Coulomb & Radiative Corrections To *β***-Decay In E F T**

RYAN PLESTID NTN FELLOW, CALTECH

ARXIV:2309.15929 , ARXIV:2309.07343 , ARXIV:2402.13307 , ARXIV:2402.14769

COLLABORATORS RICHARD J. HILL, KAUSHIK BORAH (UKY/FNAL)

ELECTROWEAK PHYSICS INTERSECTIONS | CALASERENA RESORT | SEPT. 2024

ONGOING WORK

PETER VANDER GRIEND (UKY/FNAL), ZEHUA CAO (UKY)

Caltech

Neutrino Theory Network

• Motivation & relevance for **fundamental physics**. • Necessary **precision**, and requisite **loop orders**.

• **Point-like** EFT of nuclei and leptons.

• Structure of **radiative corrections** from EFT.

• Renormalization group **resummation of logarithms**.

$CKM \equiv CABIBBO-KOBAYASHI-MASKAWA$

d

s

b

๏ Percent-level accuracy in Kaon decay demands 100 ppm accuracy in $0^+ \rightarrow 0^+$ beta decays

CKM Unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$ FIRST ROW UNITARITY $1 - \lambda_{ud}^2 + \lambda_{us}^2 + O(\lambda^6)$ $) = 1$ IN WOLFENSTEIN NOTATION

 $=$ 1

 $|V_{ud}|$ 2 $|V_{us}|$ 2

CKM Unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$ FIRST ROW UNITARITY $1 - \lambda_{ud}^2 + \lambda_{us}^2 + O(\lambda^6)$ $) = 1$ IN WOLFENSTEIN NOTATION

๏ Tension in first-row CKM unitarity.

๏ *If* theory is under control: new physics discovered!

CIRIGLIANO +++ ARXIV:2208.11707

 $=$ 1

How To Measure |*Vud* |

$|V_{ud}|^2 = 0.94815 \pm 0.00060.$

The uncertainty attached to $|V_{ud}|^2$ in Eq. (24) includes contributions from many sources but is completely dominated by those originating from the theoretical correction terms, with experiment contributing a mere 0.00009 to the 0.00060 total.

How To Measure |*Vud* |

$|V_{ud}|^2 = 0.94815 \pm 0.00060.$

The uncertainty attached to $|V_{ud}|^2$ in Eq. (24) includes contributions from many sources but is completely dominated by those originating from the theoretical correction terms, with experiment contributing a mere 0.00009 to the 0.00060 total.

Historical Approach

$\mathcal{F}t \equiv ft(1 + \delta_R')(1 + \delta_{\text{NS}} - \delta_C) = \frac{K}{2G_V^2(1 + \Delta_R^V)},$

- The " ft " value includes the Fermi function (Dirac w.f.).
- RCs are *assumed* to factorize (ansatz) from Fermi function.
- RCs are computed in the "independent particle model".

Towner & Hardy's Recipe

- Theorist's assignment of uncertainty on Δ_R .
- Use Sirlin & Zuchini + "heuristic estimate" for . Assigned error is $\frac{1}{2}\delta_{\text{HF}}^{(3)}(Z)$. $\delta_R(Z)$. Assigned error is $\frac{1}{3}$ $rac{1}{3} \delta_{\rm HE}^{(3)}(Z)$
- Constrain $\delta_A(Z) \equiv \delta_{\text{NS}} \delta_C$ by demanding that the set of $\mathscr{F}t$ values agree (i.e., Z-independent).
- Average errors on δ ^{*A*} treating them as statistical.

New Approach With EFT

Factorization Theorem At Leading Power + Corrections Of $\ \mathcal{O}\left((pR)^2\right)$)

$\Gamma = \left| \frac{d\Pi_e d\Pi_\nu}{d\mu} \right| \, |\mathscr{M}|$

 $\mathcal{F}t \equiv \left| ft(1 + \delta_R')\right| 1 + \delta_{\text{NS}} - \delta_C) = \frac{K}{2G_V^2(1 + \Delta_R^V)}\right|$

Calculate Matrix Element To High Order

๏ Precision goal: 100 ppm

- \bullet Scales run from m_e to m_W .
- ๏ Need control over corrections in low-energy theory *at least* at

i.e. 3+ loops $O(Z^2\alpha^3)$

Tower Of EFTs

Impact For Flavour Physics

- New analysis allow RGresummation of logarithms.
- Consistent treatment of and higher order corrections. *Z*2 *α*3
- *•* Relevant at the level required for tests of CKM unitarity.

