PVES program in Mainz (with the P2-Experiment)

ΗΙΜ

Frank Maas, Institut für Kernphysik and Helmholtz-Institut Mainz EPIC 2024, Electroweak Physics Intersections 22-27-Sept 2024, Calaserena, Geremeas, Sardegna, IT

MAinz MIcrontron MAMI. Electron accelerator up to 1.6 GeV

Electron Accelerator E_{max} =1.6 GeV (CW) operated at JGU Mainz (Germany) Hallmarks

- Intensity max. 100 μA
- Resolution $\sigma_{\rm F} < 0.100 \, {\rm MeV}$
- Polarization 85%
- Reliability: up to 7000 h / year
- 30 years of hadron physics

- **Previous parity violation electron** scattering experiment: A4
- Stopped data taking in 2010

High power beam dump

Experimental Hall

Shaft building

- EM calorimeter, fast online histogramming
- Accelerator integral part of the experiment. Stabilisation of all beam parameters.
- Strangeness contribution to ٠ nucleon structure: "strangeness form factors"
- Nuclear targets for background subtraction
- **Two-Photon Amplitude** ٠

- MAMI continues operation separately from MESA construction or operation
- MESA takes over low energy experiments (E<200 MeV)

ERLs world-wide (status fall 2022)

→ MESA is one of few ongoing ERL activities
 → The **first** ERL facility with a target in the beam for physics experiments

MESA Electron accelerator

Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV : Cambridge, MA, USA, March 14-16, 2013 Richard Milner(ed.), Roger Carlini(ed.), Frank Maas(ed.) 2013, AIP Conf.Proc. 1563 (2013) 1

RTM2

MESA facility tailored to the experimental program

Start Commissioning end of 2025

Mesa accelerator

Key parameters MESA:

- Two operation modes: extracted beam (EB) or energy recovering (ERL)
- Max. beam energy 155 MeV (EB), 105 MeV (ERL)

Cryomodules successfully tested

- Beam current 150 μA (EB), 1 mA (ERL)
- Superconducting cavities
- Start commissioning 2024
- New research building (par. 91b GG)

IESA cryo-modu

Can run in parallel to MAMI

Polarized Source Test Setup

New underground experimental hall (par. 91b GG)

MESA experiments

MAGIX experiment

- Operated in ERL mode of MESA
- Double-arm spectrometers
- Internal gas target experiment
- Gas jet target commissioned at A1/MAMI already

Main components of MAGIX and P2 presently constructed in industry and assembled in house (funding via major research instrumentation program of federal government)

DarkMESA

Beam dump experiment

P2

- Extracted beam mode
- Parity violation experiment
- 10²² Electrons / a
- $\sin^2 \theta_{\rm W}$, neutron skin, etc.

- p/A q p remnant
- e⁺e⁻ collider: final state fermions
- $\bar{p}p$, pp collider: Drell-Yan process, PDFs needed
- EIC: deep inelastic scattering, PDFs needed
- Interference between photon exchange and neutral current process
- Cross section dominated by the Z-resonance
- Parity Violating Observables are large at Z-pole
- Imaginary part is large at the Z-pole, sensitivity to new physics suppressed

Access to the weak mixing angle at low energy

GU Parity Vid

Parity Violating in elastic electron proton scattering

Parity Violating Electron Scattering (PVES)

Conceptually very simple experiments

A = $(N^+-N^-)/(N^++N^-)$ $\Delta A = (N^++N^-)^{-1/2} = N^{-1/2}$ A = 20 x 10⁻⁹ 2% Measurement N = 6.25 x 10¹⁸ events

Highest rate, measure Q²: Large Solid Angle Spectrometers

Physics topics: Electron spin longitudinal (PVES)

- Weak vector charge of the proton
- Weak axial form factor of the proton
- Weak vector charge of the neutron (Carbon)
- Neutron Skin of Ca and Lead (MREX)

Electron Spin transverse

- Two photon exchange amplitude in elastic electron proton scattering
- Two photon exchange amplitude in electron nucleus scattering

JGU

False (related to apparatus) asymmetries:

- Measure TOF or Energy

Analogue Technique

Measure Flux of Scattered electrons:

- no pile-up (double count losses)
- sensitive to small electr. fields.
- no separation of phys. process

