Fundamental physics with the Gamma Factory@CERN

EPIC conference, Geremeas, Sardinia the 26thof September 2024

Mieczyslaw Witold Krasny

LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

"Gamma Factory" studies

The Gamma Factory proposal for CERN[†]

[†] An Executive Summary of the proposal addressed to the CERN management.

Mieczyslaw Witold Krasny* LPNHE, Universités Paris VI et VII and CNRS–IN2P3, Paris, France

e-Print: 1511.07794 [hep-ex]

~100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Curcatol¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁸,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawa², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²,
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stochlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Gamma Factory studies are anchored and supported by the CERN Physics Beyond Colliders (PBC) framework. More info on all the GF group activities:

We acknowledge the crucial role of the CERN PBC "framework" in bringing our accelerator tests, GF-PoP experiment design, software development and physics studies to their present stage!

Outline of the talk

- An appetiser: Rationale behind the Gamma Factory initiative
- Basic principles
- Feasibility proof
- Scientific programme selected examples
- Outlook

Rationale behind the Gamma Factory initiative

1. Curiosity

- How to efficiently "accelerate" photons? → high energy atomic beams
- The science of high energy (γ_L >> 1) atomic beams (production, storage, cooling, collision aspects) has, so far, not been developed. Atomic beams are very special -- they can be manipulated and controlled with unprecedented precision
- New quantum physics beam effects (beams of "Schrödinger cats")
- No simulation framework existed -- it had to be created and benchmarked
- New challenges for the laser technology

• <u>Sociological curiosity</u>:

Can the particle, nuclear, atomic and accelerator and applied physics expertise be merged into a joint multidisciplinary project?

• Political curiosity:

Can such a novel multidisciplinary project be developed **and implemented** in a "High Energy Physics" laboratory such as CERN?

2. Restoring a balance of the high-energy and highintensity frontiers for particle-beams based science

- Main CERN mission: high energy frontier (detailed Higgs studies at the HL-LHC, FCC-ee)
- High intensity frontier (dark matter, neutrino mass puzzle(s), families, lepton universality, etc...

Gamma Factory can significantly improve the present intensity limits of the:

- γ -beams by a factor >10⁷ \rightarrow 10¹⁸ γ /sec,
- muon beams by a factor of 10^3 , $\rightarrow 7 \times 10^{13} \mu/\text{sec}$,
- polarised positron beams by a factor of 10^3 , $\rightarrow:10^{16} \text{ e+/sec}$,
- quasi-monochromatic MeV neutron beams of $\rightarrow:10^{16}$ neutrons/sec,
- radioactive ion beams $\rightarrow:10^{12}$ ions/sec

3. Continuation of the CERN "extracted beams" research?

- SPS has demonstrated operation with cycle intensity 2-4x10¹³ protons delivering 4x10¹⁹ protons/year for the SPS fixed target programme, (PSB can deliver 10²⁰ protons/year for the ISOLDE programme)
- If LHC is used in the future as the source of extracted beams (3.5 10¹⁴ circulating protons with ~1 hour filling/ramping), then maximally 10¹⁸ (fast extraction) protons/year can be delivered for the LHC fixed target programme

Gamma Factory could extract $\sim 10^{25} \gamma/year$ for a fixed target programme (MHz repetition rate). Efficient extraction of the RF power in the form of particle beams!

4. Empty time slot for the Gamma Factory physics programme?

- Gamma Factory can extend significantly the scope of the LHC-based physics programme (with new questions and new tools)
- ... at a relatively low cost (~1% of the cost of the FCC-ee)

5. Energy consumption and sustainability

	Cost-estimate /BCHF	AC-Power /MW	Comments
Infrastructure	5.5		100km tunnel and surface infrastructure
FCC-ee	5	260-350	+1.1BCHF for the Top stage (365GeV)
FCC-hh	17	580	

Gamma Factory beam-driven, sub-critical reactor (with the efficient transmutation of its waste) could potentially provide the necessary AC plug power needs for the growing CERN accelerator infrastructure.

6. Opening new research opportunities at CERN

- particle physics (precision QED and EW studies, vacuum birefringence, Higgs physics in γγ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, …);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- atomic physics (highly charged atoms, electronic and muonic atoms, pionic and kaonic atoms);
- astrophysics (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, ¹⁶O(γ,α)¹²C reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics (beam cooling techniques, low emittance hadronic beams, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, ...);
- **applied physics** (accelerator driven energy sources, fusion research, medical isotopes and isomers precision lithography).

