

Ab initio nuclear correction to the Lamb shift

Extracting nuclear radii from precision muonic experiments

Collaborators: Petr Navratil, Michael Gennari

Mehdi Drissi TRIUMF - Theory department

EPIC workshop

Sardinia Cagliari - 25th of September 2024

The muonic Lamb shift as a precision probe

_

The muonic Lamb shift as a precision probe

A key probe to develop the Standard Model...

The muonic Lamb shift as a precision probe

A key probe to develop the Standard Model...

... and pushing the precision frontier further

The muonic Lamb shift as a precision probe

A key probe to develop the Standard Model...

... and pushing the precision frontier further

How to make muonic atom

- (i) Pion decay: muon source
- (ii) High intensity beam: momentum filtering, ...
- (ii) Thick target: capture muons

Typically muons captured on orbitals with $n \sim \sqrt{\frac{m_{\mu}}{m_e}} \sim 14$

How to make muonic atom

- (i) Pion decay: muon source
- (ii) High intensity beam: momentum filtering, ...
- (ii) Thick target: capture muons

Typically muons captured on orbitals with $n \sim \sqrt{\frac{m_{\mu}}{m_e}} \sim 14$

Muonic X-ray achievements

- Precise spectroscopy of almost all stable elements
- Specific transition targeted with low-latency lasers
- Absolute charge radii extracted ⇒ highest accuracy
- ightharpoonup Higher sensitivity due to higher overlap $\sim \left(\frac{m_{\mu}}{m_e}\right)^3 \sim 10^7$

How to make muonic atom

- (i) Pion decay: muon source
- (ii) High intensity beam: momentum filtering, ...
- (ii) Thick target: capture muons

Typically muons captured on orbitals with $n \sim \sqrt{\frac{m_{\mu}}{m_e}} \sim 14$

Muonic X-ray achievements

- Precise spectroscopy of almost all stable elements
- Specific transition targeted with low-latency lasers
- Absolute charge radii extracted ⇒ highest accuracy
- ightharpoonup Higher sensitivity due to higher overlap $\sim \left(\frac{m_{\mu}}{m_e}\right)^3 \sim 10^7$

Practical limitations

- × In general: limitations are very experiment dependent
- × Never with a perfect energy resolution
- **→** Many experimental challenges!

How to make muonic atom

- (i) Pion decay: muon source
- (ii) High intensity beam: momentum filtering, ...
- (ii) Thick target: capture muons

Typically muons captured on orbitals with $n \sim \sqrt{\frac{m_{\mu}}{m_e}} \sim 14$

Muonic X-ray achievements

- Precise spectroscopy of almost all stable elements
- Specific transition targeted with low-latency lasers
- Absolute charge radii extracted ⇒ highest accuracy
- → Higher sensitivity due to higher overlap $\sim \left(\frac{m_{\mu}}{m_e}\right)^3 \sim 10^7$

Practical limitations

- × In general: limitations are very experiment dependent
- × Never with a perfect energy resolution
- **→** Many experimental challenges!

See Pohl and Wauters talks

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

Energy resolution issue

- Intrinsic energy resolution of semi-conductor
 - Not great for $E \le 200 \text{ keV}$
 - Limits their usage to $Z \ge 10$

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

Energy resolution issue

- Intrinsic energy resolution of semi-conductor
 - Not great for $E \le 200 \text{ keV}$
 - Limits their usage to $Z \ge 10$
- QUARTET collaboration
 - Aim to develop a quantum sensor to reach low-Z nuclei
 - \circ Idea: X-ray \Rightarrow heat \Rightarrow magnetization \Rightarrow SQUID detector
 - On-going work at PSI

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

Energy resolution issue

- Intrinsic energy resolution of semi-conductor
 - Not great for $E \le 200 \text{ keV}$
 - Limits their usage to $Z \ge 10$
- QUARTET collaboration
 - Aim to develop a quantum sensor to reach low-Z nuclei
 - \circ Idea: X-ray \Rightarrow heat \Rightarrow magnetization \Rightarrow SQUID detector
 - On-going work at PSI

based on maXs-30 detector

[Unger et al. J. Low Temp. Phys. (2024)]

