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Hydrogen-like Systems

𝒉(𝒎𝒆, 𝑵) =
𝑷𝑵
𝟐

𝟐𝑴𝑨
+

𝒑𝒆
𝟐

𝟐𝒎𝒆
+ 𝑽𝑵(𝒓𝒆, 𝑹𝑵)H-like systems:

𝝆𝒆 = 𝒓𝒆 − 𝑹𝑵 and 𝑹𝟎 =
𝑴𝑵𝑹𝑵 +𝒎𝒆σ𝒊 𝒓𝒊

𝑴𝑵 + 𝒁𝒎𝒆

Effective momenta and mass:

𝝁𝑨 =
𝑴𝑵𝒎𝒆

𝑴𝑵 +𝒎𝒆
~𝒎𝒆 and 𝝅𝒆 = −𝒊ℏ

𝝏

𝝏𝝆𝒆

Schroedinger Eq:  𝒉|𝝍〉 = 𝜺 |𝝍〉 𝒉 ≃
𝝅𝒆
𝟐

𝟐𝒎𝒆
+ 𝑽𝑵(𝝆𝒆)with

Relativistic Hamiltonian:  𝒉 ≃ 𝒄 𝜶 ⋅ 𝝅 + 𝜷𝒎𝒆𝒄
𝟐 + 𝑽𝑵(𝝆𝒆)



Hamiltonian:   

𝑯𝒂𝒕=
𝑷𝑵
𝟐

𝟐𝑴𝑵
+෍

𝒊

𝒑𝒊
𝟐

𝟐𝒎𝒆
+ 𝑽𝑵 𝑹𝑵, 𝒓𝒊

Multi-electron Systems

+
𝟏

𝟐
෍

𝒊,𝒋

𝟏

|𝒓𝒊 − 𝒓𝒋|

We can express: 𝑯𝒂𝒕 𝑴𝑵, 𝑹𝑵, 𝒓𝒆 = 𝑯𝑵 +𝑯𝟎 +𝑯𝑴𝑺 +𝑯𝑭𝑺

𝑯𝑴𝑺 = −
𝟏

𝟐

𝑴𝑵

𝑴𝑵 +𝒎𝒆
𝟐
෍

𝒊,𝒋

𝒑𝒊 ⋅ 𝒑𝒋

= −
𝟏

𝟐

𝑴𝑵

𝑴𝑵+𝒎𝒆
𝟐
σ𝒊𝒑𝒊

𝟐 −
𝟏

𝟐

𝑴𝑵

𝑴𝑵+𝒎𝒆
𝟐
σ𝒊,𝒋≠𝒊 𝒑𝒊 ⋅ 𝒑𝒋

where

and 𝑯𝑭𝑺 𝒓𝒆 = −
𝝏𝑽𝑵 𝑹𝑵, 𝒓𝒆

𝝏 𝑹𝑵
𝟐 𝜹〈𝑹𝑵

𝟐 〉



𝐸 = 𝐸0 + Δ𝐸𝑀𝑆 + Δ𝐸𝐹𝑆Modified energy:

Δ𝐸𝑀𝑆 = Δ𝐸𝑁𝑀𝑆
(1)

+Δ𝐸𝑆𝑀𝑆
(1)

+𝒪 (𝜇𝐴
2)

Δ𝐸𝑁𝑀𝑆
(1)

= 𝜇𝐴𝐾
𝑁𝑀𝑆 andwith Δ𝐸𝑆𝑀𝑆

(1)
= 𝜇𝐴𝐾

𝑆𝑀𝑆

Similarly, Δ𝐸𝐹𝑆 ≈ Δ𝐸𝐹𝑆
1
+ 𝒪 𝜹 𝒓𝒓𝒎𝒔

𝟐 2
withΔ𝐸𝐹𝑆

(1)
= −𝐹 𝜹 𝒓𝒓𝒎𝒔

𝟐

Measuring ISs in two transitions a & b of isotopes (King’s plot):    

𝜈𝑏
𝐴𝐴′

𝜇𝐴𝐴′
≃

𝐹𝑏

𝐹𝑎

𝜈𝑎
𝐴𝐴′

𝜇𝐴𝐴′
+ (𝐾𝑏

𝑀𝑆 −
𝐹𝑏

𝐹𝑎
𝐾𝑎
𝑀𝑆)

where 𝐾𝑀𝑆 = 𝐾𝑁𝑀𝑆 + 𝐾𝑆𝑀𝑆 and 𝜇𝐴𝐴′ = 𝜇𝐴 − 𝜇𝐴′

Energy Level Shifts (isotope shift (IS))



In the first-order approximation, IS constants are 
needed to be determined:

𝑭𝒊 =
𝜹𝑽𝒏𝒖𝒄(𝒓)

