An Overview of Atomic Methods to Estimate Nuclear Charge Radii from Isotope Shifts + Addressing large differences among the APV results in ¹³³Cs

B. K. Sahoo

Atomic, Molecular and Optical Physics Division Physical Research Laboratory, Ahmedabad , India

Outline

- Theory of Atomic Energy Levels
- Isotope Shifts (IS)
- All-order methods to determine wave functions
- Different approaches for property evaluation
- Challenges in Isotope Shift calculations
- Atomic Parity Violating Amplitudes in ¹³³Cs
- Future directions and Summary

Hydrogen-like Systems

H-like systems:
$$h(m_e, N) = \frac{P_N^2}{2M_A} + \frac{p_e^2}{2m_e} + V_N(r_e, R_N)$$

 $\rho_e = r_e - R_N$ and $R_0 = \frac{M_N R_N + m_e \sum_i r_i}{M_N + Zm_e}$

Effective momenta and mass:

$$\mu_A = rac{M_N m_e}{M_N + m_e} \sim m_e \quad ext{and} \quad \pi_e = -i\hbar rac{\partial}{\partial \rho_e}$$

Schroedinger Eq: $h|\psi\rangle = \varepsilon |\psi\rangle$ with $h \simeq \frac{\pi_e^2}{2m_e} + V_N(\rho_e)$

Relativistic Hamiltonian: $h \simeq c \vec{\alpha} \cdot \vec{\pi} + \beta m_e c^2 + V_N(\rho_e)$

Multi-electron Systems

Hamiltonian:

$$H_{at} = \frac{P_N^2}{2M_N} + \sum_i \left[\frac{p_i^2}{2m_e} + V_N(R_N, r_i) \right] + \frac{1}{2} \sum_{i,j} \frac{1}{|\vec{r}_i - \vec{r}_j|}$$

We can express: $H_{at}(M_N, R_N, r_e) = H_N + H_0 + H_{MS} + H_{FS}$

where
$$H_{MS} = -\frac{1}{2} \frac{M_N}{(M_N + m_e)^2} \sum_{i,j} \left[\overrightarrow{p_i} \cdot \overrightarrow{p_j} \right]$$

$$= -\frac{1}{2} \frac{M_N}{(M_N + m_e)^2} \sum_i p_i^2 - \frac{1}{2} \frac{M_N}{(M_N + m_e)^2} \sum_{i,j \neq i} \left[\overrightarrow{p_i} \cdot \overrightarrow{p_j} \right]$$

and
$$H_{FS}(r_e) = -\frac{\partial V_N(R_N, r_e)}{\partial \langle R_N^2 \rangle} \, \delta \langle R_N^2 \rangle$$

Energy Level Shifts (isotope shift (IS))

Modified energy:
$$E = E_0 + \Delta E^{MS} + \Delta E^{FS}$$

$$\Delta E^{MS} = \Delta E_{NMS}^{(1)} + \Delta E_{SMS}^{(1)} + \mathcal{O} (\mu_A^2)$$

with
$$E_{NMS}^{(1)} = \mu_A K^{NMS}$$
 and $E_{SMS}^{(1)} = \mu_A K^{SMS}$

Similarly,
$$E^{FS} \approx \Delta E_{FS}^{(1)} + \mathcal{O} \left(\delta \langle r_{rms}^2 \rangle \right)^2$$
 with $E_{FS}^{(1)} = -F \, \delta \langle r_{rms}^2 \rangle$

Measuring ISs in two transitions *a* & *b* of isotopes (<u>King's plot</u>):

$$\frac{\nu_b^{AA'}}{\mu_{AA'}} \simeq \frac{F_b}{F_a} \frac{\nu_a^{AA'}}{\mu_{AA'}} + (K_b^{MS} - \frac{F_b}{F_a} K_a^{MS})$$

where $K^{MS} = K^{NMS} + K^{SMS}$ and $\mu_{AA'} = \mu_A - \mu_{A'}$

Relativistic Expressions and Challenges

In the first-order approximation, IS constants are needed to be determined:

$$F_{i} = \left\langle \frac{\delta V_{nuc}(r)}{\delta \langle r_{N}^{2} \rangle} \right\rangle$$

$$K^{NMS} = \frac{1}{2} \left\langle p^{2} - \frac{\alpha_{e}Z}{r} \left(\alpha \cdot p + \left(\alpha \cdot C^{1} \right)^{2} \right) \right\rangle$$

$$G_{NMS} = \frac{1}{2} \left\langle p^{2} - \frac{\alpha_{e}Z}{r} \left(\alpha \cdot p + \left(\alpha \cdot C^{1} \right)^{2} \right) \right\rangle$$

 $\mathbf{\Lambda}$

$$K^{SMS} = \frac{1}{2} \left(\sum_{kl} p_k \cdot p_l - \frac{\alpha_e Z}{r_k} (\alpha_k \cdot p_l + (\alpha_k \cdot C_k^1) (\alpha_l \cdot C_l^1) \right)$$

Typical approach to estimate first-order energy

In the presence of an interaction Hamiltonian H_{int} , we can express the total Hamiltonian $H = H_0 + \lambda H_{int}$ and energy $E_n = E_n^{(0)} + \Delta E_n(\lambda)$.

For the (N/S)MS:
$$H_{int} = K^{N/SMS}$$
 and $\lambda = \mu_A$
For the FS: $H_{int} = F$ and $\lambda = \delta \langle r_{rms}^2 \rangle$

In the perturbative analysis:

$$|\Psi_{n}\rangle = |\Psi_{n}^{(0)}\rangle + \lambda |\Psi_{n}^{(1)}\rangle + \lambda^{2} |\Psi_{n}^{(2)}\rangle + \cdots$$

and $E_{n}(\lambda) = E_{n}^{(0)} + \lambda E_{n}^{(1)} + \lambda^{2} E_{n}^{(2)} + \cdots$
Taylor series: $E_{n}(\lambda) = E_{n}(0) + \lambda \frac{dE_{n}}{d\lambda} \Big|_{\lambda \to 0} + \frac{\lambda^{2}}{2} \frac{d^{2}E_{n}}{d\lambda^{2}} \Big|_{\lambda \to 0} + \cdots$

Finite-field (FF) approach: $E_n^{(1)} = \lambda \frac{dE_n}{d\lambda}|_{\lambda \to 0} \approx \frac{E_n(+\lambda) - E_n(-\lambda)}{2\lambda}$

Points to be noted about the FF approach

- Calculations to be carried out for $+\lambda$ and $-\lambda$. Again, to minimize numerical errors, calculations should be carried out for a number of λ values.
- Neglects $\mathfrak{O}(\lambda^2)$ contributions, which may not be small.
- Choice of λ depends on properties of interest (F, K^{NMS} , and K^{SMS} may not be calculated accurately by considering same λ).
- Also, choice of λ can be atomic state dependent.
- It will be difficult to account contributions interactions among the FS and MS interactions, as well as the second-order effects. i.e.

$$\begin{aligned} H_{\lambda} &= H_{at} + \lambda_F F + \lambda_{MS} K^{MS} \\ E_{\lambda} &= E_0^{(0,0)} + \lambda_F E_0^{(1,0)} + \lambda_F^2 E_0^{(2,0)} + \cdots \\ &+ \lambda_{MS} E_0^{(0,1)} + \lambda_{MS}^2 E_0^{(0,2)} + \cdots \\ &+ \lambda_F \lambda_{MS} E_0^{(1,1)} + \cdots \end{aligned}$$

