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▪ Motivation from Standard Model

▪ Determination of Vud

▪ Introduction to laser spectroscopy and isotope production

▪ Results of measurements

▪ Outlook and conclusion

Outline
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▪ Cabibbo-Kobayashi-Maskawa (CKM) matrix describes mixing of quarks via weak interaction

▪ Absolute square (i.e. 𝑉𝑖𝑗
2

) of each CKM-entry is probability of weak decay of j-type quark 
into i-type quark

▪ Standard Model of particle physics predicts unitarity of CKM matrix

▪ Deviation from unitarity would imply incomplete picture of Standard model

▪ Unitarity: 𝑉𝐶𝐾𝑀 ⋅ 𝑉𝐶𝐾𝑀
𝑇 = 𝐼3

▪ In particular: 𝑉𝑢𝑑
2 + 𝑉𝑢𝑠

2 + 𝑉𝑢𝑏
2 = 1

▪ 𝑉𝑢𝑑
2 + 𝑉𝑢𝑠

2 + 𝑉𝑢𝑏
2 = 1 − Δ𝐶𝐾𝑀

CKM Unitarity (1)

𝑉𝐶𝐾𝑀 =

𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏
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▪ Currently recommended values by PDG:

Tension to Unitarity

[1] S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)
[2] J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.
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▪ Determination of couplings for:

▪ Vus

➢Kaon decays

➢Hyperon decays

➢Tau decays

▪ Vud

➢Neutron decay

➢Pion decay

➢Mirror decays (e.g. 21Na → 21Ne)

➢Superallowed 0+ → 0+ β decays

CKM Unitarity (2)

𝑒+ഥ𝜈𝑒

𝑊+

u  d   d

u   d   u

p

n
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Determination of Vud

J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

▪ 𝑉𝑢𝑑  can be determined via ℱ𝑡 value of superallowed 
0+→0+ 𝛽 decays

▪ Nuclear charge radius 𝑟𝑐  important experimental 
input into theoretical calculation of isospin-symmetry-
breaking corrections

Energy difference

Partial half life

Small theoretical corrections 
(leading uncertainty!)

𝛿𝑐 ≔ 𝑓 𝑟𝑐 , …
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▪ Weighted mean ℱ𝑡 of 15 precision cases used to 
calculate 𝑉𝑢𝑑

▪ ℱ𝑡 value of 26mAl
➢Most accurately known of 15 isotopes used to calculate ℱ𝑡

Importance of charge radius of 26mAl

J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.
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▪ Weighted mean ℱ𝑡 of 15 precision cases used to 
calculate 𝑉𝑢𝑑

▪ ℱ𝑡 value of 26mAl
➢Most accurately known of 15 isotopes used to calculate ℱ𝑡

Importance of charge radius of 26mAl

J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.



9

▪ Accuracy of ℱ𝑡 value of 26mAl coming from
➢Small uncertainty on ft

➢Small uncertainty on nuclear structure and isospin-symmetry breaking 
corrections

➢Lowest numerical correction on combined 𝛿𝑁𝑆 − 𝛿𝑐

Importance of charge radius of 26mAl
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▪ Accuracy of ℱ𝑡 value of 26mAl coming from
➢Small uncertainty on ft

➢Small uncertainty on nuclear structure and isospin-symmetry breaking 
corrections

➢Lowest numerical correction on combined 𝛿𝑁𝑆 − 𝛿𝑐

Importance of charge radius of 26mAl

BUT:
Nuclear charge radius unknown, but extrapolated as 3.04(2) fm from other nuclei
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▪ Hyperfine transitions in atoms or ions yield information about
➢Nuclear spin

