Precision electroweak physics with nuclei

Saori Pastore Washington University in St Louis

Accelerator Neutrinos' Experiments

DUNE - Fermilab

Nuclei for Neutrino Oscillations' Experiments

$$
P(v_{\mu} \rightarrow v_e) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{2E_v}\right)
$$

Nuclei are the active material in the detectors

moreover the energy of the incident neutrino is reconstructed from the observed final states

Alvarez-Ruso arXiv:1012.3871

Beta decay spectrum

⁶He Beta decay spectrum for BSM searches with NCSL, He6-CRES, LPC-Caen

Strategy

Validate the Nuclear Model against available data for strong and electroweak observables

- Energy Spectra, Electromagnetic Form Factors, Electromagnetic Moments, ...
- Electromagnetic and Beta decay rates, ...
- Muon Capture Rates, ...
- Electron-Nucleus Scattering Cross Sections, ...

Use attained information to make (accurate) predictions for BSM searches and precision tests

- EDMs, Hadronic PV, ...
- BSM searches with beta decay, ...
- Neutrinoless double beta decay, ...
- Neutrino-Nucleus Scattering Cross Sections, ...
- ...

Many-body Nuclear Interactions

Many-body Nuclear Hamiltonian

$$
H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots
$$

 v_{ij} and V_{ijk} are two- and three-nucleon operators based on experimental data fitting; fitted parameters subsume underlying QCD dynamics

Contact term: short-range Two-pion range: intermediate-range One-pion range: long-range

Hideki Yukawa

AV18+UIX; AV18+IL7 Wiringa, Schiavilla, Pieper *et al*.

chiral πNΔ N3LO+N2LO Piarulli *et al*. **Norfolk Models**

Norfolk Two- and Three-body Potentials

Norfolk Chiral Potentials

NV2: two-body

26 LECs fitted to np and pp Granada database (2700-3700 data points; lab energies up to 125-200 MeV) with a chi-square/datum ~1

NV3: three-body

2 LECs

Piarulli *et al*. PRC91(2015) PRC94(2016)

Figs. credit Entem and Machleidt Phys.Rept.503(2011)1

Energies

Piarulli *et al.* PRL120(2018)052503

Two-nucleon correlation & the deuteron shape

Constant density surfaces for a polarized deuteron in the $M = \pm 1$ (left) and $M = 0$ (right) states

Carlson and Schiavilla Rev.Mod.Phys.70(1998)743

Two-nucleon correlations & momentum distributions

Tensor correlations lead to large differences in the **np** versus **pp** distributions.

These differences are observed in $A(e, e[']np)$ and A(e, e'pp) reactions.

Schiavilla Carlson Wiringa Pieper PRL98(2007) & PRC89(2014)

Optimization of Nuclear Two-body Interactions

Development and Optimization of two-body interactions based on Bayesian methods

Jason Bub *et al.* arxiv:2408.02480 (2024)

Many-body Nuclear Electroweak Currents

- Two-body currents are a manifestation of two-nucleon correlations
- Electromagnetic two-body currents are required to satisfy current conservation

$$
\mathbf{q} \cdot \mathbf{j} = [H, \rho] = [t_i + v_{ij} + V_{ijk}, \rho]
$$

Nuclear Charge Operator

$$
\rho = \sum_{i=1}^A \rho_i + \sum_{i < j} \rho_{ij} + \dots
$$

Nuclear (Vector) Current Operator

Magnetic Moment: Single Particle Picture

Many-body Currents

● **Meson Exchange Currents** (MEC)

Constrain the MEC current operators by imposing that the current conservation relation is satisfied with the AV18 two-body potential

● Chiral Effective Field Theory Currents

Are constructed consistently with the two-body chiral potential; Unknown parameters, or Low Energy Constants (**LECs**), need to be **determined by either fits to experimental data or by Lattice QCD calculations** SP *et al.* PRC78(2008)064002, PRC80(2009)034004,

Electromagnetic Current Operator

PRC84(2011)024001, PRC87(2013)014006 Park *et al.* NPA596(1996)515, Phillips (2005) Kölling *et al.* PRC80(2009)045502 & PRC84(2011)054008

Magnetic Moments of Light Nuclei

Hybrid approach: AV18+IL7 and chiEFT currents; predictions are for A>3 nuclei

One-body magnetic density

 $\mu^{1b} \propto \int \rho^{1b}_M(r) dr$

r single particle coordinate from the c.m.