 $\overline{C\text{OUNTIME} Z \sim \log_2 \sim 1/\sqrt{\alpha}}$

Impact For Flavour Physics

• Motivation & relevance for **fundamental physics**. • Necessary **precision**, and requisite **loop orders**.

• **Point-like** EFT of nuclei and leptons.

• The **Fermi function** from loops.

• Structure of **radiative corrections** from EFT.

• Renormalization group **resummation of logarithms**.

Point-Like EFT Of Nuclei

A Lagrangian For Low-Energy Beta Decay

EFT For $0^+ \rightarrow 0^+$

- come from long distance scales.
- Need to work to higher orders in perturbation theory.

EFT For $0^+ \rightarrow 0^+$

$\mathscr{L} = h_A^{\dagger}(\nu \cdot D)h_A + h_B^{\dagger}(\nu \cdot D)h_B$ − 1 4

 $+C(\mu) \times \left| \overline{e}\gamma_{\mu}P_{L}\nu \right| \times \left| h_{B}^{\dagger}\nu^{\mu}h_{A} \right|$

 $F_{\mu\nu}F^{\mu\nu} + \overline{e}(\gamma_{\mu}D^{\mu} + m)e + \overline{\nu}\gamma^{\mu}\partial_{\mu}\nu$

EFT For $0^+ \rightarrow 0^+$

$\mathscr{L} =$ **A** + *D* + *D* + *Heavy* Nuclei *D*

Quantum Electrodynamics

Weak Interaction

Heavy Particle E F Ts 2*M* $(p + k)^2 - M^2$ $\boldsymbol{\nu} \cdot \boldsymbol{k}$ $\nu = p/M$

๏ This simplifies amplitudes.

Heavy Particle E F Ts

v^μ vs *γμ*

 μ μ $= -ie \gamma^{\mu}$ $= i(Z_Ae)\delta_0^{\mu}$ 0

$v \cdot q$ vs $q^2 - m^2$

 q^0+i0

 $\mathscr{L} = h_{\nu}^{\dagger}$ $\int_V (v \cdot D) h_v$

Simplifications

Now We Just Compute Diagrams WAVEFUNCTION RENORMALIZATION NOT SHOWN

 Z_A

 Z_A

TREE-LEVEL

TWO LOOP

Sketch Of The Problem

$Ft = f(t) + \delta_R'(1 + \delta_{\text{NS}} - \delta_C) = \frac{K}{2G_V^2(1 + \Delta_R^V)}$

(*Z*)(*Z* + 1) $^{2}e^{6} = Z^{3}e^{6} + 2Z^{2}e^{6} + Ze^{6}$ **``Outer '' Corrections**

Fermi-Function

Fermi-Function

๏ Keeping track of factors of *Z* is non-trivial

Eikonal Identities

How Coulomb Physics Emerges Diagramatically

ARXIV:2402.14769

Number Of Diagrams Grows Factorially

TREE-LEVEL

ONE LOOP

TWO LOOP

THREE LOOP

๏ 1 diagram.

๏ 3 diagrams.

๏ 21 diagrams.

๏ 144 diagrams.

EXPLOIT

-
- -

 μ $\boldsymbol{\imath}$ $= i(Z_Ae)\delta_0^{\mu}$ q^0+i0 0

๏ For the Fermi function we need 4+ loops.

๏ This is not feasible by brute force.

Solution : Make Use Of Simplified Feynman Rules

Number Of Diagrams Grows Factorially

TREE-LEVEL

ONE LOOP

TWO LOOP

THREE LOOP

๏ 1 diagram.

๏ 3 diagrams.

๏ 21 diagrams.

๏ 144 diagrams.

FIGURE FUNITION OF DREAMS Avoid Difficult Integrals **Reduce Number Of Diagrams**

 μ $= i(Z_Ae)\delta_0^{\mu}$ q^0+i0 0

Solution : Make Use Of Simplified Feynman Rules

Eikonal Identities

๏ For heavy-particles in initial and final state, we get **Coulomb physics** 1 *v* ⋅ *q* + i0 + 1 −*v* ⋅ *q* + i0 $= (2\pi i)\delta(\nu \cdot q)$

• Theory simplifies when we take the $M \to \infty$ limit (see e.g. YFS 1961)

Charged Currents

 Z_B^2 *B*

Charged Currents

 Z_B^2 *B*

Equivalent Feynman Rules NUCLEUS WITH UNIT CHARGE + A BACKGROUND COULOMB FIELDTREE-LEVEL ๏ 1 diagram. μ μ ONE LOOP $= iZe \, \delta^\mu_0 \, 2\pi \delta(q^0)$ $= ie \delta_0^{\mu}$ ๏ 2 diagrams.

