

Theory of Light Muonic Atoms

Vadim Lensky

JGU Mainz

EPIC 2024 22–27 September 2024 CalaSerena, Geremeas, Sardinia

Light Muonic (H-like) Atoms and Ions

- Light Muonic Atoms: Z=1,2,...?
- This talk focuses on μH and μD (predominantly)
- Mostly Lamb shift is considered (a few words on μH HFS)
- Basic ideas about the theory (QED, FS, NS)

- Data-driven or effective field theory: Treatment of TPE
- Results for µH
- Remarks about heavier nuclei
- Results for μ D
- **Outlook**

A Scary Table

TABLE I Contributions to the $2P_{1/2} - 2S_{1/2}$ energy difference E_L in meV, with the charge radii r_C given in fm. All corrections larger than 3% of the overall uncertainty are included. Theoretical predictions for E_L are E_L (theo) = $E_{\text{OED}} + C r_C^2 + E_{\text{NS}}$. The last two rows show the values of r_C determined from a comparison of E_L (theo) to E_L (exp).

Sec.	Order	Correction	μ H	μ D	μ^3 He ⁺	μ^4 He ⁺
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731
III.A	$\alpha^2(Z\alpha)^2$	$eVP^{(2)}$	1.65885	1.83804	13.0843	13.2769
III.A	$\alpha^3 (Z\alpha)^2$	eVP ⁽³⁾	0.00752	0.00842(7)	0.0730(30)	0.0740(30)
III.B	$(Z, Z^2, Z^3) \alpha^5$	light-by-light eVP	$-0.00089(2)$	$-0.00096(2)$	$-0.0134(6)$	$-0.0136(6)$
III.C	$(Z\alpha)^4$	recoil	0.05747	0.06722	0.1265	0.2952
III.D	$\alpha (Z\alpha)^4$	relativistic with $eVP^{(1)}$	0.01876	0.02178	0.5093	0.5211
III.E	$\alpha^2(Z\alpha)^4$	relativistic with $eVP^{(2)}$	$0.000\,17$	0.00020	0.0056	0.0057
III.F	$\alpha (Z\alpha)^4$	μ SE ⁽¹⁾ + μ VP ⁽¹⁾ , LO	-0.66345	-0.76943	-10.6525	-10.9260
III.G	$\alpha (Z\alpha)^5$	μ SE ⁽¹⁾ + μ VP ⁽¹⁾ , NLO	-0.00443	-0.00518	-0.1749	-0.1797
III.H	$\alpha^2(Z\alpha)^4$	$\mu VP^{(1)}$ with eVP ⁽¹⁾	0.00013	0.00015	0.0038	0.0039
III.I	$\alpha^2(Z\alpha)^4$	μ SE ⁽¹⁾ with eVP ⁽¹⁾	-0.00254	-0.00306	-0.0627	-0.0646
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330
III.K	$\alpha (Z\alpha)^5$	recoil with $eVP^{(1)}$	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)
III.L	$Z^2\alpha\,(Z\alpha)^4$	nSE ⁽¹⁾	-0.00992	-0.00310	-0.0840	-0.0505
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)},\,\mu F_2^{(2)},\,\mu\mathrm{VP}^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)
III.Q	$\alpha^2(Z\alpha)^4$	hVP with $\mathrm{eV P}^{(1)}$	0.00009	0.00010	0.0026(1)	0.0027(1)
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975r_p^2$	$-6.0732 r_d^2$	$-102.523 r_h^2$	$-105.322 r_{\alpha}^2$
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.0282r_v^2$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^{2}$
IV.C	$\alpha^2(Z\alpha)^4$	eVP ⁽²⁾ with r_C^2	$-0.0002r_p^2$	$-0.0002r_d^2$	$-0.009(1) r_h^2$	$-0.009(1) r_{\alpha}^2$
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)
V.B	$\alpha^2(Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
V.C	$(Z\alpha)^6$	3PE	$-0.0013(3)$	0.0022(9)	$-0.214(214)$	$-0.165(165)$
V.D	$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)
V.E	$\alpha (Z\alpha)^5$	μ SE ⁽¹⁾ + μ VP ⁽¹⁾ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)
Ш	$E_{\rm QED}$	point nucleus	206.0344(3)	228.7740(3)	1644.348(8)	1668.491(7)
IV	$C r_C^2$	finite size	$-5.2259 r_p^2$	$-6.1074r_d^2$	$-103.383 r_h^2$	$-106.209 r_{\alpha}^2$
V	$E_{\rm NS}$	nuclear structure	0.0289(25)	1.7503(200)	15.499(378)	9.276(433)
	E_L (exp)	experiment ^a	202.370 6(23)	202.878 5 (34)	1258.598(48)	1378.521(48)
	$r_{\cal C}$	this review	0.84060(39)	2.12758(78)	1.97007(94)	1.6786(12)
	$r_{\cal C}$	previous work ^a	0.84087(39)	2.12562(78)	1.97007(94)	1.67824(83)

Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl – theory review (2022) a experiment: CREMA (2013-2023)

E_{LS} (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

E_{LS} (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

(Partial) expansion in powers of α , $Z\alpha$: light means that you can still expand Recoil (expansion in powers of m_μ / M_A): more important than in ordinary atoms

E_{LS} (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

 \mathcal{A}

Recall that in normal hydrogen eVP is a small term ~0.5% on top of the electron vertex correction

Eides, Grotch, Shelyuto 2000 (review), 2007 (book)

E_{LS} (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

E_{LS} (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

Finite Size and Nuclear Structure

E_{LS} (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

Squeezed Table

Dominant nuclear structure effect: Two-Photon Exchange (TPE)

Bohr radius $a = (Z \alpha m_r)^{-1}$ r_c : charge radius R_F : Friar radius

$$
\Delta E_{nS} = \frac{2\pi Z\alpha}{3} \frac{1}{\pi (an)^3} \left[r_c^2 - \frac{Z\alpha m_r}{2} R_F^3 \right] + \dots
$$

- TPE also dominates the uncertainty (90-95%)
- Finite size enhanced (by a factor -10^8) great sensitivity!
- Also greater sensitivity to subleading nuclear structure

TPE and VVCS

- TPE is naturally described in terms of (doubly virtual fwd) Compton scattering (VVCS)
- Elastic ($v = \pm Q^2/2M_{\text{target}}$, elastic e.m. form factors) and inelastic (~ nuclear generalised polarisabilities)

• Forward spin-1/2 VVCS amplitude

$$
\alpha_{em} M^{\mu\nu}(v, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(v, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(v, Q^2) \right. \\ + \frac{i}{M} \epsilon^{\nu\mu\alpha\beta} q_{\alpha} s_{\beta} S_1(v, Q^2) + \frac{i}{M^3} \epsilon^{\nu\mu\alpha\beta} q_{\alpha}(p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_2(v, Q^2) \right\}
$$
 LHS
Lambda Shift:
$$
E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0) \right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{(Q^2 - 2v^2) T_1(v, Q^2) - (Q^2 + v^2) T_2(v, Q^2)}{Q^4(Q^4 - 4m^2v^2)}
$$
 LHS

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$
\alpha_{em} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) \right. \\ \left. + \frac{i}{M} \, \varepsilon^{\nu\mu\alpha\beta} q_{\alpha} s_{\beta} S_1(\nu, Q^2) + \frac{i}{M^3} \, \varepsilon^{\nu\mu\alpha\beta} q_{\alpha} (p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_2(\nu, Q^2) \right\}
$$

• Unitarity and analyticity, data-driven: dispersive relations Structure functions $F_1(x, Q^2)$, $F_2(x, Q^2)$, $g_1(x, Q^2)$, $g_2(x, Q^2)$

$$
T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi M\nu^2}{Q^4} \int_0^1 dx \frac{x F_1(x, Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+}
$$

$$
T_2(\nu, Q^2) = \frac{16\pi M}{Q^2} \int_0^1 dx \frac{F_2(x, Q^2)}{1 - x^2(\nu/\nu_{\rm el})^2 - i0^+}
$$

