

Theory of Light Muonic Atoms

Vadim Lensky

JGU Mainz

EPIC 2024 22–27 September 2024 CalaSerena, Geremeas, Sardinia

Light Muonic (H-like) Atoms and Ions

- Light Muonic Atoms: Z=1,2,...?
- This talk focuses on µH and µD (predominantly)
- Mostly Lamb shift is considered (a few words on µH HFS)
- Basic ideas about the theory (QED, FS, NS)

- Data-driven or effective field theory: Treatment of TPE
- Results for µH
- Remarks about heavier nuclei
- Results for µD
- Outlook

A Scary Table

TABLE I Contributions to the $2P_{1/2} - 2S_{1/2}$ energy difference E_L in meV, with the charge radii r_C given in fm. All corrections larger than 3% of the overall uncertainty are included. Theoretical predictions for E_L are E_L (theo) = $E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$. The last two rows show the values of r_C determined from a comparison of E_L (theo) to E_L (exp).

Sec	Order	Correction	μH	μD	$\mu^{3}\mathrm{He^{+}}$	$\mu^4 \text{He}^+$
TIL A	$(7_{2})^{2}$	-UD ⁽¹⁾	205 007 22	007 694 70	1041 000 0	1005 779 1
III.A	$\alpha (Z\alpha)^{-}$	eVP ⁽²⁾	205.00738	227.63470	1641.8862	1005.7731
III.A	$\alpha^{-}(Z\alpha)^{-}$	eVP ⁽²⁾	1.658 85	1.838.04	13.0843	13.276.9
III.A	$\alpha^{\circ}(Z\alpha)^{2}$	eVP(*)	0.00752	0.00842(7)	0.0730(30)	0.0740(30)
III.B	$(Z, Z^2, Z^\circ) \alpha^\circ$	light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)
III.C	$(Z\alpha)^2$	recoil	0.05747	0.067.22	0.1265	0.2952
III.D	$\alpha (Z\alpha)^*$	relativistic with $eVP^{(1)}$	0.01876	0.02178	0.5093	0.5211
III.E	$\alpha^2 (Z\alpha)^*$	relativistic with $eVP^{(2)}$	0.00017	0.00020	0.0056	0.0057
III.F	$\alpha (Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.66345	-0.76943	-10.6525	-10.9260
III.G	$\alpha (Z\alpha)^{\circ}$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797
III.H	$\alpha^2 (Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.00013	0.00015	0.0038	0.0039
III.I	$\alpha^2 (Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330
III.K	$\alpha (Z\alpha)^5$	recoil with $eVP^{(1)}$	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)}, \mu F_2^{(2)}, \mu V P^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)
III.Q	$\alpha^2 (Z \alpha)^4$	hVP with $eVP^{(1)}$	0.000 09	0.000 10	0.0026(1)	0.0027(1)
IV.A	$(Z\alpha)^4$	r_{C}^{2}	$-5.1975 r_{\pi}^2$	$-6.0732 r_d^2$	$-102.523 r_{h}^{2}$	$-105.322 r_{\alpha}^{2}$
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_c^2	$-0.0282r_{-}^{p}$	$-0.0340 r_{d}^{2}$	$-0.851 r_{1}^{2}$	$-0.878 r^{2}$
IV.C	$\alpha^2 (Z\alpha)^4$	$eVP^{(2)}$ with r_c^2	$-0.0002r^{2}$	$-0.0002 r_{1}^{2}$	$-0.009(1) r_t^2$	$-0.009(1) r^2$
	(2.1)		0.000 2.7 p	1.070(20)	0.000(1).	ο.σου(1) · α
V.A	$(Z\alpha)^{\circ}$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)
V.B	$\alpha^{-}(Z\alpha)^{-}$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
V.C	$(Z\alpha)^{\circ}$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)
V.D	$\alpha (Z\alpha)^{5}$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)
V.E	$\alpha (Z\alpha)^{\circ}$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)
III	$E_{\rm QED}$	point nucleus	206.0344(3)	228.7740(3)	1644.348(8)	1668.491(7)
IV	${\cal C} r_C^2$	finite size	$-5.2259 r_p^2$	$-6.107 4 r_d^2$	$-103.383 r_h^2$	$-106.209 r_{\alpha}^{2}$
V	$E_{\rm NS}$	nuclear structure	0.0289(25)	1.7503(200)	15.499(378)	9.276(433)
	$E_L(\exp)$	experiment ^a	202.3706(23)	202.8785(34)	1258.598(48)	1378.521(48)
	r_C	this review	0.84060(39)	2.12758(78)	1.97007(94)	1.6786(12)
	r_C	previous work ^a	0.84087(39)	2.12562(78)	1.97007(94)	1.67824(83

Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl – theory review (2022) ^a experiment: CREMA (2013-2023)

$E_{LS}(\text{theo}) = E_{QED} + C r_C^2 + E_{NS}$

Sec.	Order	Correction	μH	$\mu \mathrm{D}$	$\mu^{3}\mathrm{He^{+}}$	$\mu^4 \mathrm{He^+}$		
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731	1	
III.A	$\alpha^2 (Z\alpha)^2$	$eVP^{(2)}$	1.65885	1.83804	13.0843	13.2769		
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.00752	0.00842(7)	0.0730(30)	0.0740(30)		
III.B	$(Z, Z^2, Z^3) \alpha^5$	light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)		
III.C	$(Z\alpha)^4$	recoil	0.05747	0.06722	0.1265	0.2952		
III.D	$\alpha (Z\alpha)^4$	relativistic with $eVP^{(1)}$	0.01876	0.02178	0.5093	0.5211		
III.E	$\alpha^2 (Z\alpha)^4$	relativistic with $eVP^{(2)}$	0.00017	0.00020	0.0056	0.0057		
III.F	$\alpha (Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}, LO$	-0.66345	-0.76943	-10.6525	-10.9260		
III.G	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797		_
III.H	$\alpha^2 (Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.00013	0.00015	0.0038	0.0039		
III.I	$\alpha^2 (Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646		
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330		
III.K	$\alpha (Z\alpha)^5$	recoil with eVP ⁽¹⁾	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)		
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505		
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)}, \mu F_2^{(2)}, \mu V P^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319		
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014		
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023		
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)		
III.Q	$\alpha^2 (Z\alpha)^4$	hVP with $eVP^{(1)}$	0.000 09	0.00010	0.0026(1)	0.0027(1)	J	
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975 r_p^2$	$-6.073 2 r_d^2$	$-102.523 r_h^2$	$-105.322 r_{\alpha}^{2}$	ר	0
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.0282r_p^2$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^2$		$C r^2$
IV.C	$\alpha^2 (Z\alpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.0002r_p^2$	$-0.0002r_d^{\overline{2}}$	$-0.009(1) r_h^2$	$-0.009(1) r_{\alpha}^2$	J	C'C
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)	2	
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536		
V.C	$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)	7	FNC
V.D	$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)		L IN2
V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)	J	

$E_{LS}(\text{theo}) = E_{QED} + C r_C^2 + E_{NS}$

Sec.	Order	Correction	μH	μD	$\mu^{3}\mathrm{He^{+}}$	$\mu^4 \mathrm{He^+}$		
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731	1	
III.A	$\alpha^2 (Z\alpha)^2$	$eVP^{(2)}$	1.65885	1.83804	13.0843	13.2769		
III.A	$\alpha^3 (Z\alpha)^2$	$eVP^{(3)}$	0.00752	0.00842(7)	0.0730(30)	0.0740(30)		
III.B	$(Z, Z^2, Z^3) \alpha^5$	light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)		
III.C	$(Z\alpha)^4$	recoil	0.05747	0.06722	0.1265	0.2952		
III.D	$\alpha (Z\alpha)^4$	relativistic with $eVP^{(1)}$	0.01876	0.02178	0.5093	0.5211		
III.E	$\alpha^2 (Z\alpha)^4$	relativistic with $eVP^{(2)}$	0.00017	0.00020	0.0056	0.0057		
III.F	$\alpha (Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}, LO$	-0.66345	-0.76943	-10.6525	-10.9260		
III.G	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797		-
III.H	$\alpha^2 (Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.00013	0.00015	0.0038	0.0039		
III.I	$\alpha^2 (Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646		-QLD
III.J	$(Z\alpha)^5$	recoil	-0.04497	-0.02660	-0.5581	-0.4330		
III.K	$\alpha (Z\alpha)^5$	recoil with $eVP^{(1)}$	0.00014(14)	0.00009(9)	0.0049(49)	0.0039(39)		
III.L	$Z^2 \alpha (Z \alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505		
III.M	$\alpha^2 (Z\alpha)^4$	$\mu F_1^{(2)}, \ \mu F_2^{(2)}, \ \mu V P^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319		
III.N	$(Z\alpha)^6$	pure recoil	0.00009	0.00004	0.0019	0.0014		
III.O	$\alpha (Z\alpha)^5$	radiative recoil	0.00022	0.00013	0.0029	0.0023		
III.P	$\alpha (Z\alpha)^4$	hVP	0.01136(27)	0.01328(32)	0.2241(53)	0.2303(54)		
III.Q	$\alpha^2 (Z\alpha)^4$	hVP with $eVP^{(1)}$	0.000 09	0.00010	0.0026(1)	0.0027(1))	
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975 r_p^2$	$-6.073 2 r_d^2$	$-102.523 r_h^2$	$-105.322 r_{\alpha}^{2}$	ר	0
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.0282r_{p}^{2}$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^2$		$C r^2$
IV.C	$\alpha^2 (Z \alpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.0002r_p^{5}$	$-0.0002r_d^{2}$	$-0.009(1) r_h^2$	$-0.009(1) r_{\alpha}^2$	J	C'C
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)	5	
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536		
V.C	$(Z\alpha)^6$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)	5	FNC
V.D	$\alpha (Z\alpha)^5$	$eVP^{(1)}$ with TPE	0.0006(1)	0.0275(4)	0.266(24)	0.158(12)	Í	LINS
V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ with TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)	J	