PVeS Experiment Summary

PRISMA+ **JGU** Parity violating cross section asymmetry $A_{\rm RL} = \underbrace{A_{\rm V} + A_{\rm A}}_{= A_0} + A_{\rm S} \begin{cases} A_{\rm V} = -a\rho_{eq}' \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ A_{\rm A} = a \frac{(1 - 4\sin^2\theta_W)\sqrt{1 - \epsilon^2}\sqrt{\tau (1 + \tau)}G_M^p \tilde{G}_A^p}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \\ A_{\rm S} = a\rho_{eq}' \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{cases}$

 $a = -G_F q^2 / 4\pi \alpha \sqrt{2}, \ \tau = -q^2 / 4M_p^2, \ \epsilon = [1 + 2(1 + \tau) \tan^2 \theta / 2]^{-1}$

P2 parity violation experiment in Mainz: forward and backward angle measurements

PRISMA+

Auxiliary measurements at backward angles

19

Present status (accuracy) of electric and magnetic strangeness form factor and axial form factor

axial form factor from backward angle measurement

- $\succ \gamma Z$ box graph contributions obtained by modelling hadronic effects:

-

- Hadronic uncertainties suppressed at lower energies
- \succ Low beam energy experiment: P2 @ MESA

PV-asymmetry in Carbon

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model accessible through the weak charge

JGU

Precision measurements and quantum corrections:

running α

running sin² θ_w(μ) (P2)

Universal quantum corrections: can be absorbed into a scale dependent, "running" sin² θ_{eff} or sin² $\theta_{W}(\mu)$

Measurements of the weak mixing angle

Running of the weak mixing angle

Running sin² θ_{W} and Dark Parity Violating Z

Constraints from PVES at MESA

- Quark-vectorelectron-axial vector couplings
- Sensitivity down to masses of 70 MeV and up to masses of 50 TeV

PRISMA+

JGU

Future wEFT constraints from APV and PVES

Adam Falkowski at Mainz MITP workshop: Impact on low energy measurements Current QWEAK, PVDIS, and APV cesium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0.74 \pm 2.2 \\ -2.1 \pm 2.5 \\ -39 \pm 54 \end{pmatrix} \times 10^{-3}$$

Projections from combined P2, SoLID, and APV radium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0 \pm 0.70 \\ 0 \pm 0.97 \\ 0 \pm 7.4 \end{pmatrix} \times 10^{-3}$$

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{AV} (\bar{e}\,\bar{\sigma}_{\rho}e - e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q + q^c\sigma^{\rho}\bar{q}^c) -\frac{1}{2v^2} \sum_{q=u,d} g^{eq}_{VA} (\bar{e}\,\bar{\sigma}_{\rho}e + e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q - q^c\sigma^{\rho}\bar{q}^c)$$

AA, Grilli Di Cortona, Tabrizi 1802.08296

AA, Gonzalez-Alonso in progress

J	GU	Physics sensi (LEP2 conver	itivity from co ntion, g ² = 4pi)	ntact interaction	PRISMA
		precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new} (expected)	
	APV Cs	0.58 %	0.0019	32.3 TeV	Effective field theory approach (EFT)
	E158	14 %	0.0013	17.0 TeV	
	Qweak I	19 %	0.0030	17.0 TeV	2
	Qweak final	4.5 %	0.0008	33 TeV	
	PVDIS	4.5 %	0.0050	7.6 TeV	
	SoLID	0.6 %	0.00057	22 TeV	
	MOLLER	2.3 %	0.00026	39 TeV	
	P2	2.0 %	0.00036	49 TeV	
	PVES ¹² C	0.3 %	0.0007	49 TeV	31

Three PV experiments with three different probes for new physics

Parity Violating Electron Scattering (PVES)

Conceptually very simple experiments

A = $(N^+-N^-)/(N^++N^-)$ $\Delta A = (N^++N^-)^{-1/2} = N^{-1/2}$ A = 20 x 10⁻⁹ 2% Measurement N = 6.25 x 10¹⁸ events

Highest rate, measure Q²: Large Solid Angle Spectrometers

Physics topics: Electron spin longitudinal (PVES)

- Weak vector charge of the proton
- Weak axial form factor of the proton
- Weak vector charge of the neutron (Carbon)
- Neutron Skin of Ca and Lead (MREX)