- The subtraction function is not directly accessible in experiment
- Data on structure functions is sometimes deficient (in practice, for any light nuclei heavier than proton)

EFTs for TPE (and *vice versa***)**

Lamb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$

- Typical energies in (muonic) atoms are small: natural to use EFTs
- Chiral EFT (covariant, HB, ...) or (even) pionless EFT for nuclear effects
- Expansion in powers of a small parameter, order-by-order uncertainty
- TPE effect is needed to high precision to extract radii

- a rather high order calculation of these effects is typically needed
- If TPE can be extracted (e.g. isotope shifts and/or known radii), this provides a benchmark for the theory
- Can calculate either VVCS or structure functions

Lamb Shift of μH in Covariant BχPT

- Delta counting: $\Delta = M_{\Delta} M \gg m_{\pi}$
- The contributions of the Delta isobar are suppressed by powers of m_{π}/Δ
- Expansion in powers of

 $p/\Delta \sim m_\pi/\Delta \sim 0.5$

LO BχPT: pion-nucleon loops

 $\Delta E_{25}^{\text{LO, pol}} = -9.6_{-2.9}^{+1.4}$ µeV

Delta exchange:

 (a) (b) (c) (d) (e) $\left(\mathbf{g} \right)$ (h) (i)

- suppressed in $\Delta E_{25}^{\text{pol}}$ but affects the subtraction
- insert transition form factors (Jones-Scadron)

$$
\Delta E_{2S}^{\Delta-\rm pole} = 0.95 \pm 0.95~\mu\rm eV
$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Alarcon, VL, Pascalutsa (2014)

Various Subtraction Functions

- The diversity of the results for the proton subtraction function $T_1(0, Q^2)$
	- HBChPT: dipole FF, matches β_{M1} [PDG] and the slope at 0 modification of Birse, McGovern (2012)
	- BChPT: transition FFs change the subtraction function
	- Empirical: Regge asymptotic at high energy subtracted Tomalak, Vanderhaeghen (2015)

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- Zero crossing at low Q^2 emerges in BChPT with FFs; established in the empirical derivation, but the position not well known $(0.1..0.4 \text{ GeV}^2)$
- Big cancellations between different mechanisms (π N and $\pi\Delta$ loops vs. Δ pole), also cancellations in the LS integral because of the sign change
- Empirical derivation has sizeable errors towards $Q^2 = 0$ (not shown) attributed to mismatch between structure function fit in the resonance region (Christy-Bosted) and at high energies (Donnachie-Landshoff) => needs a better (combined) structure function parametrization

Lamb Shift of μH in Various Approaches

Forward 2 v-exchange contributions to the 2S-shift in μ H, in units of μ eV. Table 1

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

Antognini, Hagelstein, Pascalutsa (2022)

- Agreement between different approaches, also on the size of the subtraction contribution separately – despite the variation in $T_1(0, Q^2)$
- Still, $T_1(0, Q^2)$ carries the biggest uncertainty, and needs to be further constrained [esp. in view of a more precise experiment]

see Randolf Pohl's talk

HFS of μH in Covariant BχPT

$$
E_{\text{hfs}}(nS) = \frac{8}{3} \frac{Z\alpha}{(an)^3} \frac{1+\kappa}{mM} (1 + \Delta_{\text{QED}} + \Delta_{\text{weak}} + \Delta_{\text{strong}})
$$

\n
$$
\Delta_{\text{strong}} = \Delta_Z + \Delta_{\text{recoil}} + \Delta_{\text{pol}}
$$

\n
$$
\Delta_{\text{pol.}} = \Delta_1 + \Delta_2 = \frac{Zm}{2\pi(1+\kappa)M} (\delta_1 + \delta_2),
$$