4

[Antognini et al, arXiv:2210.16929] NuPECC Long Range Plan 2024

Energy resolution issue

- Intrinsic energy resolution of semi-conductor
 - Not great for $E \le 200 \text{ keV}$
 - Limits their usage to $Z \ge 10$
- QUARTET collaboration
 - Aim to develop a quantum sensor to reach low-Z nuclei
 - Idea: X-ray \Rightarrow heat \Rightarrow magnetization \Rightarrow SQUID detector
 - On-going work at PSI

based on maXs-30 detector

Theoretical challenge: reach 10 meV uncertainty!

[Unger et al. J. Low Temp. Phys. (2024)]

Outline

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections

Calculations for ⁷Li

- No-Core Shell Model
- Nuclear polarizability of ⁷Li

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like R_{∞}, α, m_e
 - \circ Can be used to extract **nuclear structure information** like r_c
 - Can be used to test validity of many-body calculations
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm)

[Antognini et al, SciPost (2021)]

$$\Delta E(\mu \text{H}) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$$

$$\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$$

$$\Delta E(\mu^4 \text{He}) = 1668.489(14) - 106.220(8) \times r_\alpha^2 + 9.201(291)$$

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like R_{∞}, α, m_e
 - Can be used to extract **nuclear structure information** like r_c
 - Can be used to test validity of many-body calculations
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)]

$$\Delta E(\mu \text{H}) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$$

$$\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$$

$$\Delta E(\mu^4 \text{He}) = 1668.489(14) - 106.220(8) \times r_\alpha^2 + 9.201(291)$$

General many-body problem

- Degrees of freedom
 - \circ Muon $\to \psi_{\mu}$; Nucleons $\to N$; photon $\to A$

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like R_{∞}, α, m_e
 - Can be used to extract nuclear structure information like r_c
 - Can be used to test validity of many-body calculations
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)]

$$\Delta E(\mu \text{H}) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$$

$$\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$$

$$\Delta E(\mu^4 \text{He}) = 1668.489(14) - 106.220(8) \times r_\alpha^2 + 9.201(291)$$

General many-body problem

- Degrees of freedom
 - \circ Muon $\to \psi_{\mu}$; Nucleons $\to N$; photon $\to A$
- <u>Hamiltonian</u>

[Friar, Rosen, Annals of Physics (1974)]

$$H = H_{Nucl} + e \int d^3x J_{\mu}(x) A^{\mu}(x) + \frac{e^2}{2m} \int d^3x d^3y f_{SG}(x, y) \vec{A}(x) \cdot \vec{A}(y) + H_{QED}$$

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like R_{∞}, α, m_e
 - Can be used to extract nuclear structure information like r_c
 - Can be used to test validity of many-body calculations
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)]

$$\Delta E(\mu H) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$$

 $\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$

$$\Delta E(\mu^4 \text{He}) = 1668.489(14) - 106.220(8) \times r_\alpha^2 + 9.201(291)$$

General many-body problem

- Degrees of freedom
 - \circ Muon $\to \psi_\mu$; Nucleons $\to N$; photon $\to A$
- <u>Hamiltonian</u>

[Friar, Rosen, Annals of Physics (1974)]

$$H = H_{Nucl} + e \int d^3x J_{\mu}(x) A^{\mu}(x)$$

$$+ \frac{e^2}{2m} \int d^3x d^3y f_{SG}(x, y) \vec{A}(x) \cdot \vec{A}(y)$$

$$+ H_{QED}$$

- ullet General approach to compute bound state of H
 - \mathbf{x} In principle use Bethe-Salpeter \Rightarrow bound states $\equiv G_2$ poles
 - ✓ In practice use effective instantaneous potential
 - DWB correction up to $(Z\alpha)^5$ to match exp accuracy