𝜹〈𝒓𝑵
𝟐 〉

𝑲𝑵𝑴𝑺 =
𝟏

𝟐
𝒑𝟐 −

𝜶𝒆𝒁

𝒓
𝜶 ⋅ 𝒑 + 𝜶 ⋅ 𝑪𝟏

𝟐

𝑲𝑺𝑴𝑺 =
𝟏

𝟐
෍

𝒌𝒍

𝒑𝒌 ⋅ 𝒑𝒍 −
𝜶𝒆𝒁

𝒓𝒌
𝜶𝒌 ⋅ 𝒑𝒍 + (𝜶𝒌 ⋅ 𝑪𝒌

𝟏)(𝜶𝒍 ⋅ 𝑪𝒍
𝟏

Relativistic Expressions and Challenges



Typical approach to estimate first-order energy

In the presence of an interaction Hamiltonian  𝐻𝑖𝑛𝑡, we can express the 

total Hamiltonian  𝐻 = 𝐻0 + 𝜆 𝐻𝑖𝑛𝑡 and energy 𝐸𝑛 = 𝐸𝑛
(0)

+ Δ𝐸𝑛 𝜆 .

𝑬𝒏 𝝀 = 𝑬𝒏
𝟎
+ 𝝀𝑬𝒏

𝟏
+ 𝝀𝟐𝑬𝒏

(𝟐)
+⋯

Taylor series:

In the perturbative analysis:

𝑬𝒏 𝝀 = 𝑬𝒏 𝟎 + 𝝀
𝒅𝑬𝒏
𝒅𝝀

ቚ
𝝀→𝟎

+
𝝀𝟐

𝟐

𝒅𝟐𝑬𝒏
𝒅𝝀𝟐

ቚ
𝝀→𝟎

+⋯

Finite-field (FF) approach: 𝑬𝒏
(𝟏)

= 𝝀
𝒅𝑬𝒏

𝒅𝝀
|𝝀→𝟎 ≈

𝑬𝒏 +𝝀 − 𝑬𝒏(−𝝀)

𝟐 𝝀

|𝚿𝐧〉 = |𝚿𝐧
𝟎
〉 + 𝝀|𝚿𝐧

𝟏
〉 + 𝝀𝟐|𝚿𝐧

𝟐
〉 + ⋯

and

For the (N/S)MS: 𝐻𝑖𝑛𝑡 = 𝐾𝑁/𝑆𝑀𝑆 and 𝜆 = 𝜇𝐴

For the FS: 𝐻𝑖𝑛𝑡 = 𝐹 and 𝜆 = 𝛿〈𝑟𝑟𝑚𝑠
2 〉



Points to be noted about the FF approach

𝐻𝜆 = 𝐻𝑎𝑡 + 𝜆𝐹𝐹 + 𝜆𝑀𝑆 𝐾
𝑀𝑆

• Calculations to be carried out for +𝜆 and −𝜆. Again, to minimize numerical 
errors, calculations should be carried out for a number of  𝜆 values.

• Neglects 𝕺 𝝀𝟐 contributions, which may not be small.

• Choice of 𝝀 depends on properties of interest (𝑭, 𝑲𝑵𝑴𝑺, and 𝑲𝑺𝑴𝑺 may not 
be calculated accurately by considering same 𝝀). 

• Also, choice of  𝜆 can be atomic state dependent. 

• It will be difficult to account contributions interactions among the FS and 
MS interactions, as well as the second-order effects. i.e.

𝑬𝝀 = 𝑬𝟎
(𝟎,𝟎)

+ 𝝀𝑭𝑬𝟎
(𝟏,𝟎)

+ 𝝀𝑭
𝟐𝑬𝟎

(𝟐,𝟎)
+⋯

+𝜆𝐹𝜆𝑀𝑆𝐸0
(1,1)

+⋯

+𝜆𝑀𝑆𝐸0
(0,1)

+ 𝜆𝑀𝑆
2 𝐸0

(0,2)
+⋯



Approaches to evaluate the first-order energy

𝑬𝒏 𝝀 = 𝑬𝒏
𝟎
+ 𝝀𝑬𝒏

𝟏
+ 𝝀𝟐𝑬𝒏

(𝟐)
+⋯

In the perturbative theory:

The expectation value evaluation (EVE) approach:

𝑬𝒏
(𝟏)

= 𝑯𝒊𝒏𝒕 =
〈𝚿𝐧

𝟎
𝐇𝐢𝐧𝐭 𝚿𝐧

(𝟎)
〉

〈𝚿𝒏
𝟎
|𝚿𝐧

(𝟎)
〉

Analytical Response (AR) approach:

|𝚿𝐧〉 = |𝚿𝐧
𝟎
〉 + 𝝀|𝚿𝐧

𝟏
〉 + 𝝀𝟐|𝚿𝐧

𝟐
〉 + ⋯

𝑯𝟎 − 𝑬𝒏
(𝟎)

|𝚿𝒏
𝟏
〉 = 𝑬𝒏

𝟏
−𝑯𝒊𝒏𝒕 |𝚿𝐧

𝟎
〉

In many-body methods, the AR approach is more difficult to implement

than the EVE approach. However, the AR approach has several

advantages over the EVE approach in the coupled-cluster theory.