TWO LOOP

THREE LOOP

๏ 5 diagrams.

๏ 10 diagrams.

ONE LOOP

Field Theory Of The Fermi Function

Leading−*Z* **Resummation**

ARXIV:2309.15929

Fermi Function ATTRACTED TO NUCLEUS

๏ Largest effects are a series in *Zα* ๏ Historically done with finite-distance regulator

⟨*e*−|*ψ* ¯(**x**)|0⟩ [∼] (1 |**x**|)

ν

$\nu = \sqrt{1 - Z^2 \alpha^2 - 1}$

Diagrammatic Expansion

๏ With modified Feynman rules counting Z is easy.

• Keep only the "leading-in-Z" terms.

ARXIV:2309.15929

Wavefunctions And Feynman Diagrams

- ๏ One can try to explicitly compute loops, but it is hard work.
- ๏ Can extract information from Dirac Equation with a Coulomb field.
- $|\psi_p^{(\pm)}\rangle$ $\langle p^{(1)} \rangle = | \phi_p \rangle +$ 1 $H - E_p \pm i\varepsilon$ $V|\phi_p\rangle +$
- ๏ One-to-one correspondence between loops and expansion of the Dirac Coulomb wavefunction.

ARXIV:2309.15929

35

ARXIV:2309.15929

36

All Orders Calculation

ℳ $\widetilde{\ell}$ **^x**(*μH*, **x**)

๏ Finite distance **x** acts as regulator.

 \bullet Can be computed in the p_{ρ} , $m_{\rho} \rightarrow 0$ limit.

๏ All orders in *Zα* solution can be obtained.

SEE BACKUP SLIDES FOR EQUATIONS

ARXIV:2309.15929

Extraction Of Hard Matrix Element

 $\widetilde{\ell}$ **^x**(*μH*, **x**)

$\Psi(\mathbf{x}) = M_S(\mu_S)M_H(\mu_S, \mu_H)M$ KNOWN TO ALL ORDERS IN *Zα*

SEE BACKUP SLIDES FOR EQUATIONS

Extraction Of Hard Matrix Element

$\Psi(\mathbf{x}) = M_S(\mu_S)M_H(\mu_S, \mu_H)M$

 $\mathscr{M}_H(\mu_S, \mu_H) =$

 $\widetilde{\ell}$ **^x**(*μH*, **x**)

Ψ(**x**)

 $\mathbf{x}(\mu_H, \mathbf{x})$ *M* $_S(\mu_S)$

KNOWN TO ALL ORDERS IN *Zα*

SEE BACKUP SLIDES FOR EQUATIONS

• Motivation & relevance for **fundamental physics**. • Necessary **precision**, and requisite **loop orders**.

• **Point-like** EFT of nuclei and leptons.

• The **Fermi function** from loops.

• Structure of **radiative corrections** from EFT.

• Renormalization group **resummation of logarithms**.

Long-Distance Radiative Corrections

Defining What We Mean By Outer Corrections

Factorization Theorem

๏ Amplitude depends on Wilson coefficient and matrix element.

 $d\Gamma \propto |C(\mu)|^2 |\mathcal{M}|^2(\mu) + \mathcal{O}((pR)^2)$)

๏ Implies that all *short-distances* factorize from *long-distances*.

$$
\mathcal{F}t \equiv \left[ft(1+\delta_R')\right]1 + \delta_k
$$

E FT Definition Of `Outer' Corrections *F* $\widetilde{\mathsf{F}}$ $(Z, E) = |U|$ ² (*μ*)]leading−*Z^α* $(1 + \delta$ $\widetilde{\bm{\mathcal{S}}}$ R) = $\langle |\mathcal{M}|^2(\mu) \rangle$ ⟨*F* $\widetilde{\mathsf{F}}$ (*Z*, *E*)⟩