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like R_{∞}, α, m_e
 - Can be used to extract nuclear structure information like r_c
 - Can be used to test validity of many-body calculations
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)]

$$\Delta E(\mu \text{H}) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$$

$$\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$$

$$\Delta E(\mu^4 \text{He}) = 1668.489(14) - 106.220(8) \times r_\alpha^2 + 9.201(291)$$

Radius extraction master formula

$$\delta_{LS} = \delta_{QED} + \mathscr{C} r_c^2 + \delta_{NS}$$

General many-body problem

- Degrees of freedom
 - \circ Muon $\to \psi_\mu$; Nucleons $\to N$; photon $\to A$
- <u>Hamiltonian</u>

[Friar, Rosen, Annals of Physics (1974)]

$$H = H_{Nucl} + e \int d^3x J_{\mu}(x) A^{\mu}(x)$$

$$+ \frac{e^2}{2m} \int d^3x d^3y f_{SG}(x, y) \vec{A}(x) \cdot \vec{A}(y)$$

$$+ H_{QED}$$

- \odot General approach to compute bound state of H
 - \mathbf{x} In principle use Bethe-Salpeter \Rightarrow bound states $\equiv G_2$ poles
 - ✓ In practice use effective instantaneous potential
 - DWB correction up to $(Z\alpha)^5$ to match exp accuracy

Converting experimental data

- What to do once precise value of energy levels is known?
 - Can be used to **test fundamental constants** like R_{∞} , α , m_e
 - Can be used to extract nuclear structure information like r_c
 - Can be used to test validity of many-body calculations
- Example in practice: Lamb shift in meV $2S_{1/2} 2P_{1/2}$ (r_x in fm) [Antognini et al, SciPost (2021)]

$$\Delta E(\mu \text{H}) = 206.0336(15) - 5.2275(10) \times r_p^2 + 0.0332(20)$$

$$\Delta E(\mu D) = 228.7767(10) - 6.1103(3) \times r_D^2 + 1.7449(200)$$

$$\Delta E(\mu^4 \text{He}) = 1668.489(14) - 106.220(8) \times r_\alpha^2 + 9.201(291)$$

Radius extraction master formula

$$\delta_{LS} = \delta_{QED} + \mathscr{C} r_c^2 + \delta_{NS}$$

Fixed point-like nucleus

dependent

Nuclear structure

General many-body problem

- Degrees of freedom
 - \circ Muon $\to \psi_\mu$; Nucleons $\to N$; photon $\to A$
- <u>Hamiltonian</u>

[Friar, Rosen, Annals of Physics (1974)]

$$H = H_{Nucl} + e \int d^3x J_{\mu}(x) A^{\mu}(x)$$

$$+ \frac{e^2}{2m} \int d^3x d^3y f_{SG}(x, y) \vec{A}(x) \cdot \vec{A}(y)$$

$$+ H_{QED}$$

- \odot General approach to compute bound state of H
 - \times In principle use Bethe-Salpeter \Rightarrow bound states $\equiv G_2$ poles
 - **✓** In practice use **effective instantaneous potential**
 - DWB correction up to $(Z\alpha)^5$ to match exp accuracy

Bound states QED contributions

Bound muon within potential

- Zero-order: one-body Coulomb interaction
 - o Solve exactly for $H_0 = \frac{\vec{p}^2}{2m_r} \frac{Z\alpha}{r}$
 - $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$
- Effective potential applied on muon
 - What relativistic extension to Coulomb ?
 - \circ Define effective potential to reproduce E_{nl} at a given order
 - Power-counting \Rightarrow DWB on H_0
- Main type of contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_{e} \Rightarrow$ main one!
 - \circ Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Muon self-energy terms

Bound states QED contributions

Bound muon within potential

- Zero-order: one-body Coulomb interaction
 - o Solve exactly for $H_0 = \frac{\vec{p}^2}{2m_r} \frac{Z\alpha}{r}$
 - o $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$
- Effective potential applied on muon
 - What relativistic extension to Coulomb ?
 - \circ Define effective potential to reproduce E_{nl} at a given order
 - Power-counting \Rightarrow DWB on H_0
- Main type of contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_{e} \Rightarrow$ main one!
 - \circ Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Muon self-energy terms