(Partial) expansion in powers of α , $Z\alpha$: light means that you can still expand Recoil (expansion in powers of m_{μ}/M_A): more important than in ordinary atoms

$E_{LS}(\text{theo}) = E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

~			**	~	2 x x _	4** +		
Sec.	Order	Correction	μ H	μD	$\mu^{3}\text{He}^{+}$	$\mu^{*}\mathrm{He^{+}}$		
III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$	205.00738	227.63470	1641.8862	1665.7731		
		11						
	2	~	$R_{\rm P} \simeq (7 \alpha n)$	$(n_{**})^{-1} \simeq$	m^{-1}			
	\leq			·μ) –	- ''e			
			- Ioctron Ioon	s aro ont	hancod			
		Ľ			lanceu			E
		(matching sca	ales)!				LQED
	\leq	F	Recall that in	normal h	nvdrogen	eVP		
	5	A	s a small torr	$m \sim 0.50\%$	on top of	the		
	<u> </u>			11 0.370		uic		
		E	electron verte	ex correc	lion			
			Eides, G	rotch, Shelyu	to 2000 (revie	w), 2007 (boo	ok)	
IV A	$(Z\alpha)^4$	r^2	$-5.1975 r^2$	$-6.0732 r^{2}$	$-102\ 523\ r^2$	$-105\ 322\ r^2$	Ś	
IV.B	$\alpha (Z\alpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.028 2 r_p^2$	$-0.0340 r_d^2$	$-0.851 r_h^2$	$-0.878 r_{\alpha}^2$		$C r^2$
IV.C	$\alpha^2 (Z\alpha)^4$	$eVP^{(2)}$ with r_C^2	$-0.0002r_p^2$	$-0.0002r_d^{ ilde{2}}$	$-0.009(1) r_h^2$	$-0.009(1) r_{c}^{-0.009(1)}$	2 x	C_{C}
V.A	$(Z\alpha)^5$	TPE	0.0292(25)	1.979(20)	16.38(31)	9.76(40)	5	
V.B	$\alpha^2 (Z\alpha)^4$	Coulomb distortion	0.0	-0.261	-1.010	-0.536		_
V.C	$(Z\alpha)^{6}$	3PE	-0.0013(3)	0.0022(9)	-0.214(214)	-0.165(165)		$E_{\rm NS}$
V.D V.E	$\alpha (Z\alpha)^{5}$ $\alpha (Z\alpha)^{5}$	$\mu SE^{(1)} + \mu VP^{(1)}$ with	0.0006(1) TPE 0.0004	0.0275(4) 0.0026(3)	0.266(24) 0.077(8)	0.158(12) 0.059(6)		

$E_{LS}(\text{theo}) = E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

1										
	Sec.	Order	Correction		μH	$\mu \mathrm{D}$	$\mu^{3} \mathrm{He^{+}}$	$\mu^4 \mathrm{He^+}$		
	III.A	$\alpha (Z\alpha)^2$	$eVP^{(1)}$		205.00738	227.63470	1641.8862	1665.7731		
			11.							
		2	<i>p</i> c	$R_{R} \simeq$	$(Z\alpha m)$	$(\dots)^{-1} \simeq$	m_{-1}^{-1}			
		\leq		- · · D -	(μ) —	···e			
				Flect	on loons	s are enh	anced			
	(e		(moto	bing coo		lanceu			FOED
)		(mait	anny sca	162):				
	Ň	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		-						
		\geq	A	Reca	Il that in	normal h	ydrogen	eVP		
		2	21	is a s	mall tern	า ~0.5%	on top of	the		
				electr	on verte	x correct	ion			
					Eides, Gr	otch, Shelyut	o 2000 (review	w), 2007 (boo	k)	
	TV A	$(\mathbf{Z}_{\mathbf{r}})^4$			$5.1075 m^2$	$6.072.2 \text{ m}^2$	100 502 -2	$105,299,m^2$	5	
	IV.A	(2 \alpha)	r_C		-5.197 5 T _p	$-0.0732T_d$	$-102.523 r_h$	$-105.322 r_{\alpha}$	Ļ	$C r^2$
	Finite	size correct	tion is also ei	nhance	ed (2 ^{na} m	ost impo	rtant tern	1)	J	C_{C}
	V.A	$(Z\alpha)^5$	TPE		0.0292(25)	1.979(20)	16.38(31)	9.76(40)	٦ I	
	V.B V.C	$\alpha^2 (Z\alpha)^4$ $(Z\alpha)^6$	Coulomb distortion		0.0 -0.001.3(3)	-0.261 0.002.2(9)	-1.010 -0.214(214)	-0.536 -0.165(165)		E
	V.D	$(Z\alpha)^{5}$	$eVP^{(1)}$ with TPE		0.0006(1)	0.0022(3) 0.0275(4)	0.266(24)	0.158(12)	ſ	⊏NS
	V.E	$\alpha (Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$ wi	th TPE	0.0004	0.0026(3)	0.077(8)	0.059(6)	J	