Gamma Factory – basic principles

Gamma Factory photon source

Resonant absorption and emissions of photons by atoms

Photon acceleration -- Energy leap:

High energy atomic beams play the role of passive light-frequency converters:

 $\gamma_L = E/M$ - Lorentz factor for the ion beam -- 25-6500 for the CERN beams

<u>Photon acceleration – Intensity and efficiency leap:</u>

large cross-section for atomic collisions

Extraordinary properties of the GF photon source

- 1. Point-like, small divergence
- $\blacktriangleright \Delta z \sim I_{\text{PSI-bunch}} < 7 \text{ cm}, \Delta x, \Delta y \sim \sigma^{\text{PSI}}{}_{x}, \stackrel{\text{PSI}}{}_{y} < 50 \text{ }\mu\text{m}, \Delta(\theta_{x}), \Delta(\theta_{y}) \sim 1/\gamma_{\text{L}} < 1 \text{ mrad}$
- 2. Huge jump in intensity:
- > More than 7 orders of magnitude with respect to existing (being constructed) γ-sources

3.Very wide range of tuneable energy photon beam :

> 10 keV – 400 MeV -- extending, by a factor of ~1000, the energy range of the FEL photon sources

4. Tuneable polarisation:

- > γ -polarisation transmission from laser photons to γ -beams of up to 99%
- 5. Unprecedented plug power efficiency (energy footprint):
- LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL!

(assuming power consumption of 200 MW - CERN and 19 MW - DESY)

<u>A concrete example</u>: Nuclear physics application: He-like, LHC Calcium beam, $(1s-2p)_{1/2}$ transition, TiSa laser, 20 MHz FP cavity

6.Highly-collimated monochromatic *y*-beams:

- the beam power is concentrated in a narrow angular region (facilitates beam extraction),
- the (E_γ, Θ_γ) correlation can be used (collimation) to
 "monochromatize" the beam

Polarised (and/or twisted) GF photon beams

For more details see presentations at our recent, Gamma Factory workshop: https://indico.cern.ch/event/1076086/

Gamma Factory – feasibility proof steps

Novel technology: Resonant scattering of laser photons on ultra-relativistic atomic beam

Better choice (3000 years later): CERN as the GF project host:

re-use of already existing accelerator infrastructure

Gamma Factory (additional) beam requirements:

- modification of the ion stripping scheme,
- storage of atomic beams in high-energy rings: SPS and LHC

Step 1 : Requisite TT2 stripper system installed

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

topics 🔹

follow +

A joint Fermilab/SLAC publication

LHC accelerates its first "atoms"

07/27/18 | By Sarah Charley

Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

https://home.cern/abox/updates/2018/07/lhc-accelerates-its-first atoms https://www.sciencealert.com/the-large-hadron-collider-just-successfully-accelerated-its-first-atoms https://www.forbes.com/sites/meniameberboucha/2018/07/31/lhc-at-cern-accelerates-atoms-for-the-first-time/#36db60ae5cb https://www.livescience.com/63211-lhc-atoms-with-electrons-light-speed.html https://interestingengineering.com/cerns-large-hadron-collider-accelerates-its-first-atoms https://www.sciencenews.org/article/physicists-acselerate-atoms-large-hadron-collider-first-time https://insights.globalspee.com/article/9461/the-lhc-successfully-accelerated-its-first-atoms https://www.maxisciences.com/lhc/le-grand-collisionneur-de-hadrons-lhc-accomplit-une-grande-premiere_art41268.html https://www.symmetrymagazine.org/article/lhc-accelerates is-first-atoms

Step 2: Atomic beams stored in in the LHC

Step 3: Requisite precision of the momentum and beam position control at the collision point with laser photons

Laser photons

Step 4: World record of the stored laser photon beam power – satisfying the full GF research programme

RESEARCH ARTICLE | JUNE 20 2024

Stable 500 kW average power of infrared light in a finesse 35 000 enhancement cavity ⊘

FINAL Step : Gamma Factory Proof-of-Principle experiment

PLANNED INSTALLATION TIME – LS3

Gamma Factory Proof-of-Principle (PoP) SPS experiment

SPS LSS6 zone

F-P cavity – "in beam" position

Scientific programme – selected examples

GF studies: published papers (INSPIRE) and books

papers	literature $^{\vee}$ find t gamma fac	ctory					Q
	Literature	Authors	Jobs	Seminars	Conferences	More	
	49 results ☐ cite all			Citation S	ummary 🚺 Most I	Recent V	
books	<text><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></text>		Handbook of Accelerator and Enginee Third Edition	Physics Physics bring Mexander WV Chao Maury Tigner Hans Weise Frank Zimmermann	<text><text><image/><text></text></text></text>	Arge ator with le Lives	36

New research opportunities

- particle physics (precision QED and EW studies vacuum birefringence, Higgs physics in γγ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, ...);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- **atomic physics** (highly charged atoms electronic and muonic atoms, pionic and kaonic atoms);
- astrophysics (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, ¹⁶O(γ,α)¹²C reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics beam cooling techniques low emittance hadronic beams, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, ...);
- applied physics (accelerator driven energy sources, fusion research, medical isotopes and isomers precision lithography).