Example: electron vacuum polarization corrections

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2(1+\bar{\omega}(\frac{q^2}{m_e}))} \quad \text{where } \bar{\omega} \equiv \text{1PI expanded in powers of } \alpha$$

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2} (1 + \rho^{(1)} + \rho^{(2)} + \dots)$$

7

Bound muon within potential

- Zero-order: one-body Coulomb interaction
 - o Solve exactly for $H_0 = \frac{\vec{p}^2}{2m_r} \frac{Z\alpha}{r}$
 - $E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$
- Effective potential applied on muon
 - What relativistic extension to Coulomb ?
 - \circ Define effective potential to reproduce E_{nl} at a given order
 - Power-counting \Rightarrow DWB on H_0
- Main type of contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_{e} \Rightarrow$ main one!
 - \circ Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Muon self-energy terms

Example: electron vacuum polarization corrections

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2(1+\bar{\omega}(\frac{q^2}{m_e}))} \quad \text{where } \bar{\omega} \equiv 1 \text{PI expanded in powers of } \alpha$$

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2} (1 + \rho^{(1)} + \rho^{(2)} + \dots)$$

Bound states QED contributions

Bound muon within potential

- Zero-order: one-body Coulomb interaction
 - o Solve exactly for $H_0 = \frac{\vec{p}^2}{2m_r} \frac{Z\alpha}{r}$

$$E_{nl} = -\frac{(Z\alpha)^2 m_r}{2n^2} \equiv E^{(0)}$$

- Effective potential applied on muon
 - What relativistic extension to Coulomb ?
 - \circ Define effective potential to reproduce E_{nl} at a given order
 - Power-counting \Rightarrow DWB on H_0
- Main type of contributions
 - Electron vacuum polarization: $a_{\mu} \sim \lambda_{e} \Rightarrow$ main one!
 - \circ Finite nuclear mass \Rightarrow recoil and relativistic corrections
 - Muon self-energy terms

Example: electron vacuum polarization corrections

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2(1+\bar{\omega}(\frac{q^2}{m_e}))} \quad \text{where } \bar{\omega} \equiv \text{1PI expanded in powers of } \alpha$$

$$-\frac{g^{\mu\nu}}{q^2} \to \frac{g^{\mu\nu}}{q^2} (1 + \rho^{(1)} + \rho^{(2)} + \dots)$$

$$\longrightarrow V^{(i)}(r) = -(Z\alpha) \int \frac{d^3\vec{q}}{(2\pi)^3} \frac{4\pi}{\vec{q}^2} \rho^{(i)}(-\vec{q}^2) e^{i\vec{q}\cdot\vec{r}}$$

[Pachucki et al. Review of Modern Physics (2024)]