𝚿𝟎 = 𝚽𝟎 + 𝝀 𝚽𝟎
𝟏

+ 𝝀𝟐 𝚽𝟎
𝟐

+ 𝝀𝟑 𝚽𝟎
𝟑

+⋯

where 𝚽𝟎 is the (Dirac)-Hartree-Fock mean-field wave function and each 

order is given by: Φ0
𝑛

= σ𝑘≠0
𝑁 Φ𝑘

0
𝐶0𝑘
(𝑛)

Coupled-cluster vs. Perturbation Methods

𝚿𝟎 = 𝚽𝟎 + 𝑻𝑰 𝚽𝟎 + 𝑻𝑰𝑰 +
𝟏

𝟐
𝑻𝑰
𝟐 𝚽𝟎 + ⋯+ 𝑻𝑵 𝚽𝟎

= 𝒆𝑻 𝚽𝟎 T = TI + TII +⋯+ 𝑇𝑁

Coupled-cluster (CC) theory (gold standard):  

where

Many-body perturbation theory (MBPT):  

With the same computational effort, the CC method includes 

electron correlation effects to all-orders and more physical effects. 



Energy equation in (R)CC theory (FF approach)

𝑬𝟎 = 〈𝑯𝟎〉 =
𝚿𝟎 𝑯𝟎 𝚿𝟎

𝚿𝟎 𝚿𝟎

Energy expression:

𝑬𝟎 =
𝚽𝟎 𝒆

𝑻+𝑯𝟎𝒆
𝑻 𝚽𝟎

𝚽𝟎 𝒆
𝑻+𝒆𝑻 𝚽𝟎

=
σ𝑲 𝚽𝟎 𝒆

𝑻+𝒆𝑻 𝚽𝑲 〈𝚽𝑲|𝒆
−𝑻𝑯𝟎𝒆

𝑻 𝚽𝟎

𝚽𝟎 𝒆
𝑻+𝒆𝑻 𝚽𝟎

= 𝚽𝟎 𝒆
−𝑻𝑯𝟎𝒆

𝑻 𝚽𝟎 = 𝚽𝟎 𝑯𝟎𝒆
𝑻

𝒄
𝚽𝟎

Excitation amplitudes: 𝚽𝑲 𝑯𝟎𝒆
𝑻

𝒄
𝚽𝟎 = 𝟎

In the FF approach of RCC theory, the same equations are used for IS.



Expectation value evaluation (EVE) approach

𝐻𝑖𝑛𝑡 =
Ψ0 𝐻𝑖𝑛𝑡 Ψ0

Ψ0 Ψ0
=

Φ0 𝑒
𝑇+𝐻𝑖𝑛𝑡𝑒

𝑇 Φ0

Φ0 𝑒
𝑇+𝑒𝑇 Φ0

IS evaluating expression:

• Possesses two non-terminating series.

• Unmanageable with two-body operators like SMS operator.

• It does not satisfy the Hellmann-Feynman theorem.
(energy and property evaluating equations are different)

⇒ 𝑒𝑇
+
𝐻𝑖𝑛𝑡𝑒

𝑇 = 𝐻𝑖𝑛𝑡 +𝐻𝑖𝑛𝑡𝑇 + 𝑇+𝐻𝑖𝑛𝑡 + 𝑇+𝐻𝑖𝑛𝑡𝑇 +
1

2
𝐻𝑖𝑛𝑡𝑇

2 +⋯

And    𝑒𝑇
+
𝑒𝑇 = 1 + 𝑇+𝑇 +

1

2
𝑇+𝑇2 +⋯



In the AR RCC method, we express

and

Ψ0 = 𝑒𝑇 Φ0 = 𝑒𝑇
(0)+𝜆𝑇(1)|Φ0〉

𝐻𝜆 = 𝐻0 + 𝜆𝐻𝑖𝑛𝑡 Ψ0 ≃ |Ψ0
0
〉 + 𝜆 |Ψ0

1
〉

First-order Eqn:

⇒ Ψ0
0

= 𝑒𝑇
(0)

|Φ0〉

Ψ0
1

= 𝑒𝑇
(0)

1 + 𝑇(1) |Φ0〉and

It yields that:

𝐻𝑖𝑛𝑡 ≡ 𝐸0
1
= 〈Φ0 (𝐻0𝑒

𝑇(0)𝑇(1))𝑐 + 𝐻𝑖𝑛𝑡𝑒
𝑇(0)

𝑐
Φ0〉

((𝐻0−𝐸0
0
)|Ψ𝑛

1
〉 = (𝐸0

1
−𝐻𝑖𝑛𝑡) |Ψ0

(0)
〉

Analytic Response approach in (R)CC method



• All the terms are terminated.