GF experimental programme with atomic beams

Atomic Physics: highly-charged, "small-size" atoms

Crystalline beams?

ring

Opening new research opportunities in atomic physics:

- Highly-charged atoms very strong (~10¹⁶ V/cm) \triangleright electric field (QED-vacuum effects)
- Small size atoms (electroweak effects, $\sin^2 \theta_W$, ...
- Hydrogen-like and Helium-like atomic structure (calculation precision and simplicity)
- Atomic degrees of freedom of trapped highly-charged atoms can be resonantly excited by lasers

Accelerator and Atomic physics interplay: very precise control of high energy beams (FP cavity in the dipole magnet)

Accelerator Physics: Gamma Factory "cold" atomic beams

Beam cooling speed: the laser wavelength band is chosen such that only the ions moving in the laser pulse direction (in the bunch rest frame) can resonantly absorb photons. Opens a possibility of forming at CERN hadronic beams of the required longitudinal and transverse emittances within a seconds-long time scale

Simulation of laser cooling of the lithium-like Ca(+17) bunches in the SPS: transverse emittance evolution.

nature reviews physics

Perspective

Check for updates

https://doi.org/10.1038/s42254-023-00682-0

Sections

The precision measurement of the *W* boson mass and its impact on physics

Ashutosh V. Kotwal 🕲 🛛

Abstract

	1142 (1992)	80.360	+	370			S	м
	CDE 0 (1991)	79 928	+	390)			
	ALEPH (2001)	80.477	+	50	,			
	DELPHI (2001)	80.399		67			_	
	L3 (2001)	80.389	±	70			_	
	OPAL (2001)	80,491	±	65				
	LEP avg. (2002)		80	450	±	40		
	DØ I (2002)	80,483	±	84				
	CDF I (2001)	80,433	±	79				
	Tev. avg. (2004)		80,	456	±	59		—
	Tev. + LEP avg. (2002)		80,	452	±	33		
	ALEPH (2003)	80,385	±	58			_	- -
	DELPHI (2003)	80,402	±	75			_	
	L3 (2003)	80,367	±	78				•
	OPAL (2003)	80,495	±	67				
	LEP avg. (2004)		80,	412	±	42		—
	Tev. + LEP avg. (2004)		80,	426	±	34		
	ALEPH (2006)	80,440	±	51				
	DELPHI (2008)	80,336	±	67				-
	L3 (2006)	80,270	±	55		_		
	OPAL (2006)	80,415	±	52				—
	LEP avg. (2013)		80,	376	±	33	-	•
	DØ II (2009)	80,402	±	43				—
	DØ II (2012)	80,369	±	26			-	•
	DØ II avg.	80,376	±	23				• -
	CDF II (2007)	80,413	±	48				—
	CDF II (2.2 fb-1)	80,401	±	19				+
	CDF II (2022)	80,433	±	9.4				+
	ATLAS (2018)	80,370	±	19				•
	LHCb (2022)	80,354	±	32			-	-
	Tev. avg. (2022)		80,	427	±	9		+
	Tev. + LEP avg. (2022)		80,	424	±	9		+
79,6	500 79,800	80,000				80,200		80,400
	W boson n	nass (Me	v b	y per	c²)			

CMS Physics Analysis Summary

Contact: cms-pag-conveners-smp@cern.ch

D0

CDF

LHCb

ATLAS

This Work

CMS

JHEP 01 (2022) 036

2024/09/17

 $m_{\rm W}$ (MeV)

Measurement of the W boson mass in proton-proton collisions at $\sqrt{s} = 13 \text{ TeV}$

The CMS Collaboration

Unconstrained PDF degrees of freedom for the pp collisions at the LHC energies

Assume for a while: $s(x)=\overline{s}(x)$, $c(x)=\overline{c}(x)$, $b(x)=\overline{b}(x)$ then:

- 5 sea-quark flavours (u,d,s,c,b) + 2 valence quark flavours (u^(v), d^(v)) 7 unknown PDFs:
- 4 constraints coming from the measurement of precision observables
- 7-4=3 degrees of freedom in the flavour-dependent pdf's remain unconstrained at the LHC (external input)

Important note:

At the Tevatron (lower energy) only the first quark family was relevant. In addition p collisions. This leaves only 2 (out of 7) flavour dependent pdf's. They are over-constrained.