Bound states QED contributions

Section	Order	Correction	$\mu \mathrm{H}$	$\mu { m D}$	$\mu^3 \mathrm{He^+}$	$\mu^4 \mathrm{He^+}$
III.A	$\alpha(Z\alpha)^2$	$eVP^{(1)}$	205.007 38	227.634 70	1641.886 2	1665.773 1
III.A	$\alpha^2(Z\alpha)^2$	$eVP^{(2)}$	1.658 85	1.838 04	13.0843	13.2769
III.A	$\alpha^3(Z\alpha)^2$	$eVP^{(3)}$	0.007 52	0.008 42(7)	0.073 0(30)	0.074 0(30)
III.B	$(Z,Z^2,Z^3)\alpha^5$	Light-by-light eVP	-0.00089(2)	-0.00096(2)	-0.0134(6)	-0.0136(6)
III.C	$(Z\alpha)^4$	Recoil	0.057 47	0.067 22	0.1265	0.295 2
III.D	$\alpha(Z\alpha)^4$	Relativistic with eVP ⁽¹⁾	0.018 76	0.021 78	0.5093	0.521 1
III.E	$\alpha^2(Z\alpha)^4$	Relativistic with eVP ⁽²⁾	0.000 17	0.000 20	0.005 6	0.005 7
III.F	$\alpha(Z\alpha)^4$	$\mu SE^{(1)} + \mu VP^{(1)}$, LO	-0.66345	-0.76943	-10.6525	-10.9260
III.G	$\alpha(Z\alpha)^5$	$\mu SE^{(1)} + \mu VP^{(1)}$, NLO	-0.00443	-0.00518	-0.1749	-0.1797
III.H	$\alpha^2(Z\alpha)^4$	$\mu VP^{(1)}$ with $eVP^{(1)}$	0.000 13	0.000 15	0.003 8	0.003 9
III.I	$\alpha^2(Z\alpha)^4$	$\mu SE^{(1)}$ with $eVP^{(1)}$	-0.00254	-0.00306	-0.0627	-0.0646
III.J	$(Z\alpha)^5$	Recoil	-0.04497	-0.02660	-0.5581	-0.4330
III.K	$\alpha(Z\alpha)^5$	Recoil with eVP ⁽¹⁾	0.000 14(14)	0.00009(9)	0.004 9(49)	0.003 9(39)
III.L	$Z^2\alpha(Z\alpha)^4$	$nSE^{(1)}$	-0.00992	-0.00310	-0.0840	-0.0505
III.M	$\alpha^2(Z\alpha)^4$	$\mu F_1^{(2)}, \mu F_2^{(2)}, \mu VP^{(2)}$	-0.00158	-0.00184	-0.0311	-0.0319
III.N	$(Z\alpha)^6$	Pure recoil	0.000 09	0.000 04	0.0019	0.0014
III.O	$\alpha(Z\alpha)^5$	Radiative recoil	0.000 22	0.000 13	0.0029	0.0023
III.P	$\alpha(Z\alpha)^4$	hVP	0.011 36(27)	0.013 28(32)	0.224 1(53)	0.230 3(54)
III.Q	$\alpha^2(Z\alpha)^4$	hVP with eVP(1)	0.000 09	0.000 10	0.002 6(1)	0.0027(1)

Finite size nuclear contributions

Finite nuclear size contribution

- Correction to account for non-point like nucleus
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution
 - ightharpoonup Main contributions $\propto r_c^2$
- Beyond charge radius contributions
 - $^{\circ}$ In principle higher order terms leads to multipoles of ho
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for proton!**

Finite size nuclear contributions

Finite nuclear size contribution

- Correction to account for non-point like nucleus
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution
 - ightharpoonup Main contributions $\propto r_c^2$
- Beyond charge radius contributions
 - $^{\circ}$ In principle higher order terms leads to multipoles of ho
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for proton!**

Examples with electron vacuum polarization

$$\Rightarrow$$
 $\mathscr{C}r_c^2$ term in δ_{LS}

Finite size nuclear contributions

Finite nuclear size contribution

- Correction to account for non-point like nucleus
 - Similar approach as pure QED contributions
 - Multipole expansion of charge distribution
 - ightharpoonup Main contributions $\propto r_c^2$
- Beyond charge radius contributions
 - $^{\circ}$ In principle higher order terms leads to multipoles of ho
 - Experiments not precise enough for now
 - CREMA = on-going attempt to measure **HFS for proton!**

Examples with electron vacuum polarization

[Pachucki et al. Review of Modern Physics (2024)]