Approaches to evaluate the first-order energy

In the perturbative theory: $|\Psi_n\rangle = |\Psi_n^{(0)}\rangle + \lambda |\Psi_n^{(1)}\rangle + \lambda^2 |\Psi_n^{(2)}\rangle + \cdots$ $E_n(\lambda) = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots$

The expectation value evaluation (EVE) approach:

$$\boldsymbol{E_n^{(1)}} = \langle \boldsymbol{H}_{int} \rangle = \frac{\langle \Psi_n^{(0)} | \boldsymbol{H}_{int} | \Psi_n^{(0)} \rangle}{\langle \Psi_n^{(0)} | \Psi_n^{(0)} \rangle}$$

Analytical Response (AR) approach:

$$\left(H_0 - E_n^{(0)}\right) |\Psi_n^{(1)}\rangle = \left(E_n^{(1)} - H_{int}\right) |\Psi_n^{(0)}\rangle$$

In many-body methods, the AR approach is more difficult to implement than the EVE approach. However, the AR approach has several advantages over the EVE approach in the coupled-cluster theory.

Coupled-cluster vs. Perturbation Methods

Many-body perturbation theory (MBPT): $|\Psi_0\rangle = |\Phi_0\rangle + \lambda |\Phi_0^{(1)}\rangle + \lambda^2 |\Phi_0^{(2)}\rangle + \lambda^3 |\Phi_0^{(3)}\rangle + \cdots$

where $|\Phi_0\rangle$ is the (Dirac)-Hartree-Fock mean-field wave function and each order is given by: $|\Phi_0^{(n)}\rangle = \sum_{k\neq 0}^N |\Phi_k^{(0)}\rangle \ C_{0k}^{(n)}$

Coupled-cluster (CC) theory (gold standard):

$$|\Psi_{0}\rangle = |\Phi_{0}\rangle + T_{I}|\Phi_{0}\rangle + \left(T_{II} + \frac{1}{2}T_{I}^{2}\right)|\Phi_{0}\rangle + \dots + T_{N}|\Phi_{0}\rangle$$
$$= e^{T}|\Phi_{0}\rangle \qquad \text{where} \quad T = T_{I} + T_{II} + \dots + T_{N}$$

With the same computational effort, the CC method includes electron correlation effects to all-orders and more physical effects.

Energy equation in (R)CC theory (FF approach)

Energy expression: $E_0 = \langle H_0 \rangle = \frac{\langle \Psi_0 | H_0 | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle}$

$$E_{0} = \frac{\langle \Phi_{0} | e^{T^{+}} H_{0} e^{T} | \Phi_{0} \rangle}{\langle \Phi_{0} | e^{T^{+}} e^{T} | \Phi_{0} \rangle} = \frac{\sum_{K} \langle \Phi_{0} | e^{T^{+}} e^{T} | \Phi_{K} \rangle \langle \Phi_{K} | e^{-T} H_{0} e^{T} | \Phi_{0} \rangle}{\langle \Phi_{0} | e^{T^{+}} e^{T} | \Phi_{0} \rangle}$$
$$= \langle \Phi_{0} | e^{-T} H_{0} e^{T} | \Phi_{0} \rangle = \langle \Phi_{0} | (H_{0} e^{T})_{c} | \Phi_{0} \rangle$$

Excitation amplitudes: $\left| \left\langle \Phi_{K} \middle| \left(H_{0} e^{T} \right)_{c} \middle| \Phi_{0} \right\rangle = 0 \right|$

In the FF approach of RCC theory, the same equations are used for IS.

Expectation value evaluation (EVE) approach

IS evaluating expression:

$$\langle H_{int} \rangle = \frac{\langle \Psi_0 | H_{int} | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle} = \frac{\langle \Phi_0 | e^{T^+} H_{int} e^T | \Phi_0 \rangle}{\langle \Phi_0 | e^{T^+} e^T | \Phi_0 \rangle}$$

- Possesses two non-terminating series.
- Unmanageable with two-body operators like SMS operator.
- It does not satisfy the Hellmann-Feynman theorem. (energy and property evaluating equations are different)

$$\Rightarrow e^{T^{+}} H_{int} e^{T} = H_{int} + H_{int} T + T^{+} H_{int} + T^{+} H_{int} T + \frac{1}{2} H_{int} T^{2} + \cdots$$

And $e^{T^{+}} e^{T} = 1 + T^{+} T + \frac{1}{2} T^{+} T^{2} + \cdots$

Analytic Response approach in (R)CC method

In the AR RCC method, we express

$$H_{\lambda} = H_0 + \lambda H_{int}$$
 and $|\Psi_0\rangle \simeq |\Psi_0^{(0)}\rangle + \lambda |\Psi_0^{(1)}\rangle$

First-order Eqn: $(H_0 - E_0^{(0)}) |\Psi_n^{(1)}\rangle = (E_0^{(1)} - H_{int}) |\Psi_0^{(0)}\rangle$

$$|\Psi_{0}\rangle = e^{T} |\Phi_{0}\rangle = e^{T^{(0)} + \lambda T^{(1)}} |\Phi_{0}\rangle$$
$$\Rightarrow |\Psi_{0}^{(0)}\rangle = e^{T^{(0)}} |\Phi_{0}\rangle$$
and $|\Psi_{0}^{(1)}\rangle = e^{T^{(0)}} (1 + T^{(1)}) |\Phi_{0}\rangle$

It yields that:

$$\langle H_{int} \rangle \equiv E_0^{(1)} = \langle \Phi_0 \left| (H_0 e^{T^{(0)}} T^{(1)})_c + (H_{int} e^{T^{(0)}})_c \right| \Phi_0 \rangle$$

Advantages of AR approach in the RCC method

- All the terms are terminated.
- It satisfies the Hellmann-Feynman theorem (as it is derived from energy expression).
- Free from choice of any perturbative parameter.
- Computational efforts are less than other approaches of the RCC method.
- Second-order IS effects can be easily evaluated by:

$$E_{0}^{(2)} = \langle \Psi_{0}^{(0)} \middle| H_{int} | \Psi_{0}^{(1)} \rangle$$
$$= \frac{\langle \Phi_{0} \middle| e^{T^{(0)}} H_{int} e^{T^{(0)}} T^{(1)} \middle| \Phi_{0} \rangle}{\langle \Phi_{0} \middle| e^{T^{(0)}} e^{T^{(0)}} \middle| \Phi_{0} \rangle}$$

A few notable results from the AR-RCC method

Á. Koszorús^{1,17} 🖂, X. F. Yang^{1,2} 🖾, W. G. Jiang^{3,4,5}, S. J. Novario^{3,4}, S. W. Bai², J. Billowes⁶, C. L. Binnersley⁶, M. L. Bissell⁶, T. E. Cocolios¹, B. S. Cooper⁶, R. P. de Groote^{7,8}, A. Ekström⁵, K. T. Flanagan^{6,9}, C. Forssén^{10,5}, S. Franchoo¹⁰, R. F. Garcia Ruiz^{10,11,12}, F. P. Gustafsson^{10,1}, G. Hagen^{0,4}, G. R. Jansen ⁹⁴, A. Kanellakopoulos ⁹¹, M. Kortelainen ⁹⁷⁸, W. Nazarewicz ⁹¹³, G. Neyens ^{91,12}, T. Papenbrock ³⁴, P.-G. Reinhard ¹⁴, C. M. Ricketts ⁶, B. K. Sahoo ¹⁵, A. R. Vernon ¹⁶ and S. G. Wilkins¹⁶

Electromagnetic Properties of Indium Isotopes Elucidate the Doubly Magic Character of ¹⁰⁰Sn

Nature Physics (accepted)

All-optical differential radii in zinc

Reconciling mean-squared radius differences in the silver chain through improved measurement and ab initio calculations

PHYSICAL REVIEW RESEARCH 5, 043142 (2023)

PHYSICAL REVIEW RESEARCH 6. 033040 (2024)

IS studies in Al and implication to particle physics

The largest CKM matrix element V_{ud} can be extracted from the superallowed $0^+ \rightarrow 0^+$ beta transition between states with isospin T = 1. It is usually parameterized as:

 $V_{ud}^{-2} \propto ft(1+\delta_R')(1+\delta_{NS}-\delta_C)(1+\Delta_R^V)$

where f(Q) is the statistical rate function, t is the half-life of beta, Δ is the nucleus independent correction and δ is the nucleus dependent correction.