• It satisfies the Hellmann-Feynman theorem (as it 

is derived from energy expression).

• Free from choice of any perturbative parameter.

• Computational efforts are less than other 

approaches of the RCC method.

• Second-order IS effects can be easily evaluated by: 

Advantages of AR approach in the RCC method

𝐸0
2
= Ψ0

0
𝐻𝑖𝑛𝑡|Ψ0

1
〉

=
Φ0 𝑒

𝑇(0)
+

𝐻𝑖𝑛𝑡𝑒
𝑇(0)𝑇(1) Φ0

Φ0 𝑒
𝑇(0)

+

𝑒𝑇
(0)

Φ0



Nature Physics (accepted)

A few notable results from the AR-RCC method 



The largest CKM matrix element 𝑉𝑢𝑑 can be 

extracted from the superallowed 0+ →
0+beta transition between states with isospin 

𝑇 = 1. It is usually parameterized as:

𝑉𝑢𝑑
−2 ∝ 𝑓𝑡(1 + 𝛿𝑅

′ )(1 + 𝛿𝑁𝑆 − 𝛿𝐶)(1 + Δ𝑅
𝑉)

where 𝑓(𝑄) is the statistical rate function, 𝑡 is 

the half-life of beta, Δ is the nucleus independent 

correction and 𝛿 is the nucleus dependent 

correction.

This study requires accurate estimate of 

𝑟𝑟𝑚𝑠
2 26𝑚,27

𝑟𝑟𝑚𝑠
2 26𝑚,27 = 0.429(45)(76)

IS studies in Al and implication to particle physics  

Energies of Al from RCC theory



FF ARvs.

RCC results for IS constants in Al using FF and AR



RCC results for Potassium (FF approach)

Energies

F constants



NMS and SMS constants of K from FF approach



IS constants of K from AR approach



IS constants of K from EVE approach



New IS interaction from BSM physics

A new spin-1 light boson:

𝑉 𝑟 = −1 1+𝑠෍

𝑛

𝑦𝑒𝑦𝑛
𝑒−

𝑚𝜙𝑐𝑟

ℏ

4𝜋𝑟

where 𝑚𝜙 and 𝑠 are the mass and spin of the new

boson, respectively, 𝑦𝑒 is the electron coupling
coefficient and 𝑦𝑛 is the neutron coupling coefficient.

𝜙

N

e e

e-

N(q)

N(q)

e-

γ,Z,Z’,χ

In addition to photons, there could be 
other intermediate particles between 
electrons and nucleus in an atom.  

It could contribute to the IS shifts in isotopes, but will be of 
the order-of second-order effects (non-linear King’s plot).



Inferring BSM Physics from King’s Plot

King’s plot for the first-order IS:

𝜈𝑏
𝐴𝐴′

𝜇𝐴𝐴′
≃

𝐹𝑏

𝐹𝑎

𝜈𝑎
𝐴𝐴′

𝜇𝐴𝐴′
+ (𝐾𝑏

𝑀𝑆 −
𝐹𝑏

𝐹𝑎
𝐾𝑎
𝑀𝑆)

Inclusion of  higher-order field shift (FS): 

Δ𝐸𝑖
𝐴𝐴′ ≃ 𝜇𝐴𝐴′𝐾𝑖

𝑀𝑆 + 𝑭𝒊𝜹 𝒓𝒓𝒎𝒔
𝟐 + 𝐺𝑖

2
𝜹 𝒓𝒓𝒎𝒔

𝟐 2
+ 𝑮𝒊

(𝟒)
𝜹 𝒓𝒓𝒎𝒔

𝟒

This will lead to: 

𝜈𝑏
𝐴𝐴′

𝜇𝐴𝐴′
≅
𝜈𝑎
𝐴𝐴′

𝜇𝐴𝐴′
+ 𝐾𝑏

𝑀𝑆 −
𝐹𝑏
𝐹𝑎

𝐾𝑎
𝑀𝑆 + 𝐺𝑏

(2)
−
𝐹𝑏
𝐹𝑎

𝐺𝑎
(2) 𝜹 𝒓𝒓𝒎𝒔

𝟐 2

𝜇𝐴𝐴′

+ 𝐺𝑏
(4)

−
𝐹𝑏

𝐹𝑎
𝐺𝑎
(4) 𝜹 𝒓𝒓𝒎𝒔

𝟒

𝜇𝐴𝐴′
+ 𝜈𝑏

𝑁𝑃 −
𝐹𝑏

𝐹𝑎
𝜈𝑎
𝑁𝑃 𝟏

𝜇𝐴𝐴′





6S1/2 5D3/2 5D5/2

NMS (GHz amu)

-------------------------------------------------------------------

DHF 3755.62 5847.74 5524.06

RCCSD 1335.43 1074.63 1085.54

RCCSD-T 1372.24 1065.39 1080.01 

RCCSDTv 1510.01 972.52 1040.80

+Breit 2.13 6.01 6.10

---------------------------------------------------------------------

Final 1512(100) 979(50) 1047(50)

