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• Motivation & relevance for fundamental physics.  

• Necessary precision, and requisite loop orders. 

PA RT  2

PA RT  3

PA RT  1

• Point-like EFT of nuclei and leptons.  

• The Fermi function from loops.F E R M I  F U N C .

R A D .  C O R R .

E F T  &   D E C AYβ

• Structure of radiative corrections from EFT.  

• Renormalization group resummation of logarithms. 
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Quark   Mixing   In   The   S M

d′ 

s′ 

b′ 

=
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d
s
b

C K M   C A B I B B O – K O B AYA S H I – M A S K AWA≡

F U N D A M E N TA L  
C O N S TA N T S  
O F  N AT U R E
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C K M    Unitarity 

|Vud |2 + |Vus |2 + |Vub |2 = 1

F I R S T  R O W  U N I TA R I T Y

1 − λ2
ud + λ2

us + O(λ6) = 1

I N  W O L F E N S T E I N  N O TAT I O N

๏ Percent-level accuracy in Kaon decay demands 
100 ppm accuracy in  beta decays 0+ → 0+

|Vud |2

|Vus |2
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C K M    Unitarity 

|Vud |2 + |Vus |2 + |Vub |2 = 1

F I R S T  R O W  U N I TA R I T Y

1 − λ2
ud + λ2

us + O(λ6) = 1

I N  W O L F E N S T E I N  N O TAT I O N

๏ Tension in first-row CKM unitarity. 

๏ If theory is under control: new physics discovered!

C I R I G L I A N O  + + +  A R X I V: 2 2 0 8 . 1 1 7 0 7
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How   To  Measure  |Vud |
Superallowed  Decays

Hardy & Towner  2020
1 0 0  P P M   P R E C I S I O N

E R R O R  D O M I N AT E D  
B Y  T H E O RY
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How   To  Measure  |Vud |
Superallowed  Decays

Hardy & Towner  2020
1 0 0  P P M   P R E C I S I O N

Underestimated
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Historical  Approach 

• The `` '' value includes the Fermi function (Dirac w.f.) .  

• RCs are assumed to factorize (ansatz) from Fermi function. 

• RCs are computed in the "independent particle model".

ft
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Towner & Hardy's   Recipe
• Theorist's assignment of uncertainty on .  

• Use Sirlin & Zuchini + "heuristic estimate" for 
 . Assigned error is .  

• Constrain  by demanding that 
the set of   values agree (i.e., -independent).  

• Average errors on  treating them as statistical.

ΔR

δR(Z) 1
3 δ(3)

HE(Z)

δA(Z) ≡ δNS − δC
ℱt Z

δA
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New  Approach  With   E F T

Factorization Theorem At   Leading   Power  +  Corrections   Of     𝒪 ((pR)2)

Γ = ∫ dΠedΠν ⟨ |ℳ |2 ⟩ × |C |2 (2π)δ(ΣE)

Matrix   Element Wilson   Coefficient

Long   Distance Short   Distance



Calculate  Matrix   Element   To   High   Order

11

0+ → 0+

๏ Precision goal: 100 ppm

๏ Scales run from  to .  

๏ Need control over corrections in 
low-energy theory at least at  
 

  i.e.  3+ loops 

me mW

O(Z2α3)

๏ Fermi function emerges from 
summation of diagrams.



Tower   Of   E F Ts

๏ No double counting!  

}EFTlong dist.

12

๏ Treat scales one at a 
time.  

W-boson mass

Lepton Energy 10 MeV

200 MeV

80 GeV

Nuclear Radius

Fermi Momentum

50 MeV

Nucleon mass 1 GeV

T O D AY ' S  TA L K

} S E E  W O U T E R ' S  
TA L K  F R O M  

M O N D AY
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Impact  For  Flavour  Physics
• New analysis allow RG-

resummation of logarithms.  

• Consistent treatment of  
and higher order corrections.  

• Relevant at the level required 
for tests of CKM unitarity. 

Z2α3

10 20 30 40
1.031

1.032

1.033

1.034

1.035

1.036

Z
R
C

O(α1/2) O(α)

O(α3/2)

C O U N T I N G  Z ∼ 𝗅𝗈𝗀 ∼ 1/ α

TOWNER  AND  HARDY
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Impact  For  Flavour  Physics

10 20 30 40
1.031

1.032

1.033

1.034

1.035

1.036

Z
R
C

TOWNER  AND  HARDY

O(α1/2) O(α)

O(α3/2)

C O U N T I N G  Z ∼ 𝗅𝗈𝗀 ∼ 1/ α

S H I F T I N G  δ3 A R X I V: 2 3 0 9 . 0 7 3 4 3



PA RT  2

PA RT  3

PA RT  1

15

F E R M I  F U N C .