This study requires accurate estimate of

 $\langle r_{rms}^2\rangle^{26m,27}$

Nuclear Charge Radius of ^{26m}Al and Its Implication for V_{ud} in the Quark Mixing Matrix

 $\langle r_{rms}^2 \rangle^{26m,27} = 0.429(45)(76)$

PHYSICAL REVIEW LETTERS 131, 222502 (2023)

Linei	gies of Al II		
Method	$3p {}^{2}P_{1/2}$	$3p {}^{2}P_{3/2}$	$4s^2S_{1/2}$
EAs			
DHF	42823.87	42714.35	21311.66
RMBPT(2)	48637.77	48514.21	22760.10
RCCSD	47841.74	47725.64	22849.31
RCCSDT	48223.08	48114.72	22914.98
Extra	37.88	37.73	3.18
+Breit	-7.65	-1.16	-1.04
+VP	-0.26	-0.25	0.05
+SE	4.46	4.18	-0.74
Final	48258(25)	48155(25)	22917(15)
Experiment	48278.48(3)	48166.42(3)	22930.72(3)
EEs	${}^{2}P_{1/2}-{}^{2}S_{1/2}$	${}^{2}P_{3/2}-{}^{2}S_{1/2}$	${}^{2}P_{1/2}-{}^{2}P_{3/2}$
This work	25341(30)	25238(30)	103
Experiment	25347.756	25235.695	112.061

Energies of Al from DCC theory

RCC results for IS constants in Al using FF and AR

in AI using FF a	pproach of the F	CC method.		
Method	3p *P _{1/2}	3p *P _{3/2}	4.5	
E MIL 16 2				
F MHz/Im-	50.00	FC 01	10.11	
DHF	59.22	59.31	-12.44	
RMBP1(2)	70.20	70.29	-10.71	
RCCSD	63.72	63.86	-10.90	
RCCSDT	67.53	67.84	-10.19	
+Basis	0.04	0.03	-0.01	
+Isreit	-0.08	0.14	-0.10	
+VP	-0.07	-0.25	-0.15	
+SE	-0.59	-0.37	-0.17	
Einal	88 8(5)	67.4(5)	10 6(2)	
Final	00.8(3)	67.4(5)	-10.0(3)	
K ^{NMS} GHz u				
DHF	703.20	702.28	350.17	
RMBPT(2)	798,79	797.72	373.96	VS
RCCSD	785.58	784.58	375.44	
RCCSDT	791.91	791.04	376.50	
+Basis	0.59	0.58	0.05	
+Breit	0.14	0.23	-0.04	
+VP	1.02	0.80	0.23	
+SE	0.48	0.17	-0.04	
Final	794.14	792.65	376.7	
Scaling	794	792	377	
K ^{SMS} GHz u				
DHF	-736.93	-742.37	-13.68	
RMBPT(2)	-491.51	-499.01	36.02	
RCCSD	-589.84	-597.02	50.96	
RCCSDT	-597.14	-599.83	52.75	
+Basis	-1.09	-1.10	-0.03	
+Breit	0.43	0.06	-0.02	
+VP	-0.08	-0.32	0.02	
+SE	-0.64	-1.37	0.64	
	F00 FC	000 50	F0.00	
Final	-398.52	-602.56	53.36	

FF

Method	$3p^2 P_{1/2}$	$3p^2 P_{3/2}$	45
$F \text{ MHz/fm}^2$			
DHF	-0.09	~0.0	-13.44
RCCSD	63.29	63.22	-10.45
RCCSDT	69.58	69.30	-8.74
+Basis	0.02	0.02	~0.0
+Breit	-0.06	-0.05	0.01
+QED	-0.44	-0.43	0.08
Final	69.1	68.84	-8.65
K ^{NMS} GHz u			
DHF	1920.03	1914.46	431.69
RCCSD	790.83	790.05	364.69
RCCSDT	755.59	760.54	362.74
Basis	0.87	0.90	-0.03
+Breit	-0.16	-0.08	-0.05
+QED	0.22	0.14	-0.04
Final	756.52	761.5	362.62
Scaling	794	792	377
K ^{SMS} GHz u			
DHF	-977.25	-980.86	-50.31
RCCSD	-607.06	-614.91	48.23
RCCSDT	-598.14	-600.66	56.58
+Basis	-1.17	-1.21	-0.36
+Breit	-0.34	-0.15	0.41
OPD	-0.14	-0.11	0.00

AR

RCC results for Potassium (FF approach)

State	DHF	RMBPT(2)	RCCSD	RCCSDT	+Basis	+Breit	+QED	Total	Experiment
EAs				Energie	S				
4s ² S _{1/2}	32370.48	35077.13	35077.13	34972.90	16.47	-1.45	-6.80	34988(20)	35009.813971(2)
$4p^2 P_{1/2}$	21006.44	22010.82	22027.81	22018.00	8.30	-2.32	0.47	22024(10)	22024.628(1)
4p 2P3/2	20959.39	21951.66	21967.69	21957.90	8.26	-0.35	0.18	21966(10)	21966.918(1)
5s ² S _{1/2}	13406.99	14028.06	13988.83	13979.84	3.63	-0.46	-0.16	13983(5)	13983.263(5)
$5p {}^{2}P_{1/2}$	10011.64	10313.36	10308.65	10307.84	2.57	-0.79	0.16	10310(3)	10308.414(2)
$5p^2 P_{3/2}$	9995.43	10293.90	10289.13	10288.24	2.55	-0.15	0.07	10291(3)	10289.68
6s ² S _{1/2}	7335.04	7574.11	7558.63	7555.61	1.42	-0.19	-0.63	7557(3)	7559.1036
EEs									
$4s \ ^{2}S_{1/2} - 4p \ ^{2}P_{1/2}$	11364.04	13066.31	13049.32	13015.90	8.17	0.87	-7.27	12964(25)	12985.185724
$4s^2S_{1/2} - 4p^2P_{3/2}$	11411.09	13125.47	13109.44	13015.00	8.21	-1.10	-6.98	13022(25)	13042.896027
$4s \ ^2S_{1/2} - 5s \ ^2S_{1/2}$	18963.49	21049.07	21088.30	20993.06	12.84	-0.99	-6.64	21005(21)	21026.551
$4s^2S_{1/2} - 5p^2P_{1/2}$	22358.84	24763.77	24768.48	24665.06	13.90	-0.66	-6.96	24678(21)	24701.382
$4s^2S_{1/2} - 5p^2P_{3/2}$	22375.05	24783.23	24788.00	24684.66	13.92	-1.30	-6.87	24697(21)	24720.139
$4s \ ^2S_{1/2} - 6s \ ^2S_{1/2}$	25035.44	27503.02	27518.50	27417.29	15.05	-1.26	-6.17	27431(21)	27450.7104