$$
\mu 1b = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i (1 - \tau_{i,z})/2]
$$

Magnetic moments in light nuclei

Based on Norfolk interactions and one- plus two-body currents

Chambers-Wall, King, Gnech et al. PRL 2024 [2407.03487](https://arxiv.org/abs/2407.03487)

Two-body magnetic densities

$$
\mu^{\rm 2b} = \int dr_{ij} 4\pi r_{ij}^2 \rho_M^{\rm 2b}(r_{ij})
$$

Cluster effects suppress the two-body contribution for A=9,T=1/2

Magnetic form factors: comparison with the data

First QMC results for form factors in A>6 systems.

Based on Norfolk interactions and one- and two-body currents.

Error band = truncation error in the ChiEFT expansion.

q $\rm [fm^{-1}]$ Chambers-Wall, King, Gnech et al. PRL 2024 [2407.03487](https://arxiv.org/abs/2407.03487)

Magnetic form factors: comparison with the data

 q [fm⁻¹] Chambers-Wall, King, Gnech et al. PRL 2024 [2407.03487](https://arxiv.org/abs/2407.03487)

Magnetic form factors: predictions

Two-body currents provide 40-60%.

Note the swapping of M1 and M3 in mirror nuclei. Also observed in A=7 nuclei.

It would be interesting to have data for mirror nuclei.

Maybe ⁷Be?

Chambers-Wall, King, Gnech et al. PRL 2024 [2407.03487](https://arxiv.org/abs/2407.03487)

Electromagnetic Observables

e-4He particle scattering

 0.8

 0.9

 1.0

 $|M_{GT}|$ ratio to experiment

Ó

 1.1

 ${}^{3}H_{\frac{1}{2}} \rightarrow {}^{3}He_{\frac{1}{2}}$

 ${}^6\textrm{He}_0 \rightarrow {}^6\textrm{Li}_1$

 ${}^{7}Be_{\frac{3}{2}} \rightarrow {}^{7}Li_{\frac{1}{2}}$

 ${}^{7}Be_{\frac{3}{2}} \rightarrow {}^{7}Li_{\frac{3}{2}}$ ${}^{8}He_0 \rightarrow {}^{8}Li_1$ ${}^{10}C_0 \rightarrow {}^{10}B_1$

 $\lozenge^{14}O_0 \rightarrow ^{14}N_1$

Three-body Force and the Axial Contact Current

Three-body force Axial two-body contact current

LECs $\boldsymbol{c}_{_{\boldsymbol{D}}}$ and $\boldsymbol{c}_{_{\boldsymbol{E}}}$ are fitted to:

- **● trinucleon B.E.** and *nd* **doublet scattering length** in **NV2+3-Ia**
- **trinucleon B.E.** and **Gamow-Teller matrix element of tritium NV2+3-Ia***

Baroni *et al.* PRC98(2018)044003

Energies A=8-10 slightly better with non-starred models

Two-body transition densities

Different fitting procedures lead to different short range behaviours.

Garrett King *et al.* PRC102(2020)025501

Beta decay spectrum

⁶He Beta decay spectrum for BSM searches with NCSL, He6-CRES, LPC-Caen

⁶He Beta Decay Spectrum

 $d\Gamma_{\beta} = |M_{\beta}(q)|^2 \times$ (kinematic factors) Differential rate:

In the $q \rightarrow 0$ limit: $\frac{d\Gamma_{\beta}}{dE_{e}} = \frac{d\Gamma_{0}}{dE_{e}} \left[1 + b\frac{m_{e}}{E_{e}}\right]$ SM $(a\rightarrow 0)$:

 $b=0$

SM (with recoil): $b=0+\Delta b$

Beta Decay Spectrum

 $C_1(q;A) = \frac{i}{\sqrt{4\pi}} \langle ^6\mathrm{Li}, 10 | \rho_+^\dagger(q\hat{\mathbf{z}};A) | ^6\mathrm{He},00 \rangle$ $L_1(q;A) = \frac{i}{\sqrt{4\pi}} \langle ^6\mathrm{Li},10|\hat{\mathbf{z}}\cdot \mathbf{j}_{+}^\dagger(q\hat{\mathbf{z}};A)|^6\mathrm{He},00\rangle$ $E_1(q;A) = -\frac{i}{\sqrt{2\pi}}\langle ^6\mathrm{Li},10|\hat{\mathbf{z}}\cdot \mathbf{j}_{+}^{\dagger}(q\hat{\mathbf{x}};A)|^6\mathrm{He},00\rangle$ $M_1(q;V) = -\frac{1}{\sqrt{2\pi}}\langle ^6\mathrm{Li},10|\hat{\mathbf{y}}\cdot \mathbf{j}_{+}^{\dagger}(q\hat{\mathbf{x}};V)|^6\mathrm{He},00\rangle$

Model dependencies determined with the Norfolk interactions and one- plus two-body currents.

