolsky, Wang (2014)]} \end{cases}$

For each TMD: 0.4 GeV² ~
$$g \longrightarrow g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) + g_a$$

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-gb_T^2\} \qquad \longrightarrow \qquad \text{Fit to } \mathbb{Z}/\!\!/^* \text{ Tevatron data: } g \sim 0.8 \text{ GeV}^2 \\ \text{[Guzzi, Nadolsky, Wang (2014)]} \end{cases}$

For each TMD: 0.4 GeV² ~
$$g \longrightarrow g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) + g_a$$

Fit to SIDIS/DY/Z data: $g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) \in [0.17, 0.39] \text{ GeV}^2$

[Bacchetta, Delcarro, Pisano, Radici, Signori (2017)]

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-gb_T^2\} \longrightarrow \text{Fit to } \mathbb{Z}/\!\!/^* \text{ Tevatron data: } g \sim 0.8 \text{ GeV}^2$ [Guzzi, Nadolsky, Wang (2014)] For each TMD: 0.4 GeV² ~ g $\longrightarrow g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) + g_a \longrightarrow variation range for g_a$ Fit to SIDIS/DY/Z data: $g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) \in [0.17, 0.39] \text{ GeV}^2$

[Bacchetta, Delcarro, Pisano, Radici, Signori (2017)]

 $\frac{d\sigma}{dq_T} \sim \text{FT} \exp\{-gb_T^2\} \longrightarrow \text{Fit to } \mathbb{Z}/t^* \text{ Tevatron data: } g \sim 0.8 \text{ GeV}^2 \text{ [Guzzi, Nadolsky, Wang (2014)]}$ $\frac{\text{For each TMD: } 0.4 \text{ GeV}^2 \sim g \longrightarrow g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) + g_a \longrightarrow variation range for g_a \text{Fit to SIDIS/DY/Z data: } g_{evo} \ln\left(\frac{Q^2}{Q_0^2}\right) \in [0.17, 0.39] \text{ GeV}^2 \text{ [Bacchetta, Delcarro, Pisano, Radici, Signori (2017)]}$

We consider :

- **50 flavour-dependent sets** $\{g_{NP}^{u_v}, g_{NP}^{d_v}, g_{NP}^{u_s}, g_{NP}^{d_s}, g_{NP}^s\}$ with $g_{NP}^a \in [0.2, 0.6]$ GeV²
- **1 flavour-independent set** with $g_{NP}^a = 0.4 \text{ GeV}^2$

"Z-equivalent" sets

"Z-equivalent" sets

"Z-equivalent" sets

➡ pseudodata

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T , p_T^l , p_T^ν distributions for 30 different values of M_W

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T , p_T^l , p_T^ν distributions for 30 different values of M_W

➡ templates

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T, p_T^l, p_T^{ν} distributions for 30 different values of M_W

➡ templates

 perform the template fit procedure and compute the shifts induced by flavour effects

• Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) m_T, p_T^l, p_T^ν distributions

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T, p_T^l, p_T^ν distributions for 30 different values of M_W

➡ templates

 perform the template fit procedure and compute the shifts induced by flavour effects

		ΔM_{W^+}			ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$		
1	0	-1	-2	-2	3	-3		
2	0	-6	0	-2	0	-5		
3	-1	9	0	-2	4	-10		
4	0	0	-2	-2	-4	-10		
	0	4	1	-1	-3	-6		
6	1	0	2	-1	4	-4		
	2	-1	2	-1	0	-8		
8	0	2	8	1	7	8		
9	0	4	-3	-1	0	7		

	Δ	ΔM_{W^+}				ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$,	m_T	$p_{T\ell}$	$p_{T\nu}$		
1	-1	-5	7		-1	-3	8		
2	-1	-15	6		0	5	10		
3	-1	1	8		-1	-7	5		
4	-1	-15	6		0	-4	5		
5	-1	-4	6		-1	-7	5		
6	-1	-5	7		0	2	9		
7	-1	-15	6		-1	-6	5		
8	-1	0	8		0	3	10		
9	-1	-7	7		0	4	10		

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

Statistical uncertainty: 2.5 MeV

• Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) m_T, p_T^l, p_T^ν distributions

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T, p_T^l, p_T^ν distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

• <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W-(preferred by EW fit)

	Δ	ΔM_{W^+}			ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	$p_{T\ell}$	$p_{T\nu}$		
1	0	-1	-2	-2	3	-3		
2	0	-6	0	-2	0	-5		
	-1	9	0	-2	4	-10		
4	0	0	-2	-2	-4	-10		
	0	4	1	-1	-3	-6		
6	1	0	2	-1	4	-4		
	2	-1	2	-1	0	-8		
8	0	2	8	1	7	8		
9	0	4	-3	-1	0	7		