Electron Spin transverse

- Two photon exchange amplitude in elastic electron proton scattering
- Two photon exchange amplitude in electron nucleus scattering

Two photon exchange in elastic electron scattering

high-precision experiments

interference of one- and two-photon exchange causes

beam-normal single spin asymmetry A_n

De Rújula et al., Nucl. Phys. B35, 365 (1971)

Talk by M. Thiel and P. Blunden

\square allows access of imaginary part of 2γ exchange amplitude

Two photon exchange on elastic electron scattering

- Many observables: Target normal spin asymmetry, Beam normal spin asymmetry
- Different physics for proton target or nut target

A. Esser et al., PRL 121, 022503 (2018)

results – A dependence

A. Esser et al., PLB 808, 135664 (2020)

the whole nuclear chart in a small band

Nuclear physics in P2: Equation of state?

Neutron Stars are bound by gravity NOT by the strong force

▶ Neutron Stars satisfy the Tolman-Oppenheimer-Volkoff equation (vesc/c \approx 1/2)

$$\frac{dP}{dr} = -G \frac{(\varepsilon/c^2 + P/c^2)(M + 4\pi r^3 P/c^2)}{r^2(1 - 2GM/rc^2)}$$
$$\frac{dM}{dr} = 4\pi r^2 \varepsilon/c^2, \ P = P(\varepsilon) \ (EOS)$$

Only Physics that the TOV equation is sensitive to: Nuclear equation of State

P2-Detector ...we call it:

JGU

P2 parity violation experiment in Mainz: program

Qweak@Jlab	P2@MESA Hydrogen	P2@MESA Carbon	P2@MESA Calcium,Lead
A _{ep} =-226.5 ppb	A _{ep} =-28 ppb	A _{eC} = 416.3 ppb	A _{ePb} ~ 700 ppb
⊿A _{ep} = 9.3 ppb	⊿A _{ep} = 0.5 ppb ppb=1/VN Factor 19 After 11,000 h	 ⊿A_{ep}^{stat}= 2.7 ppb after 300 h ⊿A_{ep}^{stat}= 0.9 ppb after 2500 h 	MREX will improve the neutron skin thickness by a factor of two.
$\Delta A_{ep}/A_{ep}$ = 4.2 %	⊿A _{ep} /A _{ep} = 1.8 %	⊿A _{ep} /A _{ep} ^{stat} = 0.6 % (0.2 %) Polarimetry!	In addition measurements of transverse asymmetries
$\Delta \sin^2 \theta_w / \sin^2 \theta_w =$ 0.46 %	⊿sin² θ _w /sin² θ _w = 0.15 %	⊿sin² θ _w /sin² θ _w = 0.6 % (0.3%)	Two-Photon exchange amplitude
	Aux. measurem. backward angle	Aux. measurem. backward angle	

- Parity violating electron scattering:
 - "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC with a sensitivity to new physics up to 50 TeV
- Determination of sin²(θ_w) with highest precision 0.15% (similar to Z-pole), test of running of sin²(θ_w)
- P2-Experiment (proton weak charge) at MESA
- Solenoid delivery in October 2024, all critical components delivered, installation of magnet yoke started, start commissioning End of 2025
- New MESA energy recovering accelerator at 155 MeV, target precision is 2 % in weak proton charge i.e. 0.15% in $sin^2(\theta_w)$,
- Sensitivity to new physics at a scale from 70 MeV up to 50 TeV
- Strategic series of measurements from large asymmetries to ultimate precision
- Final accuracy corresponds to a factor 3 improvement over Qweak-experiment
- Much more physics from P2: Neutron Skin in heavy nuclei, weak charge in light nuclei, Improvement of Vud

Quartz glas detector concept

- Cherenkov detector ring consisting of **72 fused silica bars**
- Covering full azimuth 25° 45° polar angle
- **Integrating detector**

- Extended experimental study
- Quartz glas, PMTs, reflector
- **Radiation hardness**
- 43 500 h with MAMI beam

Test of analogue integrating detector and readout

- Analogue signal from electrons in quartz Cherenkov, 274pA=1.7 GHz electrons on detector
- Electronics from U Manitoba
- Response of detector and width as expected
- System is ready to be used in the experiment

Full GEANT4 simulation

P2-Detector response

JGU