	TABLE IV. FS c	onstants (in MHz	:/fm ⁻¹) at di	ferent levels of	f approxima	tion in the l	FF approach	1.
	DHF	RMBPT(2)	RCCSD	RCCSDT	+Basis	+Breit	+QED	Total
State			F co	nstants				
4s 2S1/2	-80.25	-106.91	-106.16	-105.50	-0.14	0.13	1.24	-105.5(15)
$4p {}^{2}P_{1/2}$	5.05	4.38	4.65	4.55	~ 0.0	~ 0.0	-0.04	4.55(5)
$4p \ ^{2}P_{3/2}$	5.17	4.58	4.85	4.75	~ 0.0	-0.01	-0.04	4.75(5)
5s ² S _{1/2}	-21.20	-25.83	-25.32	-25.25	-0.02	0.03	0.29	-25.24(30)
$5p {}^{2}P_{1/2}$	1.92	1.82	1.91	1.88	~ 0.0	-0.01	-0.02	1.87(2)
$5p^2 P_{3/2}$	1.88	1.78	1.86	1.84	~ 0.0	~ 0.0	-0.01	1.83(2)
6s ² S _{1/2}	-8.54	-10.65	-10.40	-10.35	-0.03	0.01	0.11	-10.37(12)
Transition								
$4s {}^{2}S_{1/2} - 4p$	$^{2}P_{1/2}$ -85.30	-111.29	-110.81	-110.05	-0.14	0.13	1.28	-110.1(13)
$4s^2S_{1/2}-4p$	$^{2}P_{3/2} - 85.42$	-111.49	-111.01	-110.25	-0.14	0.14	1.28	-110.3(13)
$4s {}^{2}S_{1/2}-5s$	$^{2}S_{1/2}$ -59.05	-81.08	-80.84	-80.25	-0.12	0.11	0.95	-80.3(15)
$4s^2S_{1/2}-5p$	$^{2}P_{1/2} - 82.17$	-108.73	-108.07	-107.38	-0.14	0.14	1.26	-107.4(15)
$4s {}^{2}S_{1/2}-5p$	$^{2}P_{3/2}$ -82.13	-108.69	-108.02	-107.34	-0.14	0.13	1.27	-107.3(15)
$4s {}^{2}S_{1/2}-6s$	$^{2}S_{1/2}$ -71.71	-96.26	-95.76	-95.15	-0.11	0.12	1.13	-95.1(15)

Г

NMS and SMS constants of K from FF approach

	TABLE V. NM	IS constants (in	GHz amu)	at different le	vels of app	roximation	n in the FF	approach.	
State	DHF	RMBPT(2)	RCCSD	RCCSDT	+Basis	+Breit	+QED	Total	Scaling [39]
$4s {}^{2}S_{1/2}$ $4p {}^{2}P_{1/2}$ $4p {}^{2}P_{3/2}$	531.52 345.22 344.85	575.83 361.64 361.05	575.32 361.97 361.36	574.33 361.88 361.26	0.24 0.12 0.12	-0.08 -0.53 -0.51	-0.29 -0.09 -0.52	575(3) 362(2) 361(2)	575.77 362.22 361.27
$5s {}^{2}S_{1/2}$ $5p {}^{2}P_{1/2}$ $5p {}^{2}P_{3/2}$ $6s {}^{2}S_{1/2}$	220.21 164.58 164.38 120.62	230.37 169.52 169.25 124.82	229.78 169.47 169.19 124.53	229.67 169.47 169.20 124.49	$0.05 \\ 0.03 \\ 0.04 \\ 0.06$	-0.03 -0.09 -0.05 -0.12	-0.09 -0.06 -0.13 -0.15	230(1) 169.5(5) 169.1(5) 124.3(2)	229.97 169.53 169.22 124.32
$\begin{array}{c} 4s \ ^2S_{1/2} - 4p \\ 4s \ ^2S_{1/2} - 4p \\ 4s \ ^2S_{1/2} - 5s \\ 4s \ ^2S_{1/2} - 5p \\ 4s \ ^2S_{1/2} - 5p \\ 4s \ ^2S_{1/2} - 5p \\ 4s \ ^2S_{1/2} - 6s \end{array}$	${}^{2}P_{1/2}$ 186.30 ${}^{2}P_{3/2}$ 186.67 ${}^{2}S_{1/2}$ 311.31 ${}^{2}P_{1/2}$ 366.94 ${}^{2}P_{3/2}$ 367.14 ${}^{2}S_{1/2}$ 410.90	214.19 214.78 345.46 406.31 406.58 451.01	213.35 213.96 345.54 405.85 406.13 450.79	212.45 213.07 344.66 404.86 405.13 449.84	0.12 0.12 0.19 0.21 0.20 0.18	0.45 0.43 -0.05 0.01 -0.03 0.04	-0.20 0.23 -0.20 -0.23 -0.16 -0.14	213(4) 214(4) 345(3) 405.5(4) 406(6) 451(4)	213.55 214.50 345.80 406.24 406.55 451.45
T	ABLE VI. SMS	constants (in GHz	amu) at diffe	rent levels of a	pproximatio	n in the FF	approach.		
State	DHF	RMBPT(2)	RCCSD	RCCSDT	+Basis	+Breit	+QED	Total	451.45
$\begin{array}{c} 4s \ ^2S_{1/2} \\ 4p \ ^2P_{1/2} \\ 4p \ ^2P_{3/2} \\ 5s \ ^2S_{1/2} \\ 5p \ ^2P_{1/2} \\ 5p \ ^2P_{3/2} \\ 6s \ ^2S_{1/2} \end{array}$	-200.14 -57.05 -58.77 -46.39 -19.89 -20.52 -18.07	-61.60 -21.14 -23.67 -1.72 -6.47 -7.34 0.88	-18.96 -9.09 -11.94 5.05 -3.75 -4.69 3.03	-35.64 -16.84 -19.52 4.80 -4.94 -5.85 3.37	-0.45 -0.08 -0.13 -0.03 -0.03 -0.07	$\begin{array}{c} 0.56 \\ 0.07 \\ 0.48 \\ 0.04 \\ -0.01 \\ 0.14 \\ 0.03 \end{array}$	$\begin{array}{c} 0.27\\ 0.25\\ 0.25\\ -0.06\\ -0.09\\ 0.02\\ 0.03\end{array}$	-35.53 -16.85 -19.12 4.71 -4.98 -5.8(3) 3.33	345.80 406.24 406.55
$\begin{array}{c} 4s \ ^2S_{1/2} - 4p \ ^2\\ 4s \ ^2S_{1/2} - 4p \ ^2\\ 4s \ ^2S_{1/2} - 5s \ ^2\\ 4s \ ^2S_{1/2} - 5p \ ^2\\ 4s \ ^2S_{1/2} - 5p \ ^2\\ 4s \ ^2S_{1/2} - 5p \ ^2\\ 4s \ ^2S_{1/2} - 6s \ ^2\end{array}$	$P_{1/2}$ -143.09 $P_{3/2}$ -140.54 $S_{1/2}$ -153.75 $P_{1/2}$ -180.25 $P_{3/2}$ -179.62 $S_{1/2}$ -182.07	-40.46 -37.93 -59.88 -55.13 -54.26 -60.72	-9.87 -7.02 -24.01 -15.21 -14.27 -21.99	-18.8 -16.12 -40.44 -30.7 -29.79 -39.01	-0.37 -0.32 -0.42 -0.42 -0.38	0.49 0.08 0.52 0.57 0.42 0.53	0.02 0.33 0.36 0.25 0.24	-18.68 -16.41 -40.24 -30.55 -29.73 -38.86	