$E_{LS}(\text{theo}) = E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

Finite Size and Nuclear Structure

$E_{LS}(\text{theo}) = E_{\text{QED}} + C r_C^2 + E_{\text{NS}}$

• Squeezed Table

	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^{3}\mathrm{He}^{+}$	$\mu^4 \mathrm{He}^+$
$E_{ m QED} \ {\cal C} r_C^2 \ E_{ m NS}$	point nucleus finite size nuclear structure	$206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25)$	$228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200)$	$\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 0 15.499({\color{red} 378}) \end{array}$	$\begin{array}{c} 1668.491(7) \\ -106.209r_{\alpha}^2 \\ 9.276(433) \end{array}$
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)

• Dominant nuclear structure effect: Two-Photon Exchange (TPE) Bohr radius $a = (Z \alpha m_r)^{-1}$ ^{*r*}*c* : charge radius *R*_{*F*}: Friar radius

$$\Delta E_{nS} = \frac{2\pi Z\alpha}{3} \frac{1}{\pi(an)^3} \left[r_C^2 - \frac{Z\alpha m_r}{2} R_F^3 \right] + \dots$$

- TPE also dominates the uncertainty (90-95%)
- Finite size enhanced (by a factor ~10⁸) great sensitivity!
- Also greater sensitivity to subleading nuclear structure

TPE and VVCS

- TPE is naturally described in terms of (doubly virtual fwd) Compton scattering (VVCS)
- Elastic ($v = \pm Q^2/2M_{target}$, elastic e.m. form factors) and inelastic (~ nuclear generalised polarisabilities)

• Forward spin-1/2 VVCS amplitude

$$\alpha_{\rm em} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) + \frac{i}{M} e^{\nu\mu\alpha\beta} q_{\alpha}(p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_2(\nu, Q^2) \right\}$$

+ $\frac{i}{M} e^{\nu\mu\alpha\beta} q_{\alpha}s_{\beta} S_1(\nu, Q^2) + \frac{i}{M^3} e^{\nu\mu\alpha\beta} q_{\alpha}(p \cdot q s_{\beta} - s \cdot q p_{\beta}) S_2(\nu, Q^2) \right\}$
- HFS
amb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0) \right]^2 \int_{s} \frac{d^4q}{(2\pi)^4} \frac{(Q^2 - 2\nu^2) T_1(\nu, Q^2) - (Q^2 + \nu^2) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$\begin{aligned} \alpha_{\rm em} \, M^{\mu\nu}(\nu, \, Q^2) &= -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) \, \mathcal{T}_1(\nu, \, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} \, q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} \, q^{\nu} \right) \, \mathcal{T}_2(\nu, \, Q^2) \right. \\ &+ \frac{i}{M} \, \epsilon^{\nu\mu\alpha\beta} \, q_\alpha s_\beta \, S_1(\nu, \, Q^2) + \frac{i}{M^3} \, \epsilon^{\nu\mu\alpha\beta} \, q_\alpha (p \cdot q \, s_\beta - s \cdot q \, p_\beta) \, S_2(\nu, \, Q^2) \right\} \end{aligned}$$

• Unitarity and analyticity, data-driven: dispersive relations Structure functions $F_1(x, Q^2)$, $F_2(x, Q^2)$, $g_1(x, Q^2)$, $g_2(x, Q^2)$

$$T_{1}(\nu, Q^{2}) = T_{1}(0, Q^{2}) + \frac{32\pi M \nu^{2}}{Q^{4}} \int_{0}^{1} dx \frac{x F_{1}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}},$$

$$T_{2}(\nu, Q^{2}) = \frac{16\pi M}{Q^{2}} \int_{0}^{1} dx \frac{F_{2}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}}$$

- The subtraction function is not directly accessible in experiment
- Data on structure functions is sometimes deficient (in practice, for any light nuclei heavier than proton)