THIS IS NOT A "FACTORIZATION THEOREM". JUST A CONVENTIONAL DEFINITION

E FT Definition Of `Outer' Corrections

$$
(1+\delta'_R):=\left[\frac{C(\mu_L)/C(\mu_H)}{\exp\left[(1-\sqrt{1-Z^2\alpha^2})\ \log(\mu_H/\mu_L)\right]}\right]^2\left(\frac{\int\mathrm{d}\Pi}{\int\mathrm{d}\Pi\ F(Z,E)\times\frac{4\eta}{(1+\eta)^2}}\right)_L
$$

$$
(1 + \tilde{\delta}_R) = \frac{\langle |\mathcal{M}|^2(\mu) \rangle}{\langle \tilde{F}(Z, E) \rangle}
$$

THIS IS NOT A "FACTORIZATION THEOREM". JUST A CONVENTIONAL DEFINITION

R G Analysis & Anomalous Dim.

ARXIV:2402.14769

Calculate With Renormalization Group

Resummation With R G + E F T Factorize & Run

50 MeV Nuclear Radius *C*(Λ)

5 MeV

RG EVOLUTION

 $C(\mu)$ $\mathscr{M}_H(\mu, p)$

- ๏ Need beta function in QED
- ๏ Need anomalous dimension

$$
\left[\frac{|C(\mu_L)|^2}{|C(\mu_H)|^2}\right] = \exp\left[\int \frac{\gamma(Z,\alpha)}{\beta(\alpha)} d\alpha\right]
$$

 $\mathscr{M} = C(\mu) \mathscr{M}_H(\mu, p)$

) ⁺ …

SOLVE DIRAC EQ'N

SYMMETRY IN MASSLESS LIMIT

 $(Z, Z − Q, Q)$ (*Z* + *Q*, *Z*, − *Q*)

Z=0 REDUCES TO HEAVY-LIGHT CURRENT IN HQET

)

ARXIV:2402.14769

TAKE FROM HQET LIT. SOLVE DIRAC EQ'N SYMMETRY

USE EIKONAL ALGEBRA TO REDUCE DIAGRAMS

 $\gamma_2^{(1)} = 16\pi^2 \left(6 - \frac{\pi^2}{3}\right)$

New Result For Anomalous Dimension

Resummation With R G + E F T

$$
(1+\delta'_R) := \left[\frac{C(\mu_L)/C(\mu_H)}{\exp\left[(1-\sqrt{1-Z^2\alpha^2})\log(\mu_H/\mu_L)\right]}\right]^2 \left(\frac{\int d\Pi}{\int d\Pi \ F(Z,E) \times \frac{4\eta}{(1+\eta)^2}}\right)_P
$$

Contains log(*pR*) **Enhancements**

๏ Introduce power counting scheme

 $Z\alpha \sim \sqrt{\alpha}$ $\alpha \log(pR) \sim \sqrt{\alpha}$

-
-

Resummation With R G + E F T

$$
(1 + \delta'_R) := \left[\frac{C(\mu_L)/C(\mu_H)}{\exp\left[(1 - \sqrt{1 - Z^2 \alpha^2}) \log(\mu_H/\mu_L)\right]} \right]^2 \left(\frac{\int d\Pi \sqrt{|\mathcal{M}_H|^2} \
$$

๏ Known up to $\sim O(\alpha^2)$

e.g., $Z^3 \alpha^4 \log^2(pR) \sim \alpha^2$

\bullet Known in EFT to $\sim O(\alpha)$

$$
Z\alpha \sim \sqrt{\alpha} \alpha \log(pR) \sim \sqrt{\alpha}
$$

๏ Can estimate with results from Sirlin & Zuchinni (1987) at $O(Z\alpha^2) \sim \alpha^{3/2}$

Impact For Flavour Physics

$SHIFTING $\delta_3$$

 $|{\tt COUNTING Z \sim log~ \sim 1/\sqrt{\alpha}}|$

Conclusions & Outlook

- Factorization + eikonal algebra + elbow grease.
- First calculation of logarithmically enhanced corrections. Disagreement with Sirlin's guess. *Z*2 *α*3
- Shift in outer radiative corrections bigger than ascribed error in Towner & Hardy.
- Shifts answer towards first-row unitarity.

Summary ARXIV:2309.159 ARXIV:2309.073 ARXIV:2402.133 ARXIV:2402.147

• Calculations performed in the low-energy point-like

• Fermi function and outer radiative corrections come from same scale $|\mathbf{q}_{\gamma}| \sim |\mathbf{p}_{e}|$ and don't factorize.