\n
$$
\delta_1 = 2 \int_0^\infty \frac{dQ}{Q} \left\{ \frac{5+4v_I}{(v_I+1)^2} \left[4I_1(Q^2)/Z^2 + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} dx x^2 g_1(x, Q^2) \right\}
$$

\n
$$
\times \frac{1}{(v_I + v_x)(1 + v_x)(1 + v_I)} \left(4 + \frac{1}{1 + v_x} + \frac{1}{v_I + 1} \right) \right\},
$$

\n
$$
\delta_2 = 96M^2 \int_0^\infty \frac{dQ}{Q^3} \int_0^{x_0} dx g_2(x, Q^2) \left(\frac{1}{v_I + v_x} - \frac{1}{v_I + 1} \right)
$$

$$
I_1(Q^2) = \frac{2M^2Z^2}{Q^2} \int_0^{x_0} dx g_1(x, Q^2)
$$
 The generalized GDH integral

 $v_1 = \sqrt{1+1/\tau_1}$, $v_x = \sqrt{1+x^2\tau^{-1}}$, $\tau_1 = \frac{Q^2}{4m^2}$, $\tau = \frac{Q^2}{4m^2}$ Kinematic functions

HFS of μH in Covariant BχPT

$$
E_{\text{hfs}}(nS) = \frac{8}{3} \frac{Z\alpha}{(an)^3} \frac{1+\kappa}{mM} \left(1 + \Delta_{\text{QED}} + \Delta_{\text{weak}} + \Delta_{\text{strong}}\right)
$$

$$
\Delta_{\text{strong}} = \Delta_Z + \Delta_{\text{recoil}} + \Delta_{\text{pol}}
$$

$$
\Delta_{\text{pol.}} = \Delta_{LT} + \Delta_{TT} + \Delta_{F_2} = \frac{m}{2\pi(1+\kappa)M} (\delta_{LT} + \delta_{TT} + \delta_{F_2}),
$$
\n
$$
\delta_{LT} = \frac{4M}{\alpha\pi^2} \int_0^\infty dQ \int_0^{x_0} dx \frac{1}{v_1 + v_x} \frac{1}{x^2 + \tau} \left[1 - \frac{1}{(1 + v_1)(1 + v_x)} \right] \sigma_{LT}(x, Q^2),
$$
\n
$$
\delta_{TT} = \frac{4M^2}{\alpha\pi^2} \int_0^\infty \frac{dQ}{Q} \int_0^{x_0} \frac{dx}{x} \frac{1}{1 + v_1} \left[\frac{2\tau}{x^2 + \tau} + \frac{1}{(v_1 + v_x)(1 + v_x)} \right] \sigma_{TT}(x, Q^2),
$$
\n
$$
\delta_{F_2} = 2 \int_0^\infty \frac{Q}{Q} \frac{5 + 4v_1}{(v_1 + 1)^2} F_2^2(Q^2)
$$

 $v_l=\sqrt{1+{1}/{\tau_l}},\ \ v_{\sf x}=\sqrt{1+{\sf x}^2\tau^{-1}},\ \ \tau_l=\mathsf{Q}^2\!4m^2,\ \ \tau=\mathsf{Q}^2\!4m^2$

Kinematic functions

• Rewritten in terms of scattering cross sections

HFS of μH in Covariant BχPT: Cancellations

• LO BχPT result

 $E_{\sf hfs}^{\langle {\sf LO} \rangle \; {\sf pol.}}(1S, {\sf H}) = 0.69(2.03) \, {\sf peV}$ $E_{\sf hfs}^{\langle {\sf LO} \rangle \; {\sf pol.}}(1S, \mu {\sf H}) = 6.8(11.4) \, \mu{\sf eV}$

- Consistent with zero
- Cancellations!