EFTs for TPE (and vice versa)

Lamb Shift: $E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int_{s} \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$

- Typical energies in (muonic) atoms are small: natural to use EFTs
- Chiral EFT (covariant, HB, ...) or (even) pionless EFT for nuclear effects
- Expansion in powers of a small parameter, order-by-order uncertainty
- TPE effect is needed to high precision to extract radii

	Correction	$\mu \mathrm{H}$	$\mu \mathrm{D}$	$\mu^{3}\mathrm{He^{+}}$	$\mu^4 \mathrm{He^+}$
$\begin{array}{c} E_{\rm QED} \\ \mathcal{C} r_C^2 \\ E_{\rm NS} \end{array}$	point nucleus finite size nuclear structure	$206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(25)$	$228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200)$	$\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 15.499({\color{red}{378}}) \end{array}$	$\begin{array}{c} 1668.491(7) \\ -106.209 r_{\alpha}^2 \\ 9.276(433) \end{array}$
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)

- a rather high order calculation of these effects is typically needed
- If TPE can be extracted (e.g. isotope shifts and/or known radii), this provides a benchmark for the theory
- Can calculate either VVCS or structure functions

Lamb Shift of μ H in Covariant B χ PT

- Delta counting: $\Delta = M_{\Delta} M \gg m_{\pi}$
- The contributions of the Delta isobar are suppressed by powers of m_{π}/Δ
- Expansion in powers of

 $p/\Delta \sim m_\pi/\Delta \sim 0.5$

• LO BχPT: pion-nucleon loops

 $\Delta E_{2S}^{
m LO, \ pol} = -9.6^{+1.4}_{-2.9} \ \mu eV$

• Delta exchange:

(a) (b) (c) (c) (c) (d) (e) (f) (g) (h) (j)

Alarcon, VL, Pascalutsa (2014)

- suppressed in $\Delta E_{2S}^{\text{pol}}$ but affects the subtraction
- insert transition form factors (Jones-Scadron)

$$\Delta E_{2S}^{\Delta- ext{pole}} = 0.95 \pm 0.95 \ \mu ext{eV}$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Various Subtraction Functions

- The diversity of the results for the proton subtraction function $T_1(0, Q^2)$
 - HBChPT: dipole FF, matches β_{M1} [PDG] and the slope at 0 modification of Birse, McGovern (2012)
 - BChPT: transition FFs change the subtraction function
 - Empirical: Regge asymptotic at high energy subtracted Tomalak, Vanderhaeghen (2015)

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- Zero crossing at low Q^2 emerges in BChPT with FFs; established in the empirical derivation, but the position not well known (0.1..0.4 GeV²)
- Big cancellations between different mechanisms (πN and $\pi \Delta$ loops vs. Δ pole), also cancellations in the LS integral because of the sign change
- Empirical derivation has sizeable errors towards $Q^2 = 0$ (not shown) attributed to mismatch between structure function fit in the resonance region (Christy-Bosted) and at high energies (Donnachie-Landshoff) => needs a better (combined) structure function parametrization

Lamb Shift of µH in Various Approaches

Reference	$E_{2S}^{(\text{subt})}$	$E_{2S}^{(\text{inel})}$	$E_{2S}^{(\text{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN DISPERSIVE EVALUATION					
(75) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(76) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(77) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(78) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)
(79) Gorchtein et al.'13 $^{\rm a}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(80) Hill and Paz '16					-30(13)
(81) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
Leading-order $B\chi PT$					
(82) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(83) Lensky et al. '17 $^{\rm b}$	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(84) Fu et al. '22					-37.4(4.9)

Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

Antognini, Hagelstein, Pascalutsa (2022)

- Agreement between different approaches, also on the size of the subtraction contribution separately despite the variation in $T_1(0, Q^2)$
- Still, $T_1(0, Q^2)$ carries the biggest uncertainty, and needs to be further constrained [esp. in view of a more precise experiment]

see Randolf Pohl's talk

HFS of μH in Covariant BχPT

$$\begin{split} E_{\rm hfs}(nS) &= \frac{8}{3} \frac{Z\alpha}{(an)^3} \frac{1+\kappa}{mM} \left(1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm strong}\right) \\ \Delta_{\rm strong} &= \Delta_{\rm Z} + \Delta_{\rm recoil} + \Delta_{\rm pol} \\ \Delta_{\rm pol.} &= \Delta_{\rm 1} + \Delta_{\rm 2} = \frac{Zm}{2\pi(1+\kappa)M} \left(\delta_{\rm 1} + \delta_{\rm 2}\right), \\ \delta_{\rm 1} &= 2\int_{0}^{\infty} \frac{dQ}{Q} \left\{ \frac{5+4v_l}{(v_l+1)^2} \left[4l_1(Q^2)/Z^2 + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_{0}^{x_0} dx \, x^2 g_1(x, Q^2) \right. \\ &\times \frac{1}{(v_l+v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l+1} \right) \right\}, \\ \delta_{\rm 2} &= 96M^2 \int_{0}^{\infty} \frac{dQ}{Q^3} \int_{0}^{x_0} dx \, g_2(x, Q^2) \left(\frac{1}{v_l+v_x} - \frac{1}{v_l+1} \right) \end{split}$$

$$I_1(Q^2) = \frac{2M^2Z^2}{Q^2} \int_0^{x_0} dx \, g_1(x, Q^2)$$
 The generalised GDH integral