- EFT are model independent & universal.
-
- amplitudes. Useful for beta decay.

• Factorization theorems help constrain properties of

ARXIV:2309.07 ARXIV:2402.13 ARXIV: 2402.14

Questions For Discussion

- Zucchini calculation for $Z\alpha^2$?
- next order in (pR) ?
- Does the shift in δ_3 propagate into nuclear structure in Towner & Hardy?

• To what order are radiative corrections needed at

• How large is the error when using the Sirlin & *Zα*²

Backup Slides

Wavefunctions & Diagramatics

Wavefunctions And Feynman Diagrams

- ๏ Coulomb effects historically handled with "distorted waves"
- ๏ What are the equivalent effects in Feynman diagrams?

$$
|\psi_p^{(\pm)}\rangle = |\phi_p\rangle + \frac{1}{H - E_p \pm i\varepsilon} V |\phi_p\rangle +
$$

Wavefunctions And Feynman Diagrams

Loop With A Phase Factor! 1 2**P** ⋅ **Q** + **Q**² ± i*ε Zα* **Q**² $e^{iQ \cdot x} + \cdots$

- ๏ Coulomb effects historically handled with ``distorted waves''
- ๏ What are the equivalent effects in Feynman diagrams?

Two-Loop Expressions At $O(Z^2\alpha^2)$

Brute Force 2-Loop Calculation

๏ Compute Coulomb corrections explicitly through 2-loops.

๏ Dim-reg + renormalization. Well defined amplitude.

$$
\mathcal{M}_H(\mu_S, \mu_H) = 1 + \frac{Z\alpha}{\beta} \left[i \left(\log \frac{2p}{\mu_S} - \frac{i\pi}{2} \right) + \frac{i}{2} \left(\frac{m}{E} \gamma^0 - 1 \right) \right] + \left(\frac{Z\alpha}{\beta} \right)^2 \left\{ \frac{-\pi^2}{12} - \frac{1}{2} \left(\log \frac{2p}{\mu_S} - \frac{i\pi}{2} \right) - \frac{1}{2} \left(\log \frac{2p}{\mu_S} - \frac{i\pi}{2} \right) \left(\frac{m}{E} \gamma^0 - 1 \right) + \left[\frac{5}{4} - \frac{1}{2} \left(\log \frac{2p}{\mu_H} - \frac{i\pi}{2} \right) \right] \beta^2 \right\} + \mathcal{O}(\alpha^3),
$$

๏ No obvious pattern. Resummation impossible by brute force.

Eikonal Algebra Identity

∏ *i*≠*j* $(2\pi i)\delta(\nu \cdot q_i)$ 1 *v* ⋅ *qk* 1 *v* ⋅ *qj* ∏ *i*≠*j*,*k* $(2\pi i)\delta(\nu \cdot q_i)$

 $\langle B(v) | J_{\mu_1}(q_1)...G...J_{\mu_N}(q_N) | A(v) \rangle = v_{\mu_1}...v_{\mu_N}G(q_1...q_N)$

๏ We can define "outer" radiative corrections in the EFT

๏ Factorize into a RG-running piece, and a low-energy matrix element.

$$
\begin{array}{c}\n\text{LOG(2PR)} \\
\hline\n\text{log}(\mu_H/\mu_L)]\n\end{array}\n\Bigg|^2 \left(\frac{\int \mathrm{d}\Pi \sqrt{\langle M_H|^2 \rangle}}{\int \mathrm{d}\Pi \, F(Z,E) \times \frac{4\eta}{(1+\eta)^2}}\right)_{\mu}.
$$

๏ Fermi function has been factored out.

Explicit Expressions For Fermi Function

ℳ $\widetilde{\ell}$

 $\mathcal{I}_1^{(n)} = \left| \prod_{j=1}^{n-1} C(\nu_j) \right| \times \frac{\Gamma(d - \nu_n - 1)}{(4\pi)^d \Gamma(\nu_n)}$ ${\cal I}_2^{(n)}= \Bigg[\prod_{j=1}^n C(\nu_j)\Bigg] \Bigg[\frac{2\Gamma(\frac{d}{2}-\nu_{n+1}+1)}{(4\pi)^{d/2}\Gamma(\nu_{n+1})}$ $\lfloor j=1 \rfloor$