		ΔM_{W^+}				ΔM_{W^-}			
Set	$ m_T $	$p_{T\ell}$	$p_{T\nu}$		m_T	$p_{T\ell}$	$p_{T\nu}$		
1	-1	-5	7		-1	-3	8		
2	-1	-15	6		0	5	10		
3	-1	1	8		-1	-7	5		
4	-1	-15	6		0	-4	5		
5	-1	-4	6		-1	-7	5		
6	-1	-5	7		0	2	9		
7	-1	-15	6		-1	-6	5		
8	-1	0	8		0	3	10		
9	-1	-7	7		0	4	10		

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

Statistical uncertainty: 2.5 MeV

• Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) m_T, p_T^l, p_T^ν distributions

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T, p_T^l, p_T^{ν} distributions for 30 different values of M_W

➡ templates

perform the template fit procedure and compute the shifts induced by flavour effects

- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W-(preferred by EW fit)
- lepton pt: quite important shifts (envelope up to 15 MeV)

	Δ	ΔM_{W^+}			ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$		m_T	$p_{T\ell}$	$p_{T\nu}$	
1	0	-1	-2		-2	3	-3	
2	0	-6	0		-2	0	-5	
3	-1	9	0		-2	4	-10	
4	0	0	-2		-2	-4	-10	
	0	4	1		-1	-3	-6	
6	1	0	2		-1	4	-4	
7	2	-1	2		-1	0	-8	
8	0	2	8		1	7	8	
9	0	4	-3		-1	0	7	

		Δ	ΔM_{W^+}			ΔM_{W^-}			
Set		m_T	$p_{T\ell}$	$p_{T\nu}$		m_T	$p_{T\ell}$	$p_{T\nu}$	
1	Ι	-1	-5	7		-1	-3	8	
2		-1	-15	6		0	5	10	
3		-1	1	8		-1	-7	5	
4		-1	-15	6		0	-4	5	
5		-1	-4	6		-1	-7	5	
6		-1	-5	7		0	2	9	
7		-1	-15	6		-1	-6	5	
8		-1	0	8		0	3	10	
9		-1	-7	7		0	4	10	

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s	
1	0.34	0.26	0.46	0.59	0.32	
2	0.34	0.46	0.56	0.32	0.51	
3	0.55	0.34	0.33	0.55	0.30	
4	0.53	0.49	0.37	0.22	0.52	
5	0.42	0.38	0.29	0.57	0.27	
6	0.40	0.52	0.46	0.54	0.21	
7	0.22	0.21	0.40	0.46	0.49	
8	0.53	0.31	0.59	0.54	0.33	
9	0.46	0.46	0.58	0.40	0.28	

Statistical uncertainty: 2.5 MeV

• Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) m_T, p_T^l, p_T^{ν} distributions

➡ pseudodata

• Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T , p_T^l , p_T^ν distributions for 30 different values of M_W

➡ templates

- perform the template fit procedure and compute the shifts induced by flavour effects
- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W-(preferred by EW fit)
- lepton pt: quite important shifts (envelope up to 15 MeV)
- •<u>neutrino pt</u>: same order of magnitude (or bigger) as lepton pt

		Δ	ΔM_{W^+}			ΔM_{W^-}			
)	Set	m_T	$p_{T\ell}$	$p_{T\nu}$	m_T	r	$p_{T\ell}$	$p_{T\nu}$	
	1	0	-1	-2	-2		3	-3	
	2	0	-6	0	-2		0	-5	
	3	-1	9	0	-2		4	-10	
	4	0	0	-2	-2		-4	-10	
	5	0	4	1	-1		-3	-6	
	6	1	0	2	-1		4	-4	
	7	2	-1	2	-1		0	-8	
	8	0	2	8	1		7	8	
	9	0	4	-3	-1		0	7	

		ΔM_{W^+}				ΔM_{W^-}			
Set	m_T	$p_{T\ell}$	$p_{T\nu}$		m_T	$p_{T\ell}$	$p_{T\nu}$		
1	-1	-5	7		-1	-3	8		
2	-1	-15	6		0	5	10		
3	-1	1	8		-1	-7	5		
4	-1	-15	6		0	-4	5		
5	-1	-4	6		-1	-7	5		
6	-1	-5	7		0	2	9		
7	-1	-15	6		-1	-6	5		
8	-1	0	8		0	3	10		
9	-1	-7	7		0	4	10		

TABLE I: ATLAS 7 TeV

TABLE II: LHCb 13 TeV

Set	u_v	d_v	u_s	d_s	s
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27
6	0.40	0.52	0.46	0.54	0.21
7	0.22	0.21	0.40	0.46	0.49
8	0.53	0.31	0.59	0.54	0.33
9	0.46	0.46	0.58	0.40	0.28

Statistical uncertainty: 2.5 MeV