 $v_l = \sqrt{1 + 1/\tau_l}, \ v_x = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_l = Q^2/4m^2, \ \tau = Q^2/4M^2$ Kinematic functions

HFS of μH in Covariant BχPT

$$E_{\rm hfs}(nS) = \frac{8}{3} \frac{Z\alpha}{(an)^3} \frac{1+\kappa}{mM} \left(1 + \Delta_{\rm QED} + \Delta_{\rm weak} + \Delta_{\rm strong}\right)$$
$$\Delta_{\rm strong} = \Delta_{\rm Z} + \Delta_{\rm recoil} + \Delta_{\rm pol}$$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_{LT} + \Delta_{TT} + \Delta_{F_2} = \frac{m}{2\pi(1+\kappa)M} \left(\delta_{LT} + \delta_{TT} + \delta_{F_2} \right), \\ &\delta_{LT} = \frac{4M}{\alpha\pi^2} \int_0^\infty dQ \int_0^{x_0} dx \, \frac{1}{v_l + v_x} \frac{1}{x^2 + \tau} \left[1 - \frac{1}{(1+v_l)(1+v_x)} \right] \sigma_{LT}(x, Q^2), \\ &\delta_{TT} = \frac{4M^2}{\alpha\pi^2} \int_0^\infty \frac{dQ}{Q} \int_0^{x_0} \frac{dx}{x} \frac{1}{1+v_l} \left[\frac{2\tau}{x^2 + \tau} + \frac{1}{(v_l + v_x)(1+v_x)} \right] \sigma_{TT}(x, Q^2), \\ &\delta_{F_2} = 2 \int_0^\infty \frac{Q}{Q} \frac{5 + 4v_l}{(v_l + 1)^2} F_2^2(Q^2) \end{split}$$

 $v_I = \sqrt{1 + 1/\tau_I}, \ v_x = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_I = Q^2/4m^2, \ \tau = Q^2/4M^2$

Kinematic functions

• Rewritten in terms of scattering cross sections

HFS of µH in Covariant BxPT: Cancellations

LO B_xPT result

 $E_{\rm hfs}^{
m (LO) \ pol.}(1S, {
m H}) = 0.69(2.03) \, {
m peV}$ $E_{
m hfs}^{
m \langle LO
angle \ pol.}(1S, \mu {
m H}) = 6.8(11.4) \, \mu {
m eV}$

- Consistent with zero •
- Cancellations!

Hagelstein, VL, Pascalutsa (2023)

- The LT and TT contributions are large and almost cancel each other
- The LO BχPT result is nearly zero

— Ε(Δ_{pol.})

Sizeable uncertainty

18/34

HFS of µH

- Compare with expected experimental precision (cyan line)
- Theory needs to do better than that
- Rescaling non-recoil contributions from the HFS in H

H rescaling

Disp. Rel. Tomalak '18 ·

Peset et al. '17 -

HBγPT

BγPT LO

182.60

Antognini et al. '22

Hagelstein et al. '23 -

182.68

600

182.64 $E_{\rm hfs}$ (1S, μ H) [meV]

Nuclei Heavier than Proton

- Most of the TPE correction is nuclear (as with pointlike nucleons)
- Nuclear part of subtraction function converges (finite energy sum rule)
 - TPE with nuclear response functions calculated ab initio will converge
 - Most widely used method

$$E_{\rm pol} = -\frac{4 \pi \alpha^2}{3} \phi^2(0) \int_{E_T} dE \sqrt{\frac{2 \mu}{E}} |\langle \Phi_N | \tilde{d} | E \rangle|^2$$

See Nir Barnea's talk for more details on this method!