Section	Order	Correction	μΗ	$\mu { m D}$	$\mu^3 \mathrm{He^+}$	$\mu^4 \mathrm{He^+}$
IV.A	$(Z\alpha)^4$	r_C^2	$-5.1975r_p^2$	$-6.073 2r_d^2$	$-102.523r_h^2$	$-105.322r_{\alpha}^{2}$
IV.B	$lpha(Zlpha)^4$	$eVP^{(1)}$ with r_C^2	$-0.028 2r_p^2$	$-0.0340r_d^2$	$-0.851r_h^2$	$-0.878r_{\alpha}^{2}$
IV.C	$lpha^2(Zlpha)^4$	eVP ⁽²⁾ with r_C^2	$-0.0002r_p^2$	$-0.0002r_d^2$	$-0.009(1)r_h^2$	$-0.009(1)r_{\alpha}^{2}$

Nuclear structure dependent corrections

Nuclear structure effects

- Corrections accounting for non static effects
 - Nucleus is no longer treated as an external potential
 - $^{\circ}$ Main contribution from **two-photon exchange** δ_{TPE}
 - Nuclear excited states become necessary
 - \rightarrow δ_{TPE} contributes at $(Z\alpha)^5$
- Beyond TPE
 - Further corrections three-, four-, ... photon exchange
 - Combinations with vacuum polarization, etc

Nuclear structure dependent corrections

Nuclear structure effects

- Corrections accounting for non static effects
 - Nucleus is no longer treated as an external potential
 - $^{\circ}$ Main contribution from **two-photon exchange** δ_{TPE}
 - Nuclear excited states become necessary
 - \rightarrow δ_{TPE} contributes at $(Z\alpha)^5$
- Beyond TPE
 - Further corrections three-, four-, ... photon exchange
 - Combinations with vacuum polarization, etc

Two photon exchanges contributions

$$\Delta E_{nl} = -\frac{(4\pi Z\alpha)}{m_r} |\phi_{nl}(0)|^2 \operatorname{Im} \int \frac{\mathrm{d}^4 q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,-q)$$

with:

- \bullet $D^{\mu\nu}(q) \equiv$ the photon propagator
- $t_{\mu\nu} \equiv$ the lepton tensor
- $T_{\mu\nu} \equiv$ the hadronic tensor

[Rosenfelder Nuclear Physics A (1983)]

[Bernabeu et al, Nuclear Physics A (1974)]

[Hernandez et al. Physical Review C (2019)]

Nuclear structure dependent corrections

Nuclear structure effects

- Corrections accounting for non static effects
 - Nucleus is no longer treated as an external potential
 - $^{\circ}$ Main contribution from **two-photon exchange** δ_{TPE}
 - Nuclear excited states become necessary
 - \rightarrow δ_{TPE} contributes at $(Z\alpha)^5$
- Beyond TPE
 - Further corrections three-, four-, ... photon exchange
 - Combinations with vacuum polarization, etc

See Vadim Lensky's talk for more details

Two photon exchanges contributions

$$\Delta E_{nl} = -\frac{(4\pi Z\alpha)}{m_r} |\phi_{nl}(0)|^2 \text{Im} \int \frac{d^4q}{(2\pi)^4} D^{\mu\rho}(q) D^{\nu\tau}(-q) t_{\mu\nu}(q,k) T_{\rho\tau}(q,-q)$$

with:

- \bullet $D^{\mu\nu}(q) \equiv$ the photon propagator
- $t_{\mu\nu} \equiv$ the lepton tensor
- $T_{\mu\nu} \equiv$ the hadronic tensor

[Bernabeu et al, Nuclear Physics A (1974)]

[Rosenfelder Nuclear Physics A (1983)]

 \bullet $k \equiv (m_r, 0)$

[Hernandez et al. Physical Review C (2019)]

Superallowed β -decay

 \Rightarrow Standard model \Rightarrow CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

- Current tension of $\sim 3\sigma$
- \circ Main theoretical uncertainty $\Rightarrow \delta_{
 m NS}$
- **→** Reduce error with ab initio calculation

44

Intermezzo: successful application to eta-decay

Superallowed β -decay

Standard model ⇒ CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

- Current tension of $\sim 3\sigma$
- \circ Main theoretical uncertainty $\Rightarrow \delta_{
 m NS}$
- **→** Reduce error with ab initio calculation