IS constants of K from AR approach

_							
State	DHF	RCCSD	RCCSDT	+Basis	+Breit	+QED	Total
			E mluer (in	$MH_{r}/f_{rm}=1$			
. 20	F 0.00	105.00	r values (m	MHZ/III)	0.40		400.04
$4s^{-}S_{1/2}$	-73.08	-105.20	-103.62	-0.12	0.13	1.24	-103.61
$4p \ P_{1/2}$	-0.08	4.05	3.80	0.01	~ 0.0	-0.05	3.81
$4p \ ^{2}P_{3/2}$	~ 0.0	4.17	3.87	0.01	-0.01	-0.04	3.87
$5s {}^{2}S_{1/2}$	-19.34	-24.76	-24.53	-0.02	0.03	0.29	-24.52
$5p {}^{2}P_{1/2}$	-0.03	1.45	1.35	~ 0.0	-0.01	-0.02	1.34
$5p^2 P_{3/2}$	~ 0.0	1.48	1.37	0.01	~ 0.0	-0.01	1.38
$6s {}^2S_{1/2}$	-7.86	-9.73	-9.67	-0.01	0.01	0.11	-9.67
r			K^{NMS} values	(in GHz amu)			
4s ² S _{1/2}	941.13	559.22	545.45	-1.12	-1.79	-2.06	542.54
$4p^2 P_{1/2}$	488.53	351.99	345.57	-1.45	-1.81	-1.69	342.31
$4p \ ^2P_{3/2}$	488.87	351.69	345.41	-1.17	-1.43	-1.40	342.81
5s ² S _{1/2}	324.53	226.78	222.47	0.37	0.21	0.15	223.05
$5p {}^{2}P_{1/2}$	214.14	166.99	164.33	-0.24	-0.35	-0.31	163.74
5p ² P _{3/2}	213.61	166.88	164.23	-0.15	-0.23	-0.21	163.85
$6s^2 S_{1/2}$	162.52	123.50	121.20	0.04	-0.02	-0.04	121.22
r			K^{SMS} values	(in GHz amu)			
4s ² S _{1/2}	-388.76	-12.72	-25.05	-0.53	0.48	0.31	-25.10
$4p^2 P_{1/2}$	-115.54	-5.34	-5.33	-0.14	0.22	-0.06	-5.25
4p 2P3/2	-116.33	-8.95	-9.48	-0.13	0.11	-0.06	-9.50
$5s {}^2S_{1/2}$	-94.60	6.05	9.04	-0.15	0.13	0.06	9.02
$5p {}^{2}P_{1/2}$	-40.19	-2.98	-0.33	-0.07	0.08	-0.03	-0.32
5p ² P _{3/2}	-40.49	-4.13	-1.78	-0.05	0.04	-0.15	-1.79
6s ² S _{1/2}	-37.49	3.34	5.80	-0.07	0.06	0.02	5.79

IS constants of K from EVE approach

State	DHF	RCCSD	RCCSDT	+Basis	+Breit	+QED	Total
					T (C = 2)		
			F V	alues (in MI	1z/m)		
$4s \ ^2S_{1/2}$	-73.08	-103.95	-104.01	-0.09	0.22	1.23	-103.88
$4p {}^{2}P_{1/2}$	-0.08	4.48	4.70	0.01	-0.01	-0.05	4.70
$4p {}^{2}P_{3/2}$	~ 0.0	4.54	4.75	0.01	-0.01	-0.05	4.75
5s ² S _{1/2}	-19.34	-24.48	-24.53	-0.01	~ 0.0	0.28	-24.54
$5p^2 P_{1/2}$	-0.03	1.56	1.64	~ 0.0	~ 0.0	-0.02	1.64
5p 2P3/2	~ 0.0	1.58	1.66	~ 0.0	~ 0.0	-0.02	1.66
6s ² S _{1/2}	-7.86	-9.64	-9.66	-0.01	~ 0.0	0.11	-9.67
			νNM	S I I I	CIL		
1 20			K	values (in	GHz amu)	0.00	
$4s {}^2S_{1/2}$	941.13	594.22	553.75	1.12	-0.44	-0.38	554.43
$4p^2 P_{1/2}$	488.53	357.97	339.14	0.49	-0.08	0.04	339.55
$4p \ ^{2}P_{3/2}$	486.87	356.79	338.19	0.48	0.01	0.02	338.68
5s ² S _{1/2}	324.53	235.11	224.69	0.43	0.09	-0.09	225.21
$5p {}^{2}P_{1/2}$	214.14	169.33	162.88	0.13	-0.03	0.01	162.98
$5p^2 P_{3/2}$	213.61	168.98	162.63	0.13	-0.01	~ 0.0	162.75
6s ² S _{1/2}	162.52	126.73	122.64	0.09	~ 0.0	-0.03	122.73
			VSM	S	CHa array)		
1 20	200 50		100.04	values (in	Griz amu)	0.07	100.41
4s -S1/2	-388.76	-57.87	-106.84	0.22	0.21	0.37	-106.41
$4p {}^2P_{1/2}$	-115.54	-21.44	-42.02	0.32	~ 0.0	-0.06	-41.70
$4p^{-2}P_{3/2}$	-116.33	-20.52	-41.05	0.31	-0.02	-0.05	-40.74
5s ² S _{1/2}	-94.60	-4.90	-11.42	0.02	0.15	0.07	-11.25
$5p^2 P_{1/2}$	-40.19	-8.68	-12.93	0.10	0.01	-0.02	-12.82
5p 2P3/2	-40.49	-8.36	-12.63	0.10	0.02	-0.01	-12.51
6s ² S _{1/2}	-37.49	-0.99	-2.97	0.01	0.06	0.03	-2.90

New IS interaction from BSM physics

In addition to photons, there could be other intermediate particles between electrons and nucleus in an atom.

A new spin-1 light boson: $V(r) = (-1)^{1+s} \sum_{n} y_e y_n \frac{e^{-\frac{m_{\phi} cr}{\hbar}}}{4\pi r}$

where m_{ϕ} and s are the mass and spin of the new boson, respectively, y_e is the electron coupling coefficient and y_n is the neutron coupling coefficient.

It could contribute to the IS shifts in isotopes, but will be of the order-of second-order effects (non-linear King's plot).