• Single-nucleon contributions are treated separately

Ji et al. (2018)

- relatively more important in heavier nuclei
- sizeable uncertainty!
- neutron not so well constrained empirically (especially important in µ³H)

	$\delta^A_{ m Zem}$	$\delta^A_{ m pol}$	$\delta^N_{ m Zem}$	$\delta^N_{ m pol}$	δ_{TPE}
$ \frac{\mu^{2}H}{\mu^{3}H} \\ \mu^{3}He^{+} \\ \mu^{4}He^{+} $	$\begin{array}{r} -0.423(04) \\ -0.227(06) \\ -10.49(23) \\ -6.14(31) \end{array}$	-1.245(13) -0.480(11) -4.23(18) -2.35(13)	$\begin{array}{r} -0.030(02) \\ -0.033(02) \\ -0.52(03) \\ -0.54(03) \end{array}$	$\begin{array}{r} -0.020(10) \\ -0.031(17) \\ -0.25(13) \\ -0.34(20) \end{array}$	-1.718(17) -0.771(22) -15.49(33) -9.37(44)
	nucle	ar	iindividual	nucleons	

Deuteron VVCS in Pionless EFT

- Nucleons are non-relativistic $\rightarrow E \simeq p^2/M = O(p^2)$
- Loop integrals $dE d^3p = O(p^5)$
- Nucleon propagators $(E p^2/2M)^{-1} = O(p^{-2})$
- Typical momenta $p \sim \gamma = \sqrt{ME_d} \simeq 45 \text{ MeV}$
- Photon momenta $|\overrightarrow{q}| \sim p$, $\nu \sim p^2$
- Expansion parameter $p/m_{\pi} \simeq \gamma/m_{\pi} \simeq 1/3$
- NN system has a low-lying bound/virtual state \rightarrow enhance S-wave coupling constants, resum the LO NN S-wave scattering amplitude
- z-parametrization (reproducing deuteron S-wave asymptotics at NLO)
- Easy to solve (analytic results for *NN*)
- Explicit gauge invariance and renormalisability
- A field theory treatment!

Kaplan, Savage, Wise (1998) Chen, Rupak, Savage (1999) Phillips, Rupak, Savage (1999)

Counting for VVCS and TPE: Predictive Powers

• Longitudinal and Transverse amplitudes

$$f_{L}(v, Q^{2}) = -T_{1}(v, Q^{2}) + \left(1 + \frac{v^{2}}{Q^{2}}\right) T_{2}(v, Q^{2}), \qquad f_{T}(v, Q^{2}) = T_{1}(v, Q^{2})$$
Lamb Shift:

$$\Delta E_{nl} = -8i\pi m \left[\phi_{nl}(0)\right]^{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{f_{L}(v, Q^{2}) + 2(v^{2}/Q^{2})f_{T}(v, Q^{2})}{Q^{2}(Q^{4} - 4m^{2}v^{2})}$$

$$f_{L} = O(p^{-2}), \qquad f_{T} = O(p^{0}) \quad \text{in the VVCS amplitude}$$

$$\alpha_{E1} = 0.64 \text{ fm}^{3}$$

$$\beta_{M1} = 0.07 \text{ fm}^{3}$$

- Transverse contribution to TPE starts only at N4LO
- N4LO: ΔE_{nl} needs to be regularised, an unknown lepton-NN LEC
- We go up to N3LO in f_L , and up to (relative) NLO in f_T [cross check]
- One unknown LEC at N3LO in f_L
 - important for the charge form factor
 - extracted from the H-D isotope shift and proton R_E

Amplitude with Deuterons

• The reaction amplitude is given by the LSZ reduction

- irreducible VVCS graphs (here full LO for f_L ; crossed not shown)

deuteron self-energy (here at LO)

• The expression for the residue is very simple up to N3LO:

$$\left[\left.\frac{\mathrm{d}\Sigma(E)}{\mathrm{d}E}\right|_{E=E_d}\right]^{-1} = \frac{8\pi\gamma}{M^2}\left[1+(Z-1)+0+0+\ldots\right]$$

Deuteron VVCS: Feynman Graphs

LO

NLO

Amplitudes are calculated analytically (dimreg+PDS)

Kaplan, Savage, Wise (1998)

- Checks:
 - the sum of each subgroup (+ respective crossed graphs) is gauge invariant
 - regularisation scale dependence has to vanish

Deuteron VVCS: Feynman Graphs N3LO

NNLO

z . 0 0 0

Many interesting results obtained from the VVCS amplitude, e.g., the deuteron (generalised) polarisabilities

VL, Hiller Blin, Pascalutsa (2021)

Deuteron Charge Form Factor and TPE in µD

- The deuteron charge form factor obtained from the residue of the VVCS amplitude
- The result is consistent with χEFT
- Correlation between R_F and R_E
 - generated by the N3LO LEC

Deuteron Charge Form Factor and TPE in µD

Deuteron Charge Form Factor and TPE in µD

- The deuteron charge form factor obtained from the residue of the VVCS amplitude
- The result is consistent with χEFT
- Correlation between R_F and r_C
 - generated by the N3LO LEC

$$R_{\rm F}^{3} = \frac{48}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{4}} \left[G_{C}^{2}(Q^{2}) - 1 - 2G_{C}'(0) Q^{2} \right]$$