Scaling 1615.52 1237.91 1215.35

__________________________________________

SMS (GHz amu)

----------------------------------------------------------------------

DHF -2331.98 -4479.18 -4198.62

RCCSD 446.43 -653.61 -687.37

RCCSD-T -85.06 -1002.32 -1002.67

RCCSDTv 551.19 -811.97 -850.59

+Breit 5.11 -12.24 -10.01

----------------------------------------------------------------------

Final 556.30 -824.21 -860.60

FS (MHz/fm^2)

-------------------------------------------------------------------

DHF -11327.28 -0.0002 ~0.0

RCCSD -14811.36 1664.98 1444.95

RCCSD-T -14610.25 1663.95 1439.48 

RCCSDTv -15077.50 1526.21 1295.46

+Breit 51.59 10.83 14.06

--------------------------------------------------------------------

Final -15025.91(450) 1537.04(50) 1309.52(50)

_________________________________________

G^(2) (MHz/fm^4)

-------------------------------------------------------------------

DHF 30.33 ~0.0 ~0.0

RCCSD 39.66 -4.44 -3.86

RCCSD-T 39.12 -4.44 -3.84

RCCSDTv 40.18 -4.10 -3.48

+Breit -0.15 -0.06 -0.06

-------------------------------------------------------------------

Final 40.03 -4.16 -3.54

-------------------------------------------------------------------

G^(4) from fitting (MHz/fm^4)

--------------------------------------------------------------------

DHF 10.93 ~0.0 0.0

RCCSD 13.86 -1.78 -1.70

+Breit -0.05 -0.01 ~0.0

----------------------------------------------------------------------

Final 13.81(20) -1.79(22) -1.70(20)

Preliminary Calculations using AR-RCC in the Yb
+

ion



 Developed all-order relativistic many-body methods for accurate 

calculations of atomic properties..  

 We have developed RCC methods in the FF, EVE and AR 

frameworks to estimate isotope shifts.

 Nuclear charge radii of indium, aluminum, potassium etc. 

isotopes were investigated using our RCC methods.

 Intend to extend these studies in other elements of periodic table 

to understand roles of electron correlation effects in them.

Planning to develop codes further to study the effects of non-

linear effects and infer new physics from Isotope Shifts.

Developing new many-body methods to study these effects.

Summary and Outlook



Weak interaction Hamiltonian(s)

𝐻𝑃𝑁𝐶 = 𝐻𝑃𝑁𝐶
𝑁𝑆𝐼 +𝐻𝑃𝑁𝐶

𝑁𝑆𝐷

=
𝐺𝐹

2
−

𝑄𝑊

2
𝛾5 + 𝜅 Ԧ𝛼 ⋅ Ԧ𝐼 𝜌𝑛(𝑟)

where 𝐺𝐹 ≈ 2.219 × 10−14 𝑎𝑢 is the Fermi constant, Ԧ𝐼 is 
the nuclear spin, 𝛼 and 𝛾5 are the Dirac matrices and 
𝜌𝑛 𝑟 is the nuclear density.  

The dimensionless constants 𝑄𝑊 and 𝜅 characterize the 
strengths of the NSI and NSD interactions respectively. 

e-

e-

N(q)

N(q)

Z0

A/V V/AAtomic Hamiltonian:

Strength:  ~ 10−14



C. S. Wood et al,  Science 275, 1759 (1997).

NSI amplitude:

𝑰𝒎
𝑬𝟏𝑷𝑵𝑪

𝑵𝑺𝑰

𝜷
= −𝟏. 𝟓𝟗𝟑𝟓 𝟓𝟔 𝒎𝑽/𝒄𝒎

NSD amplitude:

𝑰𝒎
𝑬𝟏𝑷𝑵𝑪

𝑵𝑺𝑫

𝜷
= −𝟎. 𝟎𝟕𝟕 𝟏𝟏 𝒎𝑽/𝒄𝒎

Precise measurement in 133Cs (~0.35%)

𝑰𝒎
𝑬𝟏𝑷𝑵𝑪

𝑵𝑺𝑰

𝜷

𝒆𝒙𝒑𝒕

= 𝑸𝑾 ×
𝑬𝟏𝑷𝑵𝑪

𝑵𝑺𝑰

𝑸𝑾

𝒕𝒉𝒆𝒐𝒓𝒚

×
𝟏

𝜷

𝒆𝒙𝒑𝒕/𝒕𝒉𝒆𝒐𝒓𝒚

≤ 0.5% ≤ 0.5% ≤ 0.5%

Till today 3 groups have reported calculations within 0.5% but their 

final results differ by about 1%. The measurement may have an issue.