R A D .  C O R R .

E F T  &   D E C AYβ

• Motivation & relevance for fundamental physics.  

• Necessary precision, and requisite loop orders. 

• Point-like EFT of nuclei and leptons.  

• The Fermi function from loops.

• Structure of radiative corrections from EFT.  

• Renormalization group resummation of logarithms. 
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Point-Like   E F T   Of   Nuclei
A   Lagrangian  For   Low-Energy  Beta  Decay



E F T    For    0+ → 0+

17

}EFTV
Lepton Energy 10 MeV

Nuclear Radius

Fermi Momentum

Nucleon mass

T O D AY ' S  TA L K

} S H O RT  D I S TA N C E S

S E E  W O U T E R ' S  TA L K• Largest corrections 
come from long 
distance scales. 

• Need to work to 
higher orders in 
perturbation theory.



ZA

ZB

eE F T    For    0+ → 0+

18

ℒ = h†
A(v ⋅ D)hA + h†

B(v ⋅ D)hB

−
1
4

FμνFμν + e(γμDμ + m)e + νγμ∂μν

+C(μ) × [eγμPLν] × [h†
BvμhA]

Heavy  Sources    +    Q E D   +   Weak    Current  

 A R X I V: 2 3 0 9 . 0 7 3 4 3



ZA

ZB

eE F T    For    0+ → 0+

19

ℒ = h†
A(v ⋅ D)hA + h†

B(v ⋅ D)hB

Quantum  Electrodynamics   

Heavy   Nuclei     

Weak   Interaction



Heavy  Particle   E F Ts

2M
(p + k)2 − M2

→
1

v ⋅ k

v = p/M
๏ This simplifies amplitudes.  

๏ Heavy mass never appears. 
20



Heavy  Particle   E F Ts

21

ℒ = h†
v (v ⋅ D)hv

vμ vs γμ

v ⋅ q vs q2 − m2

Simplifications

= i(ZAe)δμ
0



Now  We  Just   Compute   Diagrams 

22

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

WAV E F U N C T I O N    R E N O R M A L I Z AT I O N   N O T   S H O W N

T R E E - L E V E L

O N E  L O O P

T W O  L O O P

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e

ZA

ZB

e …



Sketch   Of   The   Problem 

23

ZA

ZB

e

(Z)(Z + 1)2e6 = Z3e6 + 2Z2e6 + Ze6

Fermi-Function

``Outer '' Corrections

Fermi-Function

Z+1
Z

Z

๏ Keeping track of factors of  is non-trivialZ
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Eikonal  Identities 
How  Coulomb   Physics  Emerges  Diagramatically

A R X I V: 2 4 0 2 . 1 4 7 6 9



Number  Of   Diagrams  Grows  Factorially 

25

T R E E - L E V E L

O N E  L O O P

T W O  L O O P

T H R E E  L O O P

๏ 1 diagram.

๏ 3 diagrams.

๏ 21 diagrams.

๏ 144 diagrams.

๏ For the Fermi function we need 4+ loops.  

๏ This is not feasible by brute force. 

Solution :   Make   Use   Of   Simplified   Feynman   Rules

= i(ZAe)δμ
0



Number  Of   Diagrams  Grows  Factorially 
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T R E E - L E V E L

O N E  L O O P

T W O  L O O P

T H R E E  L O O P

๏ 1 diagram.

๏ 3 diagrams.

๏ 21 diagrams.

๏ 144 diagrams.

๏ For the Fermi function we need 4+ loops.  

๏ This is not feasible by brute force. 

Solution :   Make   Use   Of   Simplified   Feynman   Rules

Reduce  Number  Of   Diagrams 
  

Avoid  Difficult  Integrals

= i(ZAe)δμ
0



Eikonal    Identities

27

๏ Theory simplifies when we take the  limit (see e.g. YFS 1961) M → ∞

๏ For heavy-particles in initial and final state, we get Coulomb physics

1
v ⋅ q + i0

+
1

−v ⋅ q + i0
= (2πi)δ(v ⋅ q)

→



Charged  Currents 
W E A K  C U R R E N T

Z2
A

ZAZB

Z2
B

Z2
B

+

ZB (
+ )

+

28

New  Result 
C A N  A L S O  B E   

O B TA I N E D  B Y  A  C L E V E R  
C H A N G E  O F  B A S I S

A R X I V: 2 4 0 2 . 1 4 7 6 9



Charged  Currents  
W E A K  C U R R E N T

Z2
A

ZAZB

Z2
B

Z2
B

+
( )+ZB ( )
( )

Coulomb + Eikonal

2 × Eikonal

2 × Coulomb

( )
29

New  Result 

S E E  B A C K U P  S L I D E S  F O R  E Q U AT I O N S
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Equivalent   Feynman   Rules 
T R E E - L E V E L

O N E  L O O P

T W O  L O O P

T H R E E  L O O P

๏ 1 diagram.