Factorization Of Dirac Wavefunction

KCLOSED FORM INTEGRALS AT ARBITRARILY HIGH ORDER

$$
\frac{1}{\gamma}B(\frac{d}{2}-1,1+\frac{d}{2}-\nu_n)\left(\frac{\mathbf{x}^2}{4}\right)^{\nu_n+1-d},
$$

+1)
$$
\frac{1}{\gamma+1}\left[\left[\frac{\mathbf{x}^2}{4}\right]^{\nu_{n+1}-(d+1)/2}\times\frac{i\gamma_0\boldsymbol{\gamma}\cdot\mathbf{x}}{2|\mathbf{x}|}.
$$

ℳ $\widetilde{\ell}$

 $F_1^{\rm bare} = 2^{\frac{1}{4\epsilon}-\frac{1}{2}} \left(\frac{\sqrt{\tilde{g}}}{\epsilon} \right)^{1-\frac{1}{2\epsilon}} \Gamma\left(\frac{1}{2\epsilon}\right) J_{\frac{1}{2\epsilon}-1} \left(\frac{\sqrt{8} \sqrt{\tilde{g}}}{\epsilon} \right) \ ,$

Factorization Of Dirac Wavefunction

 $(Z \tilde{\alpha})^{-1} F_2^{\rm bare} = 2^{\frac{1}{4\epsilon}} \left(\frac{\sqrt{\tilde{g}}}{\epsilon} \right)^{-\frac{1}{2\epsilon}} \Gamma\left(1+\frac{1}{2\epsilon}\right) J_{\frac{1}{2\epsilon}} \left(\frac{\sqrt{8} \sqrt{\tilde{g}}}{\epsilon} \right) \; .$

$\mathbf{x}(\mu_H, \mathbf{x})$ BARE AMPLITUDE MAY BE SUMMED TO ALL ORDERS SUMMED TO ALL ORDERS

ℳ $\widetilde{\ell}$

Factorization Of Dirac Wavefunction

RESULT CAN BE RENORMALIZED AT ALL-ORDERS IN *Zα*

 $\mathcal{M}_{\mathrm{UV}}^R(\mu) = (\mu r \mathrm{e}^{\gamma_{\mathrm{E}}})^{\eta-1} \frac{1+\eta}{2\sqrt{\eta}} \bigg[1 + \frac{Z\alpha}{1+\eta} \frac{i\gamma_0\bm{\gamma}\cdot\mathbf{x}}{|\mathbf{x}|}\bigg] \;,$ $\eta = \sqrt{1 - (Z\alpha)^2}$

All-Orders Hard Matrix Element

 $\mathcal{M}_H(\mu_S, \mu_H) = e^{\frac{\pi \xi}{2} + i \xi \left(\log \frac{2}{\mu} \right)}$

 $\sum_{i=1}^N\sqrt{\frac{\eta-i\xi}{1-i\xi\frac{m}{E}}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}}\left(\frac{2p\mathrm{e}^{-\gamma}}{\mu_H}\right)$

 σ $\eta = \sqrt{1 - Z^2 \alpha^2} \quad \sigma \xi = Z \alpha / \beta$ $M = (E + m)(1 + i\zeta m/E)/(E + \eta m)$

$$
\frac{\frac{2p}{\mu_S} - \gamma_{\rm E} \Big) - i (\eta - 1) \frac{\pi}{2} \frac{2 \Gamma \big(\eta - i \xi \big)}{\Gamma (2 \eta + 1)} \Big| - \frac{\Gamma \big(2 \eta + 1 \big)}{\Gamma \big(2 \eta + 1 \big)} \Big|
$$

Coulomb Enhancement

๏ Largest effects are a series in *Zα*

UNIVERSAL RESULT FOR QED

$$
\mathcal{M}_H(\mu_S,\mu_H) \!= e^{\frac{\pi\xi}{2}+i\xi\left(\log \frac{2p}{\mu_S}-\gamma_\mathrm{E}\right)-i(\eta-1)\frac{\pi}{2}}\frac{2\Gamma(\eta-i\xi)}{\Gamma(2\eta+1)}\sqrt{\frac{\eta-i\xi}{1-i\xi\frac{m}{E}}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}}\left(\frac{2p\mathrm{e}^{-\gamma_\mathrm{E}}}{\mu_H}\right)^{\eta-1}\times\left[\frac{1+M^*}{2}+\frac{1-\eta}{2}\right]}\sqrt{\frac{\eta-i\xi}{1-\eta}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta-1}{E+m}}}
$$

$$
\circ \eta = \sqrt{1 - Z^2 \alpha^2} \quad \circ \quad \xi = Z\alpha/\beta \quad \circ
$$