Dominant terms L_1 ⁽⁰⁾ and E_1 ⁽⁰⁾ have model dependence of $~1\%$ to $~2\%$

Garrett King et al. PRC (2023)

Beta Decay Spectrum

Standard Model spectrum for ⁶He

$$
\tau_{GFMC} = 808 +/- 24
$$
 ms
\n $\tau_{Expt.} = 807.25 +/- 0.16 +/- 0.11$ ms

Accounting for model uncertainty and fully retaining two-body currents, required theory precision achieved

Garrett King et al. PRC (2023)

Neutrinoless Double Beta Decay

Menéndez Vissani et al. *Rev.Mod.Phys.* 95 (2023) 2, 025002

$$
\mathbf{Q}^{\text{R}}_{\text{R}}
$$

$$
[T_{1/2}^{0\nu}]^{-1} = G_{0\nu}(Q, Z) \left(\left| M_{0\nu} \right|^2 \right) m_{\beta\beta}^2
$$

$$
(Z, N) \to (Z + 2, N - 2) + 2e
$$

Ad: Three-body neutrino `potentials' in the Jamboree

Partial muon capture rates

$$
\Gamma_{VMC}(avg.) = 1495 s^{-1} \pm 19 s^{-1}
$$

$$
\Gamma_{exot} = 1496.0 s^{-1} \pm 4.0 s^{-1}
$$

Ackerbauer *et al.* PLB417, 224(1998)

Momentum transfer **q~ 100 MeV**

Two-body correction is ~8% of total rate on average for A=3

- Cutoff: 0.5%
- Energy range of fit: 0.7%
- Three-body fit: 1.8%

$$
{}^{3}\text{He}(1/2^{+};1/2) \rightarrow {}^{3}\text{H}(1/2^{+};1/2)
$$

Garrett King *et al.* PRC2022

Lepton-Nucleus scattering: Inclusive Processes

Electromagnetic Nuclear Response Functions

$$
\left(\widehat{R_{\alpha}(q,\omega)}\right) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) \left|\langle f| O_{\alpha}(\mathbf{q}) |0\rangle\right|^2
$$

Longitudinal response induced by the charge operator $O_{\mu} = \rho$ Transverse response induced by the current operator $O_T = j$ 5 Responses in neutrino-nucleus scattering

$$
\frac{d^2 \sigma}{d \omega d \Omega} = \sigma_M \left[v_L \left(\mathbf{R}_L(\mathbf{q}, \omega) + v_T \left(\mathbf{R}_T(\mathbf{q}, \omega) \right) \right) \right]
$$

For a recent review on QMC, SF methods see Rocco *Front. In Phys.*8 (2020)116

Inclusive Cross Sections with Integral Transforms

Exploit integral properties of the response functions and closure to avoid explicit calculation of the final states (Lorentz Integral Transform **LIT**, **Euclidean**, …)

Lepton-Nucleus scattering: Data

 \mathcal{L}_{1}

Transverse Sum Rule

 $S_T(q) \propto \langle 0 | \mathbf{j}^\dagger \mathbf{j} | 0 \rangle \propto \langle 0 | \mathbf{j}_{1b}^\dagger \mathbf{j}_{1b} | 0 \rangle + \langle 0 | \mathbf{j}_{1b}^\dagger \mathbf{j}_{2b} | 0 \rangle + \ldots$

Observed transverse enhancement explained by the combined effect of two-body correlations and currents in the interference term

$$
\left| \quad \langle \mathbf{j}_{1b}^{\dagger} \ \mathbf{j}_{1b} \rangle \right| > 0
$$

Leading one-body term

$$
\langle \mathbf{j}_{1b}^{\dagger} \mathbf{j}_{2b} v_{\pi} \rangle \propto \langle v_{\pi}^2 \rangle > 0
$$
Interference term