Unbiased measurement of the EW processes at the LHC by using isoscalar ion rather than proton beams - WHY?

u and d quarks have
different charges, weak
isospin and vector and axial
couplings.
For EW-physics: proton
beams are equivalent to
neutrino and electron beam
mixed in not precisely known
proportions.

In addition the relative distributions of the valence and sea u and d quarks determine the effective W/Z boson polarisation. Proton beams -> polarisation of W cannot be precisely controlled.

Isoscalar (A=2Z) ion beams

Profit from the flavour symmetry of strong interactions to to equalize the distributions of the u and d quarks: $u_{v,s}^{A=2Z,Z}(x, k_t, Q^2) = d_{v,s}^{A=2Z,Z}(x, k_t, Q^2)$

M.W. Krasny, F. Dydak, F. Fayette, W. Placzek, A. Siodmok, *Eur.Phys.J. C69 (2010) 379-397.*F. Fayette, M.W. Krasny, W. Placzek, A. Siodmok, *Eur.Phys.J. C63 (2009) 33-56.*M.W. Krasny, F. Fayette, W. Placzek, A. Siodmok, *Eur.Phys.J. C51 (2007) 607-617.*M.W. Krasny, S. Jadach, W. Placzek, *Eur.Phys.J. C44 (2005) 333-350.*

Particle Physics: Gamma Factory path to HL-LHC:

Studies of the implementation scheme with laser-cooled isoscalar Ca beams

GF experimental programme with high intensity photon beams

... the GF-future of the LHC?

- Polarised positrons potential gain of up to a factor of 10⁴ in intensity with respect to the KEK positron source, satisfying both the LEMMA muon–collider and the LHeC requirements
- > <u>Muons</u> potential gain by a factor of 10³ in intensity with respect to the PSI muon source, charge symmetry ($N\mu^+ \sim N\mu^-$), polarisation control
- Neutrinos fluxes comparable to NuMAX but: (1) Very Narrow Band Beam, driven by the small spectral density pion beam and (2) unique possibility of creating flavour- and CP-tuned beams driven by the beams of polarised muons
- <u>Neutrons</u> a comparable neutron flux with respect to the future neutron spallation sources e.g. at ESS
 but quasi monoenergetic MeV neutrons
- Radioactive (neutron-rich) ions potential gain of up to a factor 10⁴ in intensity with respect to e.g. ALTO

Existing and future muon sources

Laboratory/ Beam line	Energy/ Power	Present Surface μ^+ rate (Hz)	Future estimated μ^+/μ^- rate (Hz)	
PSI (CH) LEMS	(590 MeV, 1.3 MW, DC)	$4 \cdot 10^8$		
$\pi E5$ HiMB	" (590 MeV, 1 MW, DC)	$1.6 \cdot 10^8$	$4\cdot 10^{10}(\mu^+)$	
J-PARC (JP)	(3 GeV, 1 MW, Pulsed)			
MUSE D-line MUSE U-line	(8 CoV 56 bW Dulood)	$3 \cdot 10^7$	$2 \cdot 10^8 (\mu^+)$ (2012) $10^{11} (\mu^-)$ (2019/20)	
PRIME/PRISM	(8 GeV, 300 kW, Pulsed) (8 GeV, 300 kW, Pulsed)		$10^{1-12}(\mu^-)$ (2019/20) $10^{11-12}(\mu^-)$ (> 2020)	
FNAL (USA)				
Mu2e Project X Mu2e	(8 GeV, 25 kW, Pulsed) (3 GeV, 750 kW, Pulsed)		$\frac{5 \cdot 10^{10} (\mu^{-})}{2 \cdot 10^{12} (\mu^{-})} (> 2022)$	
TRIUMF (CA) M20	(500 MeV, 75 kW, DC)	$2 \cdot 10^6$		
KEK (JP) Dai Omega	(500 MeV, 2.5 kW, Pulsed) $"$	$4\cdot 10^5$		
RAL -ISIS (UK) RIKEN-RAL	(800 MeV, 160 kW, Pulsed)	$1.5\cdot 10^6$		
RCNP Osaka Univ. (JP) MUSIC	(400 MeV, 400 W, Pulsed) currently max 4W		$10^8(\mu^+)$ (2012) means > 10^{11} per MW	
DUBNA (RU) Phasatron Ch:I-III	(660 MeV, 1.65 kW, Pulsed)	$3 \cdot 10^4$		

Two ways of producing polarised muons by photons in GF

High intensity source: $2x10^{13} (10^{14}) \mu^+$ and μ^- per second for the 2X0 graphite (deuterium) target and 1 MW, 300 MeV photon beam!