Inferring BSM Physics from King's Plot

King's plot for the first-order IS:

$$\frac{\nu_b^{AA'}}{\mu_{AA'}} \simeq \frac{F_b}{F_a} \frac{\nu_a^{AA'}}{\mu_{AA'}} + (K_b^{MS} - \frac{F_b}{F_a} K_a^{MS})$$

Inclusion of higher-order field shift (FS):

$$E_i^{AA'} \simeq \mu_{AA'} K_i^{MS} + F_i \delta \langle r_{rms}^2 \rangle + G_i^{(2)} \left(\delta \langle r_{rms}^2 \rangle \right)^2 + G_i^{(4)} \delta \langle r_{rms}^4 \rangle$$

This will lead to:

$$\frac{\nu_{b}^{AA'}}{\mu_{AA'}} \cong \frac{\nu_{a}^{AA'}}{\mu_{AA'}} + \left(K_{b}^{MS} - \frac{F_{b}}{F_{a}} K_{a}^{MS}\right) + \left(G_{b}^{(2)} - \frac{F_{b}}{F_{a}} G_{a}^{(2)}\right) \frac{\delta\langle r_{rms}^{2}\rangle^{2}}{\mu_{AA'}} + \left(G_{b}^{(4)} - \frac{F_{b}}{F_{a}} G_{a}^{(4)}\right) \frac{\delta\langle r_{rms}^{4}\rangle}{\mu_{AA'}} + \left(\nu_{b}^{NP} - \frac{F_{b}}{F_{a}} \nu_{a}^{NP}\right) \frac{1}{\mu_{AA'}}$$

 $\nu_{\beta \overline{y}} / \nu_{\alpha \overline{y}}$

-0.5

32

34

36

38

40

42

44

Featured in Physics

Evidence for Nonlinear Isotope Shift in Yb⁺ Search for New Boson

Ian Counts⁽⁰⁾,^{1,*} Joonseok Hur⁽⁰⁾,^{1,*} Diana P. L. Aude Craik⁽⁰⁾,¹ Honggi Jeon⁽⁰⁾,² Calvin Leung⁽⁰⁾,¹ Julian C. Berengut[®],³ Amy Geddes,³ Akio Kawasaki[®],⁴ Wonho Jhe,² and Vladan Vuletić^{®1,†} 10¹³ 106 (b) 1.017 + 3.1554345 10 (a) (168,170) (172,174) 0 (174,176) 1.016 -10 (168,170) + 3.0309667 10 (170,172) 1.015 ν _{βjj}/μ_{jj} (Hz·u) Residuals (10⁻⁶) (170, 172)(172,174) 0.5 + 2.4032463 10 1013 3.2

-10

10

0

-10

(174, 176)

0

+ 2.343132

2.8 2.6

2.4

0

-10

2.4 2.6 2.8 з

-10

× 10¹³

10

0

10⁶

	μ_{jj}/ u_{ojj} (10 ⁻¹⁵ Hz ⁻¹ ·	u ⁻¹)	-10 0 10´´-10 +2.3048133 +2	$\nu_{\alpha j j}^{0} / \mu_{j j}$ (F	0 0 10''- + 2.9848891 Hz∙u)	10 0 10 × 10° + 3.1079503 × 10 ¹³
Isotope pair	$(10^{-6}, -1)$	$\nu_{\alpha ji}$ (kHz)	$\nu_{\beta ji}$ (kHz)		$\delta \langle r^2 \rangle_{ji}$ (fm ²)
(j,i)	μ _{ji} (10 u)	$\alpha : {}^{2}S_{1/2} \rightarrow {}^{2}D_{5/2}$	$\beta : {}^{2}S_{1/2} \rightarrow {}^{2}D_{3/2}$	CI	MBPT	Reference [34]
(168, 170)	70.113 698(46)	2 179 098.93(21)	2 212 391.85(37)	-0.156	-0.149	-0.1561(3)
(170, 172)	68.506 890 50(63)	2 044 854.78(34)	2 076 421.58(39)	-0.146	-0.140	-0.1479(1)
(172, 174)	66.958 651 95(64)	1 583 068.42(36)	1 609 181.47(22)	-0.115	-0.110	-0.1207(1)
(174, 176)	65.474 078 21(65)	1 509 055.29(28)	1 534 144.06(24)	-0.110	-0.105	-0.1159(1)
(170, 174)		3 627 922.95(50)	$3\ 685\ 601.95(33)$			

Preliminary Calculations using AR-RCC in the Yb⁺ ion

	6 S1/2	5D3/2	5D5/2
	NMS (G	Hz amu)	
DHF	3755.62	5847.74	5524.06
RCCSD	1335.43	1074.63	1085.54
RCCSD-T	1372.24	1065.39	1080.01
RCCSDTv	1510.01	972.52	1040.80
+Breit	2.13	6.01	6.10
Final	1512(100)	979(50)	1047(50)
Scaling	1615.52	1237.91	1215.35

SMS (GHz amu)

Final	556.30	-824.21	-860.60	
RCCSD RCCSD-T RCCSDTv +Breit	446.43 -85.06 551.19 5.11	-653.61 -1002.32 -811.97 -12.24	-687.37 -1002.67 -850.59 -10.01	
DHF	-2331.98	-4479.18	-4198.62	

FS (MHz/fm^2)					
DHF	-11327.28	-0.0002	~0.0		
RCCSD	-14811.36	1664.98	1444.95		
RCCSD-T	-14610.25	1663.95	1439.48		
RCCSDTv	-15077.50	1526.21	1295.46		
+Breit	51.59	10.83	14.06		
Final -15025.91(450) 1537.04(50) 1309.52(50)					

G^(2) (MHz/fm^4)

DHF	30.33	~0.0	~0.0	
RCCSD	39.66	-4.44	-3.86	
RCCSD-T	39.12	-4.44	-3.84	
RCCSDTv	40.18	-4.10	-3.48	
+Breit	-0.15	-0.06	-0.06	
Final	40.03	-4.16	-3.54	

	G^(4) from	fitting (MHz/	′fm^4)	
DHF RCCSD +Breit	10.93 13.86 -0.05	~0.0 -1.78 -0.01	0.0 -1.70 ~0.0	
Final	13.81(20)	-1.79(22)	-1.70(20)	

Summary and Outlook

- Developed all-order relativistic many-body methods for accurate calculations of atomic properties..
- We have developed RCC methods in the FF, EVE and AR frameworks to estimate isotope shifts.
- Nuclear charge radii of indium, aluminum, potassium etc. isotopes were investigated using our RCC methods.
- Intend to extend these studies in other elements of periodic table to understand roles of electron correlation effects in them.
- Planning to develop codes further to study the effects of nonlinear effects and infer new physics from Isotope Shifts.

Developing new many-body methods to study these effects.

Weak interaction Hamiltonian(s)

where $G_F \approx 2.219 \times 10^{-14} au$ is the Fermi constant, \vec{l} is the nuclear spin, α and γ_5 are the Dirac matrices and $\rho_n(r)$ is the nuclear density.

The dimensionless constants Q_W and κ characterize the strengths of the NSI and NSD interactions respectively.

Precise measurement in ¹³³Cs (~0.35%)

C. S. Wood et al, Science 275, 1759 (1997).

NSI amplitude:

$$Im\left(\frac{E1_{PNC}^{NSI}}{\beta}\right) = -1.5935(56) \ mV/cm$$

NSD amplitude:

$$Im\left(\frac{E1_{PNC}^{NSD}}{\beta}\right) = -0.077(11) \ mV/cm$$

Till today 3 groups have reported calculations within 0.5% but their final results differ by about 1%. The measurement may have an issue.