Transverse/Longitudinal Sum Rule Carlson *et al.* PRC65(2002)024002

Beyond Inclusive: Short-Time-Approximation

Short-Time-Approximation Goals:

- Describe electroweak scattering from A > 12 without losing two-body physics
- Account for exclusive processes
- Incorporate relativistic effects

Subedi et al. Science320(2008)1475

[Stanford Lab article](https://www.sanfordlab.org/article/why-dune-searching-origin-matter)

Short-Time-Approximation

Short-Time-Approximation:

- Based on Factorization
- Retains two-body physics
- Correctly accounts for interference

$$
R(q,\omega) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{i(\omega + E_0)t} \langle 0 | O^{\dagger} e^{-iHt} O | 0 \rangle
$$

$$
O_i^{\dagger} e^{-iHt} O_i + O_i^{\dagger} e^{-iHt} O_j + O_i^{\dagger} e^{-iHt} O_{ij} - O_{ij}^{\dagger} e^{-iHt} O_{ij}
$$

$$
H \sim \sum_i t_i + \sum_{i < j} v_{ij}
$$

Short-Time-Approximation

Short-Time-Approximation:

- **Based on Factorization**
- **Retains two-body physics**
- Response functions are given by the **scattering from pairs of fully interacting nucleons** that propagate into a correlated pair of nucleons
- Allows to retain both two-body correlations and currents at the vertex
- Provides "more" exclusive information in terms of nucleon-pair kinematics via the Response Densities

Response Functions ∝ Cross Sections

$$
R_{\alpha}(q,\omega) = \sum_{f} \delta\left(\omega + E_0 - E_f\right) |\langle f| O_{\alpha}(\mathbf{q}) |0\rangle|^2
$$

Response *Densities*

$$
R(q,\omega)\sim \int \delta\left(\omega+E_0-E_f\right)\,dP^\prime\,dp^\prime\mathcal{D}(p^\prime,P^\prime;q)
$$

P' and *p'* are the CM and relative momenta of the struck nucleon pair

Transverse Response Density: *e*-4He scattering

Transverse Density $q = 500 \text{ MeV/c}$

SP *et al.* PRC101(2020)044612

e-4He scattering in the back-to-back kinematic

¹²C Response Densities

¹²C cross sections

Lorenzo Andreoli *et al.* [arXiv:2407.06986](https://arxiv.org/abs/2407.06986) 2024

Ties to fundamental symmetry: CKM unitarity

Superallowed beta decay used to test CKM unitarity

 $\frac{1}{\sigma_M}\frac{d^2\sigma}{d\Omega_e d\omega}$ Radiative corrections receive contributions from the QE regionElastic peak q.e. region $\frac{\log 2}{\sqrt{ft}} = \frac{G_F^2 m_e^5 |V_{ud}|^2}{\pi^3} (1 + \Delta_R^V + \delta_R' + \delta_{NS} - \delta_C)$ m_{π}

Summary

Ab initio calculations of light nuclei yield a picture of nuclear structure and dynamics where many-body effects play an essential role to explain available data.

200 150 100 50 Ω $e \, [\text{MeV}]$ Close **collaborations** between **NP**, **LQCD**, **Pheno**, **Hep**, **Comp**, **Expt**, ... are required to progress e.g., NP is represented in the Snowmass process

Transverse Density $q = 500$ MeV/c

2,000

1,000

It's a very exciting time!

Collaborators

WashU: **Bub Chambers-Wall King Novario Piarulli**

LANL: Baroni Carlson Cirigliano Gandolfi Hayes Mereghetti JLab+ODU: Schiavilla Gnech Andreoli ANL: Lovato Rocco Wiringa UCSD/UW: Dekens Pisa U/INFN: Kievsky Marcucci Viviani Salento U: Girlanda Huzhou U: Dong Wang Fermilab: Gardiner Betancourt MIT: Barrow

NTNP

Nuclear Theory for New Physics NP&HEP TC

Nuclear Theory for New Physics

· About Us

- Commitment to Diversity
- Funding Acknowledgement

Funding Acknowledgement

We are funded in part through The Department of Energy, Office of Science, Office of Nuclear Physics and the Office of High Energy **Physics**

Snowmass:

Topical groups and Frontier Reports, Whitepapers, …

LRP: White papers, [2301.03975](https://arxiv.org/abs/2301.03975), [FSNN](https://arxiv.org/abs/2304.03451),

…