Pion spectral density

PHYSICAL REVIEW ACCELERATORS AND BEAMS 26, 083401 (2023) Gamma Factory high-intensity muon and positron source: Exploratory studies Armen Apyan[®],^{1,*} Mieczysław Witold Krasny[®],^{2,3} and Wiesław Placzek^{®⁴} ¹A. Alikhanyan National Laboratory (AANL), 2 Alikhanian Brothers St., 0035 Yerevan, Armenia

A. Alikhanyan National Laboratory (AANL), 2 Alikhanian Brothers St., 0036 Yerevan, Armenia ²LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Tour 33, RdC, 4, pl. Jussieu, 75005 Paris, France ³CERN, BE-ABP, 1211 Geneva 23, Switzerland ⁴Institute of Applied Computer Science and Mark Kac Center for Complex Systems Research, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow, Poland

Plasma Wakefield Accelerator-Based Low Emittance Muon Source

Plasma density and muon energy in tapered PWA-based 10 GeV muon source with normalized acceptance of 25 μm - corresponding to

I.FAST Workshop on GHz Rate & Rapid Muon Acceleration for Particle Physics

Q

Dec 10 – 13, 2023 Bern, Switzerland Europe/Zurich timezone

The importance of muon (longitudinal) polarisation

Precise control of CP and flavour composition of the μ -beam driven neutrino source

 $\mu^{\pm} \to e^{\pm} + \nu_e(\bar{\nu}_e) + \bar{\nu}_\mu(\nu_\mu)$

• Control of the relative \overline{v}_e/v_μ ($v_e/\overline{v_\mu}$) fluxes by changing muon polarisation

Conceptually optimal experiment to search for CP violation in the neutrino sector:

The experiment would compare the oscillation probabilities of $\nu_{\mu} \rightarrow \nu_{e}$, with the ν_{μ} flux obtained from the decay under zero forward angle from fully polarized μ^{-} , and of $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, with the $\bar{\nu}_{\mu}$ flux obtained from the decay under zero forward angle from fully polarized μ^{+} .

Applied Physics: Photon-beam-driven energy source

Best use of the CERN expertise to produce rather than buy the plug-power:

GF- Photon-beam-driven energy source (ADS)

Satisfying three conditions;

- requisite power for the present and future CERN scientific programme
- operation safety (a subcritical reactor)
- efficient transmutation of the nuclear waste (very important societal impact if demonstrated at CERN –given its reputation)

APS April Meeting 2023 Minneapolis, Minnesota (Apr 15-18)

M06 Invited Accelerate Solving Energy Crisis: From Fission to Fusion

Room: MG Salon F - 3rd Floor **Sponsor**: DPB FIP **Chair**: Christine Darve, European Spallation Source **Invited Speakers**: Hamid Ait Abderrahmane, Mieczyslaw Witold Krasny, Ahmed Diallo, Alireza Haghighat

Conclusions... and two possible subjects for discussion

A potential place of Gamma Factory in the future CERN research programme

- The next CERN high-energy frontier project may take long time to be approved, built and become operational, ... unlikely before 2048 (FCC-ee) or 2050+ (μ-collider)
- The present LHC research programme will certainly reach earlier (~2034?) its discovery saturation (little physics gain by a simple extending its pp/pA/AA running time)
- A strong need will certainly arise for a novel multidisciplinary programme which could re-use ("co-use") the existing CERN facilities (including LHC) in ways and at levels that were not necessarily thought of when the machines were designed

The Gamma Factory research programme could fulfil such a role. It can exploit **the existing world unique opportunities** offered by the CERN accelerator complex and CERN's scientific infrastructure (**not available elsewhere**) to conduct new, diverse, and vibrant research.

1. Tool and Concept driven progress in science

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained" - F. Dyson

2. The future of our discipline

The existence of the Standard Model does not imply the existence of a standardized anticipation of the future. The only thing that deserves institutionalization is doubt. This problem of maintaining diversity of approach afflicts both experiment and theory, and if I have any concern about how the field is developing, it is about this point I worry the most.

James D. Bjorken (Bj)