Here:
$$H = H_{at} + G_F H_W$$
 with $G_F \approx 2.2 \times 10^{-14} a.u.$

Since electromagnetic interactions dominates strongly: $|\Psi_{n}(n,J)\rangle = \left|\Psi_{n}^{(0)}(n,J,\pi)\rangle + G_{F} \left|\Psi_{n}^{(1)}(n,J,\pi')\rangle + O(G_{F}^{2})\right.$ And $O(G_{F}^{2}) \approx 10^{-28}$, $|\Psi_{n}(n,J)\rangle \approx \left|\Psi_{n}^{(0)}(n,J,\pi)\rangle + G_{F} \left|\Psi_{n}^{(1)}(n,J,\pi')\rangle\right.$ <u>Thus:</u> $\left(\frac{E1_{PNC}^{NSI}}{Q_{W}}\right)^{theory} = \frac{\langle\Psi_{f}|D|\Psi_{i}\rangle}{\sqrt{\langle\Psi_{f}}|\Psi_{f}\rangle\langle\Psi_{i}|\Psi_{i}\rangle} \approx \frac{\left[\langle\Psi_{f}^{(0)}|D|\Psi_{i}^{(1)}\rangle + \langle\Psi_{f}^{(1)}|D|\Psi_{i}^{(0)}\rangle\right]}{\sqrt{\langle\Psi_{f}^{(0)}|\Psi_{f}^{(0)}\rangle\langle\Psi_{i}^{(0)}|\Psi_{i}^{(0)}\rangle}$

> Requirements are:

- Determination of the zeroth- and first-order wave functions.
- Equal treatment of both the wave functions using a single theory.

Sum-over-states approach and accuracy test

In sum-over-states approach:
$$|\Psi_n^{(1)}\rangle = \sum_{I \neq n} |\Psi_I^{(0)}\rangle \frac{\langle \Psi_I^{(0)} | H_w | \Psi_n^{(0)} \rangle}{E_n^{(0)} - E_I^{(0)}}$$

Which leads to: $E1_{PNC}^{NSI} \simeq \sum_{I \neq i} \frac{\left\langle \Psi_{f}^{(0)} \middle| D \middle| \Psi_{I}^{(0)} \right\rangle \left\langle \Psi_{I}^{(0)} \middle| H_{w} \middle| \Psi_{i}^{(0)} \right\rangle}{E_{i}^{(0)} - E_{I}^{(0)}} + \sum_{f \neq i} \frac{\left\langle \Psi_{f}^{(0)} \middle| H_{w} \middle| \Psi_{I}^{(0)} \right\rangle \left\langle \Psi_{I}^{(0)} \middle| D \middle| \Psi_{i}^{(0)} \right\rangle}{E_{f}^{(0)} - E_{I}^{(0)}}$

where Q_W is absorbed in defining unit of the $E1_{PNC}^{NSI}$ amplitude.

Accuracy test:

- $\langle \Psi_I | D | \Psi_J \rangle \rightarrow$ comparing calculated E1 matrix elements with expt values.
- $\langle \Psi_I | H_W | \Psi_J \rangle \rightarrow \langle \Psi_I | H_{hyf} | \Psi_J \rangle \approx \sqrt{\langle \Psi_I | H_{hyf} | \Psi_I \rangle \langle \Psi_J | H_{hyf} | \Psi_J \rangle}$ (expt values).
- $E_I^{(0)} E_J^{(0)} \rightarrow$ comparing calculated excitation energies with expt values.

Calculations for Cs and Shortcomings

$$E1_{PNC}^{NSI}(6S \rightarrow 7S) = \sum_{np_{1/2}} \frac{\langle 7S|D|np_{1/2}\rangle\langle np_{1/2}|H_W|6S\rangle}{E_{6S}^{(0)} - E_{nP_{1/2}}^{(0)}} + \sum_{np_{1/2}} \frac{\langle 7S|H_W|np_{1/2}\rangle\langle np_{1/2}|D|6S\rangle}{E_{7S}^{(0)} - E_{np_{1/2}}^{(0)}}$$

= Core (n<6) + Main (n=6-9) + Tail

Limitations:

- Core, Main and Tail contributions cannot be treated on equal footing.
- Correlations among the Core and Valence electrons not treated aptly.
- Correlations among weak and electromagnetic ints. are not on same level. So it misses double-core-polarization (DCP) effects.

Discrepancies from high-accuracy calculations

$$E1_{PNC}^{NSI} = \sum_{n} \frac{\left\langle 7S_{1/2}^{(0)} \left| D \right| nP_{1/2}^{(0)} \right\rangle \left\langle nP_{1/2}^{(0)} \left| H_{w} \right| 6S_{1/2}^{(0)} \right\rangle}{E_{6S_{1/2}}^{(0)} - E_{nP_{1/2}}^{(0)}} + \sum_{n} \frac{\left\langle 7S_{1/2}^{(0)} \left| H_{w} \right| nP_{1/2}^{(0)} \right\rangle \left\langle nP_{1/2}^{(0)} \left| D \right| 6S_{1/2}^{(0)} \right\rangle}{E_{7S_{1/2}}^{(0)} - E_{nP_{1/2}}^{(0)}}$$
$$= Core(n < 6) + \underbrace{Main(n = 6 - 9) + Tail(n \ge 10)}_{P_{1/2}}$$

Valence

Contribution to the $E1_{PV}^{NSI}$ amplitude of the 7S-6S transition in ¹³³Cs in $10^{-11}i\left(-\frac{Q_w}{N}\right)ea_0$

Reference	Core	Main	Tail	Total	Method	
Porsev et al. PRL 2009, PRD 2010	-0.0020	0.8823	0.0195	0.8998	CCSDvT, sum-over-states, Blend of methods	
Dzuba et al. PRL 2012	0.0018	0.8711	0.0238	0.8967	TDHF+BO (original)	
	0.0018	0.8823	0.0238	0.9079	Borrowed from Porsev et al.	
Sahoo et al. PRD 2021	-0.0018	0.8594*	0.0391	0.8967	RCCSDT	
Tan et al. PRA 2022	_	_	-	0.8903	Parity-mixed RPA	