Hagelstein, VL, Pascalutsa (2023)

- The LT and TT contributions are large and almost cancel each other
- The LO BχPT result is nearly zero

 $- E(\Delta_{pol.})$

• Sizeable uncertainty

HFS of μH

- Compare with expected experimental precision (cyan line)
- Theory needs to do better than that
- Rescaling non-recoil contributions from the HFS in H

$$
E_{nS-hfs}^{Z+pol}(\mu H) = \frac{E_{F}(\mu H) m_{r}(\mu H) b_{nS}(\mu H)}{n^{3}E_{F}(H) m_{r}(H) b_{1S}(H)} E_{1S-hfs}^{Z+pol}(H)
$$
\n
$$
= \frac{E_{F}(\mu H)}{n^{3}} \Delta_{pol}(\mu H) \left[c_{1S}(H) \frac{b_{nS}(\mu H)}{b_{1S}(H)} - c_{nS}(\mu H) \right]
$$
\n
$$
= \frac{210^{-5}}{10^{-5}}
$$
\n
$$
= \frac{1000 \text{ N} \cdot \text{m} \cdot \text{
$$

 Δ_{pol} [μ H] (ppm)

Nuclei Heavier than Proton

- Most of the TPE correction is nuclear (as with pointlike nucleons)
- Nuclear part of subtraction function converges (finite energy sum rule)
	- TPE with nuclear response functions calculated ab initio will converge
	- Most widely used method

$$
E_{\sf pol}=-\frac{4\,\pi\,\alpha^2}{3}\,\varphi^2(0)\int_{E_T}\,dE\,\sqrt{\frac{2\,\mu}{E}}\,|\langle\varPhi_N|\tilde{d}|E\rangle|^2
$$

See Nir Barnea's talk for more details on this method!

• Single-nucleon contributions are treated separately

Ji et al. (2018)

- relatively more important in heavier nuclei
- sizeable uncertainty!
- neutron not so well constrained empirically (especially important in μ³H)

Deuteron VVCS in Pionless EFT

- Nucleons are non-relativistic $\rightarrow E \simeq p^2/M = O(p^2)$
- Loop integrals $dE d^3 p = O(p^5)$
- Nucleon propagators $(E p^2/2M)^{-1} = O(p^{-2})$
- **Typical momenta** $p \sim \gamma = \sqrt{ME_d} \simeq 45 \text{ MeV}$
- Photon momenta $|\overrightarrow{q}| \sim p$, $v \sim p^2$
- Expansion parameter $p/m_{\pi} \simeq \gamma/m_{\pi} \simeq 1/3$
- *NN* system has a low-lying bound/virtual state → enhance S-wave coupling constants, resum the LO *NN* S-wave scattering amplitude
- z-parametrization (reproducing deuteron S-wave asymptotics at NLO)
- Easy to solve (analytic results for *NN*)
- Explicit gauge invariance and renormalisability
- A field theory treatment!

Kaplan, Savage, Wise (1998) Chen, Rupak, Savage (1999) Phillips, Rupak, Savage (1999)

Counting for VVCS and TPE: Predictive Powers

Longitudinal and Transverse amplitudes

$$
f_L(\nu, Q^2) = -T_1(\nu, Q^2) + \left(1 + \frac{\nu^2}{Q^2}\right) T_2(\nu, Q^2), \qquad f_T(\nu, Q^2) = T_1(\nu, Q^2)
$$
\nLamb Shift:
\n
$$
\Delta E_{nl} = -8i\pi m \left[\phi_{nl}(0)\right]^2 \int_{s} \frac{d^4q}{(2\pi)^4} \frac{f_L(\nu, Q^2) + 2(\nu^2/Q^2) f_T(\nu, Q^2)}{Q^2(Q^4 - 4m^2\nu^2)}
$$
\n
$$
f_L = O(p^{-2}), \qquad f_T = O(p^0) \qquad \text{in the VVCS amplitude}
$$
\n
$$
\alpha_{E1} = 0.64 \text{ fm}^3
$$
\n
$$
\alpha_{E1} = 0.64 \text{ fm}^3
$$
\n
$$
\beta_{M1} = 0.07 \text{ fm}^3
$$