- Benchmark: EFTs work better at low Q than at least some empirical parametrizations
 - Not only r_C but also higher derivatives need to be reproduced correctly!
- $r_C^2 = \bullet$ Agreement with χEFT vindicates both EFTs

TPE in µD: Higher-Order Corrections

- Higher-order in α terms are important in D
 - Coulomb $\left[\mathcal{O}(\alpha^6 \log \alpha)\right]$

taken from elsewhere $\Delta E_{2S}^{\text{Coulomb}} = 0.2625(15) \text{ meV}$

– $eVP\left[\mathcal{O}(\alpha^6)
ight]$ Kalinowski (2019)

reproduced in pionless EFT $\Delta E_{2S}^{eVP} = -0.027 \text{ meV}$

- Single-nucleon terms at N4LO in pionless EFT and higher
 - insert empirical FFs in the LO+NLO VVCS amplitude
 - polarisability contribution (inelastic+subtraction)
 - inelastic: ed scattering data Carlson, Gorchtein, Vanderhaeghen (2013)
 - subtraction: nucleon subtraction function from χEFT

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

 $\Delta E_{2S} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} = -1.955(19) \text{meV}$

non-forward

- in total: small but sizeable: $\Delta E_{2S}^{hadr} = -0.032(6) \text{ meV}$

TPE in µD: Higher-Order Corrections

- Higher-order in α terms are important in D
 - Coulomb $\left[\mathcal{O}(\alpha^6 \log \alpha)\right]$

taken from elsewhere $\Delta E_{2S}^{\text{Coulomb}} = 0.2625(15) \text{ meV}$

– $eVP\left[\mathcal{O}(\alpha^6)
ight]$ Kalinowski (2019)

reproduced in pionless EFT $\Delta E_{2S}^{eVP} = -0.027 \text{ meV}$

- Single-nucleon terms at N4LO in pionless EFT and higher
 - insert empirical FFs in the LO+NLO VVCS amplitude
 - polarisability contribution (inelastic+subtraction)
 - inelastic: ed scattering data Carlson, Gorchtein, Vanderhaeghen (2013)
 - subtraction: nucleon subtraction function from χEFT

 $\Delta E_{2S} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} = -1.955(19) \text{meV}$

non-forward

- in total: small but sizeable: $\Delta E_{2S}^{hadr} = -0.032(6) \text{ meV}$

 $\Delta E_{2S}^{2\gamma} = \Delta E_{2S}^{\text{elastic}} + \Delta E_{2S}^{\text{inel}} + \Delta E_{2S}^{\text{hadr}} + \Delta E_{2S}^{\text{eVP}} + \Delta E_{2S}^{\text{Coulomb}} = -1.752(20) \text{ meV}$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Deuteron Charge Radius and TPE in µD

• Agreement with other calculations [most of those evaluate via structure functions (using χ EFT/model NN interactions)]

	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^{3} \mathrm{He}^{+}$	$\mu^4 \mathrm{He^+}$
$E_{ ext{QED}}$ $\mathcal{C} r_C^2$ $E_{ ext{NS}}$	point nucleus finite size nuclear structure	$206.0344(3) \\ -5.2259r_p^2 \\ 0.0289({\color{red}25})$	$228.7740(3)\ -6.1074r_d^2\ 1.7503(200)$	$\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 15.499(\textbf{378}) \end{array}$	$\begin{array}{c} 1668.491(7) \\ -106.209r_{\alpha}^2 \\ 9.276(\textbf{433}) \end{array}$
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)

Proton and Deuteron Radii and Isotope Shift

• H-D isotope shift: E(H, 1S - 2S) - E(D, 1S - 2S)

Summary and Outlook

- The mass of the muon sets a new scale that changes a lot of properties of muonic atoms compared to ordinary atoms
- Muonic (H-like) atoms and ions are important both due to their sensitivity to charge radii and their connection to nuclear/hadron physics (~TPE)
- EFTs often produce better results for TPE than data-driven approach
- Single-nucleon effects are sizeable, more importaint in heavier nuclei
- Higher-order radiative corrections are also becoming important
- µH: doing rather well, but need to shrink the TPE uncertainty by a factor of ~2 or more. How would it be possible (Lamb shift/HFS)? Is it time to revisit the HFS rescaling result?
- μD (and μHe^+): can one shrink the theory uncertainty?
- What would be a reasonable strategy for future theory calculations?

Thank You

• Many thanks to my colleagues and collaborators

V. Pascalutsa, F. Hagelstein, J. McGovern, M. Birse, B. Acharya, S. Bacca, M. Gorchtein, K. Pachucki, ...

• And thank you for your attention!