A perturbative approach (NSI)

𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰

𝑸𝑾

𝒕𝒉𝒆𝒐𝒓𝒚

=
𝜳𝒇 𝑫𝜳𝒊

𝚿𝒇 𝚿𝒇 𝚿𝒊 𝚿𝒊

≃
𝚿𝒇
(𝟎)

𝑫𝚿𝒊
(𝟏)

+ 𝜳𝒇
(𝟏)

𝑫𝜳𝒊
(𝟎)

𝚿𝒇
(𝟎)

𝚿𝒇
(𝟎)

𝚿𝒊
(𝟎)

𝚿𝒊
(𝟎)

Since electromagnetic interactions dominates strongly:

𝚿𝒏(𝒏, 𝑱) = 𝚿𝒏
(𝟎)
(𝒏, 𝑱, 𝝅) + 𝑮𝑭 𝚿𝒏

𝟏
(𝒏, 𝑱, 𝝅′) + 𝑶 𝑮𝑭

𝟐

And 𝑶 𝑮𝑭
𝟐 ≈ 𝟏𝟎−𝟐𝟖, 𝚿𝒏(𝒏, 𝑱) ≈ 𝚿𝒏

(𝟎)
(𝒏, 𝑱, 𝝅) + 𝑮𝑭 𝚿𝒏

𝟏
(𝒏, 𝑱, 𝝅′)

Thus:

𝐻 = 𝐻𝑎𝑡 + 𝐺𝐹𝐻𝑤 with  𝑮𝑭 ≈ 𝟐. 𝟐 × 𝟏𝟎−𝟏𝟒 𝒂. 𝒖.Here:

 Requirements are:

o Determination of the zeroth- and first-order wave functions.

o Equal treatment of both the wave functions using a single theory.



Sum-over-states approach and accuracy test

𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰 ≃෍

𝑰≠𝒊

𝚿𝒇
(𝟎)

𝑫 𝚿𝑰
(𝟎)

𝚿𝑰
(𝟎)

𝑯𝒘 𝚿𝒊
(𝟎)

𝑬𝒊
𝟎
− 𝑬𝑰

𝟎
+෍

𝒇≠𝒊

𝚿𝒇
(𝟎)

𝑯𝒘 𝚿𝑰
(𝟎)

𝚿𝑰
(𝟎)

𝑫 𝚿𝒊
(𝟎)

𝑬𝒇
𝟎
− 𝑬𝑰

𝟎

In sum-over-states approach: ඀|𝚿𝒏
(𝟏)

= σ𝑰≠𝒏 |𝚿𝑰
(𝟎)
〉

𝚿𝑰
(𝟎)

𝑯𝒘 𝚿𝒏
(𝟎)

𝑬𝒏
𝟎
−𝑬𝑰

𝟎

Which leads to:

Accuracy test:

where 𝑄𝑊 is absorbed in defining unit of the 𝐸1𝑃𝑁𝐶
𝑁𝑆𝐼 amplitude. 

• Ψ𝐼 𝐷 Ψ𝐽  comparing calculated E1 matrix elements with expt values.

• Ψ𝐼 𝐻𝑊 Ψ𝐽 → Ψ𝐼 𝐻ℎ𝑦𝑓 Ψ𝐽 ≈ Ψ𝐼 𝐻ℎ𝑦𝑓 Ψ𝐼 Ψ𝐽 𝐻ℎ𝑦𝑓 Ψ𝐽 (expt values).

• 𝐸𝐼
(0)

− 𝐸𝐽
(0)
 comparing calculated excitation energies with expt values.



Calculations for Cs and Shortcomings

𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰 𝟔𝑺 → 𝟕𝑺 = ෍

𝒏𝒑𝟏/𝟐

𝟕𝑺 𝑫 𝒏𝒑𝟏/𝟐 𝒏𝒑𝟏/𝟐 𝑯𝑾 𝟔𝑺

𝑬𝟔𝑺
𝟎
− 𝑬𝒏𝑷𝟏/𝟐

𝟎

+σ𝒏𝒑𝟏/𝟐

𝟕𝑺 𝑯𝑾 𝒏𝒑𝟏/𝟐 𝒏𝒑𝟏/𝟐 𝑫 𝟔𝑺

𝑬𝟕𝑺
𝟎
−𝑬𝒏𝒑𝟏/𝟐

𝟎

= Core (n<6) + Main (n=6-9)  + Tail 

Limitations:

 Core, Main and Tail contributions cannot be treated on equal footing. 

 Correlations among the Core and Valence electrons not treated aptly. 

 Correlations among weak and electromagnetic ints. are not on same level. So 

it misses double-core-polarization (DCP) effects. 