➢Magnetic dipole and electric quadrupole moments of nuclei

➢Isotope shifts and nuclear charge radii

Laser Spectroscopy

Excitation
using laser photon

De-excitation
Observe emitted photon

റ𝐹 = റ𝐼+റ𝐽

27Al
I=5/2

J=1/2

J=3/2

F=3

F=2
F=4

F=3
F=2

𝜈0
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Hyperfine Spectrum

F=1
electric quadrupole moment 𝑄 =

𝐵𝐽

𝑒𝑉𝐽𝐽

magnetic dipole moment 𝜇 =
𝐴𝐽⋅𝐼 𝐽

𝐵0

27Al
I=5/2

J=1/2

J=3/2

F=3

F=2

F=4

F=3

F=2

𝜈0

𝛿𝜈𝐹
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Hyperfine Spectrum

F=1
electric quadrupole moment 𝑄 =

𝐵𝐽

𝑒𝑉𝐽𝐽

magnetic dipole moment 𝜇 =
𝐴𝐽⋅𝐼 𝐽

𝐵0

27Al
I=5/2

J=1/2

J=3/2

F=3

F=2

F=4

F=3

F=2

𝜈0

𝛿𝜈𝐹

𝛿𝜈𝐹𝛿𝜈𝐹
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Isotope Shift

▪ Isotope shift IS = difference of centroid frequencies for different isotopes

▪ Used to calculate difference in mean square charge radii between isotopes

28Al

27Al, ref.

IS
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▪ Located at CERN

▪ Two target stations can be irradiated 
with up to 2 uA of 1.4 GeV protons from 
proton synchrotron booster (PSB)

▪ Isotopes produced via nuclear reactions 
in target material

▪ Then ionised and transported to 
experimental setup

ISOLDE

LINAC4

PSB

PS

ISOLDE

Source: http://cds.cern.ch/record/1693046/files/arXiv:1404.0515.pdf
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▪ Resonance ionisation laser ion source (RILIS)
▪ Electron exited through several resonant transition steps until 

ionization
▪ Very element specific
▪ Ionisation efficiency enhancement of factor ~10-100 (varies for 

different schemes for different elements)

Ionisation
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▪ Mass selection via High Resolution Separator (HRS) by 
two dipole magnets

▪ Offers mass resolving power of ~5000

▪ Injected into helium buffer gas filled Paul trap (ISCOOL) 

▪ Used as cooler-buncher to accumulate isotopes before 
transporting bunches to experiment

Isotope Selection and Bunching

Image from: http://cds.cern.ch/record/576847?ln=en

Images from: http://cds.cern.ch/record/1058103/files/p57.pdf



20

▪ Ions and laser collinearly overlapped via electrostatic bender

▪ Reduced doppler spread (<100MHz) due to “high” kinetic energy of 
30keV

▪ Bunched beam enables gating to increase signal-to-background by 
factor of ~10 000

Collinear Laser Spectroscopy

δ𝑓 ∝
𝛿𝐸𝑘𝑖𝑛

𝐸𝑘𝑖𝑛
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▪ Post-acceleration leads to frequency shift in ion rest frame

▪ Charge exchange with sodium to neutralize ions

▪ Measure fluorescence photons of resonant transitions

Collinear Laser Spectroscopy



22

▪ Used transition: 3𝑠23𝑝 2𝑃3/2
∘ → 3𝑠24𝑠 2𝑆1/2 provided by 

frequency doubled Matisse Ti:Sa ring cavity laser

▪ Frequency stabilised by WSU-10 wavemeter

▪ Regularly calibrated by HeNe laser

Laser System

Millenia eV Matisse Wavetrain

Wavemeter HeNe
To experiment

532 nm 792 nm 396 nm
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Hyperfine Spectra

26,26mAl

27Al, ref.
I=5/2

+6s

+6s

▪ Ion extraction 0 and 6s after proton trigger

▪ Decrease in isomer intensity in fit consistent with half-life

➢𝑁2 = 𝑁1 ⋅
1

2

6𝑠

𝑡1/2

I=5
I=0
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IGISOL

27Al + p→ 26Al + p + n
at 25 MeV

Source: https://www.jyu.fi/science/en/physics/research/infrastructures/accelerator-laboratory/nuclear-
physics-facilities/the-exotic-nuclei-and-beams/igisol-layout-2019-1.png, 7.12.2021,17:00
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Collinear Laser Spectroscopy at IGISOL

▪ Collaboration with IGISOL

▪ Second set of measurements performed at IGISOL, Jyväskylä

▪ Known to have more favorable isomer : ground state ratio for
26,26mAl
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Hyperfine Spectra

26,26mAl

27Al, ref.
I=5/2

JYFL

▪ Clear presence of isomer in 
Al I P1/2 → D3/2 transition

I=5
I=0
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Hyperfine Spectra

26,26mAl

27Al, ref.