๏ 2 diagrams.

๏ 5 diagrams.

๏ 10 diagrams.

O N E  L O O P

𝒪(α) 𝒪(Zα)

1  N U C L E U S  W I T H  U N I T  C H A R G E   

+  A  B A C K G R O U N D  C O U L O M B  F I E L D
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Field   Theory   Of    The   Fermi  Function
Leading     Resummation−Z

A R X I V: 2 3 0 9 . 1 5 9 2 9
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Fermi   Function 
AT T R A C T E D  T O  N U C L E U S   

๏ Largest effects are  a series in Zα
๏ Historically done with finite-distance regulator 

⟨e− | ψ̄(x) |0⟩ ∼ ( 1
|x | )

ν

ν = 1 − Z2α2 − 1
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Diagrammatic   Expansion

+ …

𝒪(Zα)𝒪(1) 𝒪(Z2α2)

๏ With modified Feynman rules 
counting  is easy.  

๏ Keep only the "leading-in- " terms. 

Z

Z

ℳH

A R X I V: 2 3 0 9 . 1 5 9 2 9



Wavefunctions  And   Feynman  Diagrams
๏ One can try to explicitly compute loops, but it is hard work.  

๏ Can extract information from Dirac Equation with a Coulomb field. 

|ψ(±)
p ⟩ = |ϕp⟩ +

1
H − Ep ± iε

V |ϕp⟩ +
1

H − Ep ± iε
V

1
H − Ep ± iε

V |ϕp⟩ + . . .

Wavefunction   Satisfies    Lippmann-Schwinger  Equation

34

๏ One-to-one correspondence between loops and expansion of 
the Dirac Coulomb wavefunction. A R X I V: 2 3 0 9 . 1 5 9 2 9
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Factorization   Of    Dirac   Wavefunction

ℳ = ℳS(μS)ℳH(μS, μH)ℳUV(μH, Λ)

Ψ(x) = ℳS(μS)ℳH(μS, μH)ℳ̃x(μH, x)

S A M E D I F F E R E N T

W H AT  W E  WA N T

A R X I V: 2 3 0 9 . 1 5 9 2 9
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All  Orders   Calculation 
ℳ̃x(μH, x)

๏ Finite distance  acts as regulator. x
๏ Can be computed in the   limit. pe, me → 0

๏ All orders in  solution can be obtained. Zα

S E E  B A C K U P  S L I D E S  F O R  E Q U AT I O N S

A R X I V: 2 3 0 9 . 1 5 9 2 9
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Extraction  Of   Hard  Matrix  Element
Ψ(x) = ℳS(μS)ℳH(μS, μH)ℳ̃x(μH, x)

K N O W N  T O  A L L  O R D E R S  I N  Zα

S E E  B A C K U P  S L I D E S  F O R  E Q U AT I O N S

A R X I V: 2 3 0 9 . 1 5 9 2 9
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Extraction  Of   Hard  Matrix  Element
Ψ(x) = ℳS(μS)ℳH(μS, μH)ℳ̃x(μH, x)

ℳH(μS, μH) =
Ψ(x)

ℳ̃x(μH, x)ℳS(μS)

K N O W N  T O  A L L  O R D E R S  I N  Zα

S E E  B A C K U P  S L I D E S  F O R  E Q U AT I O N S

A R X I V: 2 3 0 9 . 1 5 9 2 9
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PA RT  2

PA RT  3

PA RT  1

F E R M I  F U N C .

R A D .  C O R R .

E F T  &   D E C AYβ

• Motivation & relevance for fundamental physics.  

• Necessary precision, and requisite loop orders. 

• Point-like EFT of nuclei and leptons.  

• The Fermi function from loops.

• Structure of radiative corrections from EFT.  