Discrepancies from high-accuracy calculations

1/2 1/2 1/2 1/2

(0) (0) (0) (0) (0) (0) (0) (0)

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

(0) (0) (0) (0)

6 7

7 6 7 6
1

w wNSI

PNC

n nS nP S nP

S D nP nP H S S H nP nP D S
E

E E E E
 

 
 

( 6) ( 6 9) ( 10)

Valence

Core n Main n Tail n      

Contribution to the 𝑬𝟏𝑷𝑽
𝑵𝑺𝑰 amplitude of the 7S-6S transition in 133Cs in 𝟏𝟎−𝟏𝟏𝒊 −

𝑸𝒘

𝑵
𝒆𝒂𝟎

Reference Core Main Tail Total Method

Porsev et al. PRL 2009, 
PRD 2010

-0.0020 0.8823 0.0195 0.8998 CCSDvT, sum-over-states,
Blend of methods

Dzuba et al. PRL 2012 0.0018

0.0018

0.8711

0.8823

0.0238

0.0238

0.8967

0.9079

TDHF+BO (original)

Borrowed from Porsev et al.

Sahoo et al. PRD 2021 -0.0018 0.8594* 0.0391 0.8967 RCCSDT

Tan et al. PRA 2022 _ _ _ 0.8903 Parity-mixed RPA

* Contribution from the 9𝑃1/2 state included in Tail



Equivalent expressions

𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰 = 𝜳𝒇

𝟎
𝑫 𝜳𝒊

𝟏
+ 𝜳𝒇

𝟏
𝑫 𝜳𝒊

𝟎

= σ𝒌≠𝒊 𝜳𝒇
𝟎

𝑫 𝜳𝒌
𝟎

𝜳𝒌
𝟎
𝑯𝒘 𝜳𝒊

𝟎

𝑬𝒊
(𝟎)

−𝑬𝒌
(𝟎) + σ 𝒌≠𝒇

𝜳𝒇
𝟎
𝑯𝒘 𝜳𝒌

𝟎

𝑬𝒇
(𝟎)

−𝑬𝒌
(𝟎) 𝜳𝒌

𝟎
𝑫 𝜳𝒊

𝟎

(0) (0)

(1) (0)

(0) (0)

| |
| |

( )

k f

f

k i f

k

k

D

E E 

  
    

 


(0) (0)
(1) (0)

(0) (0)

| |
| |

( )

k i
i

k f i

k

k

D

E E 

  
    

 


𝑬𝟏𝑷𝑽
𝑵𝑺𝑰 = 𝜳𝒇

𝟎
𝑫 𝜳𝒊

𝟏
+ 𝜳𝒇

𝟏
𝑫 𝜳𝒊

𝟎

= ෩𝚿𝒇
𝟏
𝑯𝒘 𝚿𝒊

𝟎
+ 𝜳𝒇

𝟎
𝑯𝒘

෩𝚿𝒊
(𝟏)

= 𝜳𝒇
𝟎
𝑫 𝜳𝒊

𝟏
+ 𝜳𝒇

𝟎
𝑯𝒘

෩𝜳𝒊
(𝟏)

= ෩𝚿𝒇
𝟏
𝑯𝒘 𝚿𝒊

𝟎
+ 𝜳𝒇

𝟏
𝑫 𝜳𝒊

𝟎

and

By using 𝝎 = 𝑬𝒇
(𝟎)

− 𝑬𝒊
𝟎

, we can write:

All are equivalent 
in an exact theory.



𝑬𝟏𝑷𝑵𝑪
𝑵𝑺𝑰 = 𝚿𝒇

(𝟎)
𝑫 𝚿𝒊

(𝟏)
+ 𝜳𝒇

(𝟏)
𝑫 𝜳𝒊

(𝟎)

∼ 𝚽𝒇
(𝟎)

𝑫 𝚽𝒊
(∞,𝟏)

+ 𝚽𝒇
(∞,𝟏)

𝑫 𝚽𝒊
(𝟎)

∼ 𝚽𝒇
𝟎
𝑯𝑵𝑺𝑰
𝑷𝑵𝑪 𝚽𝒊

∞,𝟏
+ 𝚽𝒇

(∞,𝟏)
𝑯𝑵𝑺𝑰
𝑷𝑵𝑪 𝚽𝒊

(𝟎)

CPDF and RPA methods: 

• Includes only a set of single excitations with all-order perturbation in 
residual interactions (core-polarization effects).

• Misses out pair-correlation contributions. 
• Does not include correlations among the 𝐷 and  𝐻𝑃𝑁𝐶

𝑁𝑆𝐼 operators.

∼ 𝚽𝒇
𝟎
𝑯𝑵𝑺𝑰
𝑷𝑵𝑪 𝚽𝒊

∞,𝟏
+ 𝚽𝒇

(𝟎)
𝑫 𝚽𝒊

(∞,𝟏)

Differences due to approximations

→ 𝑪𝑷𝑫𝑭 method

→𝑹𝑪𝑪 method

→𝑹𝑷𝑨

→ 𝑻𝑫𝑯𝑭 method



At the DHF level:

• The intermediate state is a single atomic state.

• We can segregate Core and  Valence 

contribution uniquely.