- Transverse contribution to TPE starts only at N4LO
- N4LO: ΔE_{nl} needs to be regularised, an unknown lepton-NN LEC

- We go up to N3LO in f_l , and up to (relative) NLO in f_T [cross check]
- One unknown LEC at N3LO in f_i
	- important for the charge form factor
	- extracted from the H-D isotope shift and proton R_E

Amplitude with Deuterons

• The reaction amplitude is given by the LSZ reduction

– irreducible VVCS graphs (here full LO for f_i ; crossed not shown)

– deuteron self-energy (here at LO)

• The expression for the residue is very simple up to N3LO:

$$
\left[\left.\frac{\mathrm{d}\Sigma(E)}{\mathrm{d}E}\right|_{E=E_d}\right]^{-1}=\frac{8\pi\gamma}{M^2}\left[1+(Z-1)+0+0+\ldots\right]
$$

Deuteron VVCS: Feynman Graphs

LO

NLO

Amplitudes are calculated analytically (dimreg+PDS)

Kaplan, Savage, Wise (1998)

- Checks:
	- ➔ the sum of each subgroup (+ respective crossed graphs) is gauge invariant
	- ➔ regularisation scale dependence has to vanish

Deuteron VVCS: Feynman Graphs N3LO

NNLO

 $n_{\rm L}$ Ω $\mathbf{0}$ $\mathbf{0}$ $n_{\rm L}$ \overline{P}

Many interesting results obtained from the VVCS amplitude, e.g., the deuteron (generalised) polarisabilities

VL, Hiller Blin, Pascalutsa (2021)

Deuteron Charge Form Factor and TPE in μD

- The deuteron charge form factor obtained from the residue of the VVCS amplitude
- The result is consistent with χ EFT
- Correlation between R_F and R_E
	- generated by the N3LO LEC

Deuteron Charge Form Factor and TPE in μD

 1.0 • The deuteron charge form factor obtained 0.9 from the residue of the VVCS amplitude $\frac{1}{90}$ 0.8 The result is consistent with χ EFT • Correlation between R_F and r_C XEFT Filin et al. (2020) 0.6 – generated by the N3LO LEC 50 100 150 200 ⁿ Q [MeV] $R_{\rm F}^3 = \frac{48}{\pi} \int\limits_{0}^{\infty} \frac{dQ}{Q^4} \left[G_C^2(Q^2) - 1 - 2G_C'(0) Q^2 \right]$ VL, Hiller Blin, Pascalutsa (2021) π EFT $=\frac{3}{80v^3}\left\{Z\left[5-2Z(1-2\ln 2)\right]\right\}$ $+ \chi ET$ 39 \bullet Sick & Trautmann \blacksquare Abbott et al. $\lceil \mathop{\text{fm}}^3 \rceil$ $-320/9 r_0^2 \gamma^2 [Z(1-4 \ln 2)-2+2 \ln 2]$ $+80(Z-1)^3 \, I_1^{C_0 s}$ $\frac{1}{2} \approx 37$ 36 $r_C^2 = \frac{1}{8\gamma^2} + \frac{Z-1}{8\gamma^2} + 2r_0^2 + \frac{3(Z-1)^3}{\gamma^2} I_1^{C_0 s}$ 35 4.0 4.2 4.4 4.6 r_d^2 [fm²] VL, Hagelstein, Pascalutsa (2022)

Deuteron Charge Form Factor and TPE in μD

- The deuteron charge form factor obtained from the residue of the VVCS amplitude
- The result is consistent with χ EFT
- Correlation between R_F and r_C
	- generated by the N3LO LEC

$$
R_{\rm F}^3 = \frac{48}{\pi} \int\limits_{0}^{\infty} \frac{dQ}{Q^4} \left[G_C^2(Q^2) - 1 - 2G_C'(0) Q^2 \right]
$$