26,26mAl

27Al, ref.

JYFL COLLAPS
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▪ Statistical and systematic uncertainties combined in quadrature 
for each experiment

▪ Combination of both datasets as weighted average

Isotope Shift

[1] Heylen et al., Physical Review C 2021, 103.

Isotope shift to 26Al isomer

Isotope Shift [MHz]

IGISOL 379.7{5.5}[2.2]

COLLAPS 376.5{1.7}[3.7]

weighted avg. 377.5(3.4)
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▪ Isotope shifts 𝛿𝜈27,26, 𝛿𝜈27,26𝑚 used to calculate difference in mean 
square nuclear charge radii 𝛿 𝑟2 27,𝐴 between 26,26mAl and 27Al

▪ Depends on
➢Respective nuclear masses 𝑚𝐴, electron mass 𝑚𝑒

➢Atomic mass shift factor M

➢Field shift factor F

➢Known nuclear charge radius of a reference isotope

▪ Nuclear charge radius of 27Al, F, M from [1]

Mean Square Charge Radius

[1] Heylen et al., Physical Review C 2021, 103.
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▪ Nuclear charge radius of 26mAl: 3.130(15) fm

▪ 4.5 statistical standard deviations from extrapolated value

▪ First extrapolation by same number of standard deviations for 
radial overlap correction of ISB correction

Nuclear Charge Radii

[1] J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.

Old values from [1] New Values

26mAl nuclear 
charge radius

3.04(2) fm 3.130(15) fm

ℱ𝑡 of 26mAl 3072.4(1.1) s 3071.4(1.0) s

ℱ𝑡 3072.24(1.85) s 3071.96(1.85) s
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▪ Shifts the result of unitarity test closer towards unitarity by 
~1/10 standard deviations

▪ Motivates further studies of nuclear charge radii in other 
superallowed 𝛽 emitters with so-far unknown charge radii:

Implications for CKM unitarity

𝑉𝑢𝑑
2 + 𝑉𝑢𝑠

2 + 𝑉𝑢𝑏
2 = 0.99848(70) → 0.99856(70)

J. C. Hardy, I. S. Towner, Physical Review C 2020, 102.
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▪ Current status: charge radii of 7/15 
superallowed beta emitters still unknown

▪ Ongoing efforts to measure 54Co at 
IGISOL

▪ Uncertainty of 𝑉𝑢𝑑
2currently dominated 

by theoretical uncertainties on 𝛿𝑁𝑆

▪ Further effect of charge radius of 26mAl on 
Fermi function → might result in nother 
shift

Outlook

Source: J. C. Hardy, I. 
S. Towner, Physical 
Review C 2020, 102.

Grey: 2015
Black: 2020
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▪ The charge radius of 26mAl has been determined by Collinear Laser 
spectroscopy

▪ 4.5 standard deviations difference to extrapolated value used in 
isospin-symmetry-breaking corrections for 𝑉𝑢𝑑 of CKM matrix

▪ Extrapolation points towards slight shift towards CKM unitarity

▪ For more information: 

PRL 131, 222502 (2023) (DOI:10.1103/PhysRevLett.131.222502)

Summary and Conclusion
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▪ Most promising cases to measure charge radii of superallowed 
beta emitters (or others) from theory side?

▪ Charge radius does not only enter for ISB corrections but also in 
the Fermi function → estimate of effect of this on Vud?

▪ Nuclear structure correction currently dominating Vud 
uncertainty. Observables from experiment to help reduce this?

Questions



Thank you for your attention!

Thanks to COLLAPS, IGISOL, ISOLDE 
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