After including correlation effect:

• One cannot uniquely split correlation 

correction in  the Core and Valence 

contributions. 

• Depending upon choice of perturbation 

the definition of Core and Valence 

contribution changes.

Diagrammatic representation



Method ⟨𝟕𝑺𝑷𝑽|𝑫|𝟔𝑺⟩ ⟨𝟕𝑺 𝑫 𝟔𝑺𝑷𝑽 ⟩ Sum Method ⟨𝟕𝑺𝑷𝑽|𝑫|𝟔𝑺⟩ ⟨𝟕𝑺 𝑫 𝟔𝑺𝑷𝑽 ⟩ Sum

Ours                                                  Core                                     Roberts et al. PRD 2022

DHF −0.02638 0.02465 −0.00173 HF −0.02645 0.02472 −0.00174

CPDF −0.04298 0.04099 −0.00199 HF+𝛿𝑉𝑤
∞ −0.04319 0.04119 −0.00201

RPA −0.03536 0.03564 0.00028

CPDF-RPA* −0.05794 0.05963 0.00169 HF+𝛿𝑉𝑤
∞ +

𝛿𝑉𝑑
∞

−0.05822 0.05992 0.00170

Method ⟨𝟕𝑺𝑷𝑽|𝑫|𝟔𝑺⟩ ⟨𝟕𝑺 𝑫 𝟔𝑺𝑷𝑽 ⟩ Sum ⟨𝟕𝑺𝑷𝑽|𝑫|𝟔𝑺⟩ ⟨𝟕𝑺 𝑫 𝟔𝑺𝑷𝑽 ⟩ Sum

Ours                                                  Total                        Martensson et al. J. Phys. 1985

DHF 1.01168 −0.27418 0.73750 DHF 1.010 −0.274 0.736

CPDF 1.26664 −0.34409 0.92255 CPDF 1.267 −0.344 0.924

RPA 1.02557 −0.31617 0.70940 RPA 1.023 −0.316 0.707

CPDF-RPA* 1.27910 −0.39150 0.88760 CPDF-RPA* 1.279 −0.391 0.888

CPDF-RPA 0.88590 CPDF-RPA 0.886

𝐓𝐚𝐛𝐥𝐞: E1𝑃𝑉
𝑁𝑆𝐼 for the 7S − 6S transition in 133𝐶𝑠 across different many body methods

Reproducing Dzuba et al’s results (J Chem Phys A 127, 7518 (2023))



e-q couplings and Masses of extra Z-bosons 

𝑸𝑾
𝑺𝑴 = −𝟕𝟑. 𝟐𝟑(𝟏)

Measurement + calculations:

In the SM:

By using the relation: 376𝐶1𝑢 + 422𝐶1𝑑 = 73.71(35)

𝑪𝟏𝒖 = −𝟎. 𝟏𝟖𝟕𝟕(𝟗) for 𝐶1𝑑 = 0.3419 and    

𝑪𝟏𝒅 = 𝟑𝟒𝟐𝟗(𝟖) for 𝐶1𝑢 = −0.1888.

Phys. Rev. D 103, 111303(L) (2021)

Mass of a dark-boson: 𝜹𝝐 𝑴𝒁
𝑴𝒁𝒅

≃ −𝟎. 𝟎𝟎𝟓𝟏(𝟑𝟕).

𝑸𝑾
𝒁,𝑵 = −𝟕𝟑. 𝟕𝟏 𝟐𝟔 𝒆𝒙 𝟐𝟑 𝒕𝒉

Mass of an extra boson: 𝑴𝒁𝒙 ≥ 𝟐. 𝟑𝟔 𝑻𝒆𝑽.

with sin2 ҧ𝜃𝑊 2.4 𝑀𝑒𝑉 = 0.23857(5)

From the difference: 𝐬𝐢𝐧𝟐 ഥ𝜽𝑾 𝟐. 𝟒 𝑴𝒆𝑽 = 𝟎. 𝟐𝟒𝟎𝟖(𝟏𝟔)



Summary & Outlook   

 Our RCC method treats the ``Core”, ``Main” and ``Tail” 

contributions to E1PNC on an equal footing.

 It also accounts for DCP contributions implicitly.

 Though our calculation shows ``Core” contribution is 

agreeing with Porsev et al (2009 & 2010); it neglects a lot 

of physical effects that Dzuba et al and we consider.

 It estimates uncertainties to ``Core”, ``Main” and ``Tail” in a 

consistent manner. 

 We are developing RCC methods to remove non-

terminating series in the calculations.

 The method has to be extended for NSD interactions.

 It is also necessary to calculate 𝜷 using a similar approach.



Open Questions

o Is there an ultimate atomic theory for accurate 

calculations?  

o Why results from different approaches of a given 

theory differ? Can these differences be 

removed/suppressed? 

o How to estimate uncertainties in many-body 

calculations?

o What are the implementation differences among 

nuclear, atomic and molecular many-body 

methods?
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