- (71α) • Benchmark: EFTs work better at low Q than at least some empirical parametrizations at least some empirical parametrizations
	- Not only r_c but also higher derivatives need to be reproduced correctly! to be reproduced correctly!
- Agreement with χEFT vindicates both EFTs

28 / 34

TPE in μD: Higher-Order Corrections

- $\Delta E_{2S} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} = -1.955(19) \text{meV}$ Higher-order in α terms are important in D
	- Coulomb $[\mathcal{O}(\alpha^6 \log \alpha)]$

taken from elsewhere $\Delta E_{25}^{\text{Coulomb}} = 0.2625(15)$ meV

– eVP $[\mathcal{O}(\alpha^6)]$ Kalinowski (2019)

non-forward

reproduced in pionless EFT $\Delta E_{25}^{\text{eVP}} = -0.027$ meV

- Single-nucleon terms at N4LO in pionless EFT and higher
	- insert empirical FFs in the LO+NLO VVCS amplitude
	- polarisability contribution (inelastic+subtraction)
		- **•** inelastic: ed scattering data carlson, Gorchtein, Vanderhaeghen (2013)
		- subtraction: nucleon subtraction function from χΕFΤ

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- in total: small but sizeable: $\Delta E_{25}^{\text{hadr}} = -0.032(6)$ meV

TPE in μD: Higher-Order Corrections

- $\Delta E_{2S} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} = -1.955(19) \text{meV}$ Higher-order in α terms are important in D
	- Coulomb $[\mathcal{O}(\alpha^6 \log \alpha)]$

taken from elsewhere $\Delta E_{25}^{\text{Coulomb}} = 0.2625(15)$ meV

– eVP $[O(\alpha^6)]$ Kalinowski (2019) non-forward

reproduced in pionless EFT $\Delta E_{25}^{\text{eVP}} = -0.027$ meV

- Single-nucleon terms at N4LO in pionless EFT and higher
	- insert empirical FFs in the LO+NLO VVCS amplitude
	- polarisability contribution (inelastic+subtraction)
		- **•** inelastic: ed scattering data carlson, Gorchtein, Vanderhaeghen (2013)
		- subtraction: nucleon subtraction function from χΕFΤ

- in total: small but sizeable: $\Delta E_{25}^{\text{hadr}} = -0.032(6)$ meV

 $\Delta E_{25}^{2\gamma} = \Delta E_{25}^{\text{elastic}} + \Delta E_{25}^{\text{inel}} + \Delta E_{25}^{\text{hadr}} + \Delta E_{25}^{\text{eVP}} + \Delta E_{25}^{\text{Coulomb}} = -1.752(20) \text{ meV}$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Deuteron Charge Radius and TPE in μD

Agreement with other calculations [most of those evaluate via structure functions (using χEFT/model NN interactions)]

Proton and Deuteron Radii and Isotope Shift

• H-D isotope shift: $E(H, 1S - 2S) - E(D, 1S - 2S)$

Summary and Outlook

- The mass of the muon sets a new scale that changes a lot of properties of muonic atoms compared to ordinary atoms
- Muonic (H-like) atoms and ions are important both due to their sensitivity to charge radii and their connection to nuclear/hadron physics (~TPE)
- EFTs often produce better results for TPE than data-driven approach
- Single-nucleon effects are sizeable, more importaint in heavier nuclei
- Higher-order radiative corrections are also becoming important
- μ H: doing rather well, but need to shrink the TPE uncertainty by a factor of ~2 or more. How would it be possible (Lamb shift/HFS)? Is it time to revisit the HFS rescaling result?
- µD (and µHe⁺): can one shrink the theory uncertainty?
- What would be a reasonable strategy for future theory calculations?

Thank You

• Many thanks to my colleagues and collaborators

V. Pascalutsa, F. Hagelstein, J. McGovern, M. Birse, B. Acharya, S. Bacca, M. Gorchtein, K. Pachucki, ...

• And thank you for your attention!