• Renormalization group resummation of logarithms. 
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Long-Distance   Radiative   Corrections
Defining   What  We  Mean  By  Outer  Corrections
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Factorization  Theorem
๏ Amplitude depends on Wilson coefficient and matrix element.

dΓ ∝ |C(μ) |2 |ℳ |2 (μ) + 𝒪 ((pR)2)
๏ Implies that all short-distances factorize from long-distances. 

A R X I V: 2 3 0 9 . 0 7 3 4 3  
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E F T    Definition  Of     ̀ Outer'   Corrections

F̃(Z, E) = [ |ℳ |2 (μ)]leading−Zα

T H I S  I S  N O T  A  " FA C T O R I Z AT I O N  T H E O R E M " .    
J U S T  A  C O N V E N T I O N A L  D E F I N I T I O N

(1 + δ̃R) =
⟨ |ℳ |2 (μ)⟩
⟨F̃(Z, E)⟩

A R X I V: 2 3 0 9 . 0 7 3 4 3  
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E F T    Definition  Of     ̀ Outer'   Corrections

F̃(Z, E) = [ |ℳ |2 (μ)]leading−Zα

(1 + δ̃R) =
⟨ |ℳ |2 (μ)⟩
⟨F̃(Z, E)⟩

T H I S  I S  N O T  A  " FA C T O R I Z AT I O N  T H E O R E M " .    
J U S T  A  C O N V E N T I O N A L  D E F I N I T I O N

A R X I V: 2 3 0 9 . 0 7 3 4 3  
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R G   Analysis  &  Anomalous   Dim.
Resumming    Logs

A R X I V: 2 4 0 2 . 1 4 7 6 9

A R X I V: 2 3 0 9 . 0 7 3 4 3  



Relati
dΓ ∝ |C(μ) |2 |ℳ |2 (μ)

= C(μH)[ |C(μL) |2

|C(μH) |2 ] |ℳ |2 (μL)

Calculate  With   Renormalization   Group

No   Large  Logs

A R X I V: 2 3 0 9 . 0 7 3 4 3  



Resummation With  R G + E F T
Factorize   &  Run 
ℳ = C(μ) ℳH(μ, p)

50 MeV
Nuclear Radius C(Λ)

5 MeV
Electron Energy C(μ) ℳH(μ, p)

R G  E V O L U T I O N

๏ Need beta function in QED

๏ Need anomalous dimension 

[ |C(μL) |2

|C(μH) |2 ] = exp [∫
γ(Z, α)
β(α)

dα]
A R X I V: 2 3 0 9 . 0 7 3 4 3  



+ α3(Z3γ(3,3) + Z2γ(3,2) + Zγ(3,1) + γ(3,0)) + …

Anomalous  Dimension  
γC =

dC(μ)
d log μ

S O LV E  D I R A C  E Q ’ N

(Z, Z − Q, Q) (Z + Q, Z, − Q)
S Y M M E T RY  I N  M A S S L E S S  L I M I T

Z = 0  R E D U C E S  T O  H E AV Y- L I G H T  C U R R E N T  I N  H Q E T

γC = α(Zγ(1,1) + γ(1,0)) + α2(Z2γ(2,2) + Zγ(2,1) + γ(2,0))

A R X I V: 2 4 0 2 . 1 4 7 6 9



α1 α2 α3

Z0

Z1

Z2

Z3

γ(1,0)

α4

Z4

γ(2,0) γ(3,0) γ(4,0)

0

−

α0

0

0

γ(2,2)−

−

−

− −

− − − γ(4,4)

γ(4,3)

γ(4,1)

γ(4,2)

γ(2,1)

−

γ(3,2)

γ(3,1)

TA K E  F R O M  H Q E T  L I T. S O LV E  D I R A C  E Q ’ N S Y M M E T RY

N E W  I N P U T !A R X I V: 2 4 0 2 . 1 4 7 6 9



U S E  E I K O N A L  A L G E B R A   
T O  R E D U C E  D I A G R A M S

M I X E D  E U C L I D E A N  +  
 L O R E N T Z I A N  I N T E G R A L S

A R X I V: 2 4 0 2 . 1 4 7 6 9



G R O Z I N  2 0 0 3 G R O Z I N  2 0 2 3

N E W  I N P U T

New   Result  For  Anomalous   Dimension

R E S U M M AT I O N  C O M P L E T E   
T H R O U G H  3 - L O O P S !