* Contribution from the $9P_{1/2}$ state included in Tail

Equivalent expressions

$$\begin{split} \mathbf{E1}_{PNC}^{NSI} &= \left\langle \Psi_{f}^{(0)} | D | \Psi_{i}^{(1)} \right\rangle + \left\langle \Psi_{f}^{(1)} | D | \Psi_{i}^{(0)} \right\rangle \\ &= \sum_{k \neq i} \left\langle \Psi_{f}^{(0)} | D | \Psi_{k}^{(0)} \right\rangle \frac{\left\langle \Psi_{k}^{(0)} | H_{w} | \Psi_{i}^{(0)} \right\rangle}{E_{i}^{(0)} - E_{k}^{(0)}} + \sum_{k \neq f} \frac{\left\langle \Psi_{f}^{(0)} | H_{w} | \Psi_{k}^{(0)} \right\rangle}{E_{f}^{(0)} - E_{k}^{(0)}} \left\langle \Psi_{k}^{(0)} | D | \Psi_{i}^{(0)} \right\rangle \\ \\ \mathbf{By using } \boldsymbol{\omega} &= \mathbf{E}_{f}^{(0)} - \mathbf{E}_{i}^{(0)}, \text{ we can write:} \\ \\ &\left| \tilde{\Psi}_{i}^{(1)} \right\rangle = \sum_{k \neq f} |\Psi_{k}^{(0)} \rangle \frac{\left\langle \Psi_{k}^{(0)} | D | \Psi_{i}^{(0)} \right\rangle}{\left\langle E_{i}^{(0)} - E_{k}^{(0)} + \omega \right\rangle} \text{ and } \left| \tilde{\Psi}_{f}^{(1)} \rangle = \sum_{k \neq i} |\Psi_{k}^{(0)} \rangle \frac{\left\langle \Psi_{k}^{(0)} | D | \Psi_{f}^{(0)} \right\rangle}{\left\langle E_{f}^{(0)} - E_{k}^{(0)} + \omega \right\rangle} \\ \\ &\left| \mathbf{E1}_{PV}^{NSI} &= \left\langle \Psi_{f}^{(0)} | D | \Psi_{i}^{(1)} \right\rangle + \left\langle \Psi_{f}^{(1)} | D | \Psi_{i}^{(0)} \right\rangle \\ &= \left\langle \widetilde{\Psi}_{f}^{(1)} | H_{w} | \Psi_{i}^{(0)} \right\rangle + \left\langle \Psi_{f}^{(0)} | H_{w} | \widetilde{\Psi}_{i}^{(1)} \right\rangle \\ &= \left\langle \widetilde{\Psi}_{f}^{(1)} | D | \Psi_{i}^{(1)} \right\rangle + \left\langle \Psi_{f}^{(1)} | D | \Psi_{i}^{(0)} \right\rangle \\ &= \left\langle \widetilde{\Psi}_{f}^{(1)} | H_{w} | \Psi_{i}^{(0)} \right\rangle + \left\langle \Psi_{f}^{(1)} | D | \Psi_{i}^{(0)} \right\rangle \\ &= \left\langle \widetilde{\Psi}_{f}^{(1)} | H_{w} | \Psi_{i}^{(0)} \right\rangle + \left\langle \Psi_{f}^{(1)} | D | \Psi_{i}^{(0)} \right\rangle \end{aligned}$$

$$\begin{split} E\mathbf{1}_{PNC}^{NSI} &= \left\langle \Psi_{f}^{(0)} \middle| D \middle| \Psi_{i}^{(1)} \right\rangle + \left\langle \Psi_{f}^{(1)} \middle| D \middle| \Psi_{i}^{(0)} \right\rangle \quad \rightarrow RCC \text{ method} \\ &\sim \left\langle \Phi_{f}^{(0)} \middle| D \middle| \Phi_{i}^{(\infty,1)} \right\rangle + \left\langle \Phi_{f}^{(\infty,1)} \middle| D \middle| \Phi_{i}^{(0)} \right\rangle \quad \rightarrow CPDF \text{ method} \\ &\sim \left\langle \Phi_{f}^{(0)} \middle| H_{NSI}^{PNC} \middle| \Phi_{i}^{(\infty,1)} \right\rangle + \left\langle \Phi_{f}^{(\infty,1)} \middle| H_{NSI}^{PNC} \middle| \Phi_{i}^{(0)} \right\rangle \quad \rightarrow RPA \\ &\sim \left\langle \Phi_{f}^{(0)} \middle| H_{NSI}^{PNC} \middle| \Phi_{i}^{(\infty,1)} \right\rangle + \left\langle \Phi_{f}^{(0)} \middle| D \middle| \Phi_{i}^{(\infty,1)} \right\rangle \quad \rightarrow TDHF \text{ method} \end{split}$$

CPDF and RPA methods:

- Includes only a set of single excitations with all-order perturbation in residual interactions (core-polarization effects).
- Misses out pair-correlation contributions.
- Does not include correlations among the D and H_{PNC}^{NSI} operators.

Diagrammatic representation

At the DHF level:

- The intermediate state is a single atomic state.
- We can segregate Core and Valence contribution uniquely.

After including correlation effect:

- One cannot uniquely split correlation correction in the Core and Valence contributions.
- Depending upon choice of perturbation the definition of Core and Valence contribution changes.

Reproducing Dzuba et al's results (J Chem Phys A 127, 7518 (2023))

Table: $E1_{PV}^{NSI}$ for the 7S – 6S transition in ¹³³*Cs* across different many body methods

Method	$\langle 7S^{PV} D 6S \rangle$	$\langle 7S D 6S^{PV}\rangle$	Sum	Method	$\langle 7S^{PV} D 6S \rangle$	$\langle 7S D 6S^{PV}\rangle$	Sum
Ours		Core		Roberts et al. PRD 2022			
DHF	-0.02638	0.02465	-0.00173	HF	-0.02645	0.02472	-0.00174
CPDF	-0.04298	0.04099	-0.00199	HF+ δV_w^{∞}	-0.04319	0.04119	-0.00201
RPA	-0.03536	0.03564	0.00028				
CPDF-RPA*	-0.05794	0.05963	0.00169	$\begin{array}{l} HF + \delta V_w^\infty + \\ \delta V_d^\infty \end{array}$	-0.05822	0.05992	0.00170
Method	$\langle 7S^{PV} D 6S \rangle$	$\langle 7S D 6S^{PV}\rangle$	Sum		$\langle 7S^{PV} D 6S \rangle$	$\langle 7S D 6S^{PV}\rangle$	Sum
Ours		Total		Martensson et al. J. Phys. 1985			
DHF	1.01168	-0.27418	0.73750	DHF	1.010	-0.274	0.736
CPDF	1.26664	-0.34409	0.92255	CPDF	1.267	-0.344	0.924
RPA	1.02557	-0.31617	0.70940	RPA	1.023	-0.316	0.707
CPDF-RPA*	1.27910	-0.39150	0.88760	CPDF-RPA*	1.279	-0.391	0.888
CPDF-RPA			0.88590	CPDF-RPA			0.886

e-q couplings and Masses of extra Z-bosons

Phys. Rev. D 103, 111303(L) (2021)

- Measurement + calculations: $Q_W^{Z,N} = -73.71(26)_{ex}(23)_{th}$
- In the SM: $Q_W^{SM} = -73.23(1)$ with $\sin^2 \bar{\theta}_W(2.4 \, MeV) = 0.23857(5)$
- From the difference: $\sin^2 \overline{\theta}_W(2.4 MeV) = 0.2408(16)$
- By using the relation: $376C_{1u} + 422C_{1d} = 73.71(35)$
 - $C_{1u} = -0.1877(9)$ for $C_{1d} = 0.3419$ and

 $C_{1d} = 3429(8)$ for $C_{1u} = -0.1888$.

Mass of a dark-boson: $\delta \epsilon_{\frac{M_Z}{M_{Z_d}}} \simeq -0.0051(37)$. Mass of an extra boson: $M_{Z_x} \ge 2.36 TeV$.

Summary & Outlook

- Our RCC method treats the ``Core", ``Main" and ``Tail" contributions to E1_{PNC} on an equal footing.
- It also accounts for DCP contributions implicitly.
- Though our calculation shows ``Core" contribution is agreeing with Porsev et al (2009 & 2010); it neglects a lot of physical effects that Dzuba et al and we consider.
- It estimates uncertainties to ``Core", ``Main" and ``Tail" in a consistent manner.
- We are developing RCC methods to remove nonterminating series in the calculations.
- The method has to be extended for NSD interactions.
- \succ It is also necessary to calculate β using a similar approach.

Open Questions

- Is there an ultimate atomic theory for accurate calculations?
- Why results from different approaches of a given theory differ? Can these differences be removed/suppressed?
- How to estimate uncertainties in many-body calculations?
- What are the implementation differences among nuclear, atomic and molecular many-body methods?

Collaborators and Acknowledgement