ALL ORDERS IN *Zα*

 $M = (E + m)(1 + i\zeta m/E)/(E + \eta m)$

MS-BAR RENORMALIZED

$$
\circ \eta = \sqrt{1 - Z^2 \alpha^2} \quad \circ \quad \xi = Z\alpha/\beta \quad \circ
$$

ATTRACTED TO NUCLEUS **Coulomb Enhancement**

ALL ORDERS IN *Zα*

 $M = (E + m)(1 + i\zeta m/E)/(E + \eta m)$

UNIVERSAL RESULT FOR QED

$$
\mathcal{M}_H(\mu_S,\mu_H) \!= e^{\frac{\pi\xi}{2}+i\xi\left(\log \frac{2p}{\mu_S}-\gamma_{\rm E}\right)-i(\eta-1)\frac{\pi}{2}}\frac{2\Gamma(\eta-i\xi)}{\Gamma(2\eta+1)}\sqrt{\frac{\eta-i\xi}{1-i\xi\frac{m}{E}}}\sqrt{\frac{E+\eta m}{E+m}}\sqrt{\frac{2\eta}{1+\eta}}\left(\frac{2p{\rm e}^{-\gamma_{\rm E}}}{\mu_H}\right)^{\eta-1}\times\left[\frac{1+M^*}{2}+\frac{1-M^*}{2}\sqrt{\frac{2\eta}{1-\eta}}\right]}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}\sqrt{\frac{2\eta}{1+\eta}}}
$$

Properties Of The Anomalous Dimension

 \int + $\alpha^3 (Z^3 \gamma^{(3,3)} + Z^2 \gamma^{(3,2)} + Z \gamma^{(3,1)} + \gamma^{(3,0)}$) ⁺ …

 \int + $\alpha^3 (Z^3 \gamma^{(3,3)} + Z^2 \gamma^{(3,2)} + Z \gamma^{(3,1)} + \gamma^{(3,0)}$) ⁺ …

SOLVE DIRAC EQ'N \circ Subtlety: Divergent as $x \to 0$

๏ New result: All orders result in the $\overline{\text{MS}}$ -scheme (good for RG).

SOLVE DIRAC EQ'N

Z=0 REDUCES TO HEAVY-LIGHT CURRENT IN HQET

$$
2\gamma^{(2,2)} + Z\gamma^{(2,1)} + \gamma^{(2,0)}
$$

+
$$
Z^{2}\gamma^{(3,2)} + Z\gamma^{(3,1)} + \gamma^{(3,0)}
$$

) ⁺ …

SOLVE DIRAC EQ'N

$(Z, Z − Q, Q)$ \longleftrightarrow $(Z + Q, Z, −Q)$ SYMMETRY IN MASSLESS LIMIT

Z=0 REDUCES TO HEAVY-LIGHT CURRENT IN HQET

)

TAKE FROM HQET LIT. SOLVE DIRAC EQ'N SYMMETRY

Ratio Of Wilson Coefficients *Z* ∼ ∼ *α*−1/2

$$
\log\left(\frac{C(\mu_L)}{C(\mu_H)}\right) = \frac{\gamma_0^{(1)}}{2\beta_0} \Biggl\{ \Biggl[\log \frac{a_H}{a_L} + \frac{Z^2 \gamma_1^{(0)}}{\gamma_0^{(1)}} \left(a_H - a_L \right) \Biggr] + \Biggl[\frac{Z \gamma_1^{(1)}}{\gamma_0^{(1)}} \left(a_H - a_L \right) \Biggr] + \Biggl[\left(\frac{\gamma_1^{(2)}}{\gamma_0^{(1)}} - \frac{\beta_1}{\beta_0} \right) \left(a_H - a_L \right) + \left(\frac{Z^2 \gamma_2^{(1)}}{\gamma_0^{(1)}} - \frac{\beta_1}{\beta_0} \frac{Z^2 \gamma_1^{(0)}}{\gamma_0^{(1)}} \right) \frac{1}{2} \left(a_H^2 - a_L^2 \right) + \frac{Z^4 \gamma_3^{(0)}}{\gamma_0^{(1)}} \frac{1}{3} \left(a_H^3 - a_L^5 \right) \Biggr]
$$