A R X I V: 2 4 0 2 . 1 4 7 6 9



Resummation With  R G + E F T

Contains       Enhancementslog(pR)

๏ Introduce power counting scheme 

Zα ∼ α α log(pR) ∼ α

A R X I V: 2 3 0 9 . 0 7 3 4 3  



Resummation With  R G + E F T

Zα ∼ α α log(pR) ∼ α

๏ Known up to   
 
e.g., 

∼ O(α2)

Z3α4 log2(pR) ∼ α2

๏ Known in EFT to  

๏ Can estimate with results 
from Sirlin & Zuchinni (1987) 
at 

∼ O(α)

O(Zα2) ∼ α3/2

A R X I V: 2 3 0 9 . 0 7 3 4 3  
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Impact  For  Flavour  Physics

10 20 30 40
1.031

1.032

1.033

1.034

1.035

1.036

Z
R
C

TOWNER  AND  HARDY

O(α1/2) O(α)

O(α3/2)

C O U N T I N G  Z ∼ 𝗅𝗈𝗀 ∼ 1/ α

S H I F T I N G  δ3

A R X I V: 2 3 0 9 . 0 7 3 4 3  



Conclusions   &   Outlook

54
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• Factorization + eikonal algebra + elbow grease.  

• First calculation of logarithmically enhanced   
corrections.  Disagreement with Sirlin's guess.  

• Shift in outer radiative corrections bigger than 
ascribed error in Towner & Hardy.  

• Shifts answer towards first-row unitarity. 

Z2α3

Summary A R X I V: 2 3 0 9 . 1 5 9 2 9  ,   
A R X I V: 2 3 0 9 . 0 7 3 4 3  ,   
A R X I V: 2 4 0 2 . 1 3 3 0 7  ,  
A R X I V: 2 4 0 2 . 1 4 7 6 9  .



• Calculations performed in the low-energy point-like 
EFT are model independent & universal.  

• Fermi function and outer radiative corrections come 
from same scale  and don't factorize. 

• Factorization theorems help constrain properties of 
amplitudes. Useful for beta decay.  

|qγ | ∼ |pe |

56

Take  Home  Messages A R X I V: 2 3 0 9 . 1 5 9 2 9  ,   
A R X I V: 2 3 0 9 . 0 7 3 4 3  ,   
A R X I V: 2 4 0 2 . 1 3 3 0 7  ,  
A R X I V: 2 4 0 2 . 1 4 7 6 9  .



Questions   For   Discussion
• How large is the error when using the Sirlin & 

Zucchini calculation for  ?  
• To what order are radiative corrections needed at 

next order in ?  

• Does the shift in  propagate into nuclear 
structure in Towner & Hardy?

Zα2

(pR)

δ3
57



Backup  Slides

58
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Wavefunctions  &  Diagramatics



Wavefunctions  And   Feynman  Diagrams
๏ Coulomb effects historically 

handled with ``distorted waves''

๏ What are the equivalent effects in  
Feynman diagrams? 

|ψ(±)
p ⟩ = |ϕp⟩ +

1
H − Ep ± iε

V |ϕp⟩ +
1

H − Ep ± iε
V

1
H − Ep ± iε

V |ϕp⟩ + . . .

Use  Lippmann-Schwinger  Equation!

60



Wavefunctions  And   Feynman  Diagrams
๏ Coulomb effects historically 

handled with ``distorted waves''

๏ What are the equivalent effects in  
Feynman diagrams? 

Loop With A Phase Factor!

⟨x |ψ(±)
p ⟩ = eip⋅x (1 + ∫

d3Q
(2π)3

1
2P ⋅ Q + Q2 ± iε

Zα
Q2

eiQ⋅x + . . . )
61
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Two-Loop  Expressions  At   𝒪(Z2α2)
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Brute  Force  2-Loop   Calculation 
๏ Compute Coulomb corrections explicitly through 2-loops.

๏ Dim-reg + renormalization.  Well defined amplitude. 

๏ No obvious pattern.  Resummation impossible by brute force. 
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Eikonal   Algebra  Identity 
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New  Result 
G(q1…qN) = Zn

N

∏
i=1

(2πi)δ(v ⋅ qi)

+Zn−1 ∑
j

1
v ⋅ qi ∏

i≠j

(2πi)δ(v ⋅ qi)

+Zn−2 ∑
k

∑
j≠k

1
v ⋅ qk

1
v ⋅ qj ∏

i≠j,k

(2πi)δ(v ⋅ qi)

+…

⟨B(v) |Jμ1
(q1)…𝒪…JμN

(qN) |A(v)⟩ = vμ1
…vμN

G(q1…qN)
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Fermi   Function

๏ We can define "outer" radiative corrections in the EFT

๏ Factorize into a RG-running piece, and a low-energy matrix element.

L O G ( 2 P R )

๏ Fermi function has been factored out. 
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Explicit  Expressions   For   Fermi   Function
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Factorization   Of    Dirac   Wavefunction
ℳ̃x(μH, x) C L O S E D  F O R M  I N T E G R A L S  AT  

A R B I T R A R I LY  H I G H  O R D E R  
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Factorization   Of    Dirac   Wavefunction
ℳ̃x(μH, x) B A R E  A M P L I T U D E  M AY  B E  

S U M M E D  T O  A L L  O R D E R S
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Factorization   Of    Dirac   Wavefunction
ℳ̃x(μH, x) R E S U LT  C A N  B E  R E N O R M A L I Z E D  

AT  A L L - O R D E R S  I N  Zα



71

All-Orders  Hard  Matrix  Element

๏ η = 1 − Z2α2 ๏ ξ = Zα/β ๏ M = (E + m)(1 + iξm/E)/(E + ηm)
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Coulomb   Enhancement
๏ Largest effects are  a series in Zα

U N I V E R S A L  R E S U LT  F O R  Q E D

๏ η = 1 − Z2α2 ๏ ξ = Zα/β ๏ M = (E + m)(1 + iξm/E)/(E + ηm)

A L L  O R D E R S  I N  Zα

M S - B A R  R E N O R M A L I Z E D
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AT T R A C T E D  T O  N U C L E U S   

๏ Largest effects are  a series in Zα

๏ η = 1 − Z2α2 ๏ ξ = Zα/β ๏ M = (E + m)(1 + iξm/E)/(E + ηm)

A L L  O R D E R S  I N  Zα

๏ Well defined EFT matrix element.  Can be evolved with RG to re-sum logs. 

Coulomb   Enhancement

U N I V E R S A L  R E S U LT  F O R  Q E D
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Properties   Of    The   Anomalous  Dimension



Anomalous  Dimension  
γC =

dC(μ)
d log μ

γC = α(Zγ(1,1) + γ(1,0)) + α2(Z2γ(2,2) + Zγ(2,1) + γ(2,0))
+ α3(Z3γ(3,3) + Z2γ(3,2) + Zγ(3,1) + γ(3,0)) + …



Anomalous  Dimension  
γC =

dC(μ)
d log μ

γC = α(Zγ(1,1) + γ(1,0)) + α2(Z2γ(2,2) + Zγ(2,1) + γ(2,0))
+ α3(Z3γ(3,3) + Z2γ(3,2) + Zγ(3,1) + γ(3,0)) + …

S O LV E  D I R A C  E Q ’ N
๏ Subtlety: Divergent as  x → 0
๏ New result: All orders result in  

the -scheme (good for RG).MS



Anomalous  Dimension  
γC =

dC(μ)
d log μ

S O LV E  D I R A C  E Q ’ N

Z = 0  R E D U C E S  T O  H E AV Y- L I G H T  C U R R E N T  I N  H Q E T

γC = α(Zγ(1,1) + γ(1,0)) + α2(Z2γ(2,2) + Zγ(2,1) + γ(2,0))
+ α3(Z3γ(3,3) + Z2γ(3,2) + Zγ(3,1) + γ(3,0)) + …



+ α3(Z3γ(3,3) + Z2γ(3,2) + Zγ(3,1) + γ(3,0)) + …

Anomalous  Dimension  
γC =

dC(μ)
d log μ

S O LV E  D I R A C  E Q ’ N

(Z, Z − Q, Q) (Z + Q, Z, − Q)
S Y M M E T RY  I N  M A S S L E S S  L I M I T

Z = 0  R E D U C E S  T O  H E AV Y- L I G H T  C U R R E N T  I N  H Q E T

γC = α(Zγ(1,1) + γ(1,0)) + α2(Z2γ(2,2) + Zγ(2,1) + γ(2,0))



α1 α2 α3

Z0

Z1

Z2

Z3

γ(1,0)

α4

Z4

γ(2,0) γ(3,0) γ(4,0)

0

−

α0

0

0

γ(2,2)−

−

−

− −

− − − γ(4,4)

γ(4,3)

γ(4,1)

γ(4,2)

γ(2,1)

−

γ(3,2)

γ(3,1)

TA K E  F R O M  H Q E T  L I T. S O LV E  D I R A C  E Q ’ N S Y M M E T RY

N E W  I N P U T !



Ratio   Of   Wilson  Coefficients 
   Z ∼ 𝖫 ∼ α−1/2