Intermezzo: successful application to eta-decay

Superallowed β -decay

Standard model ⇒ CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

- Current tension of $\sim 3\sigma$
- Main theoretical uncertainty $\Rightarrow \delta_{\rm NS}$
- **→** Reduce error with ab initio calculation

Box diagram expression

$$\Box_{\gamma W}^{\text{nucl}}(E_{e}) = \frac{e^{2}}{M_{F}} \Re \left\{ \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2} - q^{2}} \frac{\left(Q^{2} + M\nu \frac{p_{e} \cdot q}{p \cdot p_{e}}\right) T_{3}^{\text{nucl}}(\nu, |\vec{q}|)}{[(p_{e} - q)^{2} - m_{e}^{2} + i\varepsilon](q^{2} + i\varepsilon)M\nu} \right\}$$

- $M_F = Fermi matrix element (= \sqrt{2} in the isospin limit)$
- $M \simeq M_i \simeq M_f \Rightarrow \text{initial/final nucleus energy (no-recoil limit)}$
- $= \nu = q_0$ \Rightarrow photon energy in nuclear rest frame
- $Q^2 = -q^2 \qquad \Rightarrow \text{ photon virtuality}$
- $T_3^{\mathrm{nucl}}(\nu, |\vec{q}|) = \mathrm{nuclear}$ Compton tensor

Intermezzo: successful application to eta-decay

Superallowed β -decay

 e^+ • Standard model \Rightarrow CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

- Current tension of $\sim 3\sigma$
- Main theoretical uncertainty $\Rightarrow \delta_{\rm NS}$
- **→** Reduce error with ab initio calculation

-0.38 -0.40 0.38 -0.40 0.38 0.40

Box diagram expression

$$\Box_{\gamma W}^{\text{nucl}}(E_{e}) = \frac{e^{2}}{M_{F}} \Re \left\{ \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2} - q^{2}} \frac{\left(Q^{2} + M\nu \frac{p_{e} \cdot q}{p \cdot p_{e}}\right) T_{3}^{\text{nucl}}(\nu, |\vec{q}|)}{[(p_{e} - q)^{2} - m_{e}^{2} + i\varepsilon](q^{2} + i\varepsilon)M\nu} \right\}$$

- $M_F = Fermi matrix element (= \sqrt{2} in the isospin limit)$
- $M \simeq M_i \simeq M_f \Rightarrow \text{initial/final nucleus energy (no-recoil limit)}$
- $u = q_0$ \Rightarrow photon energy in nuclear rest frame
- $T_3^{\text{nucl}}(\nu, |\vec{q}|) = \text{nuclear Compton tensor}$

Intermezzo: successful application to eta-decay

Superallowed β -decay

 e^+ • Standard model \Rightarrow CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

- Current tension of $\sim 3\sigma$
- \circ Main theoretical uncertainty $\Rightarrow \delta_{
 m NS}$
- **→** Reduce error with ab initio calculation

See Michael
Gennari's poster
for more details!

Box diagram expression

$$\Box_{\gamma W}^{\text{nucl}}(E_{e}) = \frac{e^{2}}{M_{F}} \Re e \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{W}^{2}}{M_{W}^{2} - q^{2}} \frac{\left(Q^{2} + M\nu \frac{p_{e} \cdot q}{p \cdot p_{e}}\right) T_{3}^{\text{nucl}}(\nu, |\vec{q}|)}{[(p_{e} - q)^{2} - m_{e}^{2} + i\varepsilon](q^{2} + i\varepsilon)M\nu}$$

- $M_F = Fermi matrix element (= \sqrt{2} in the isospin limit)$
- $M \simeq M_i \simeq M_f \Rightarrow {\rm initial/final\ nucleus\ energy\ (no-recoil\ limit)}$
- $u = q_0$ \Rightarrow photon energy in nuclear rest frame
- $Q^2 = -q^2$ \Rightarrow photon virtuality
- $T_3^{\text{nucl}}(\nu, |\vec{q}|) = \text{nuclear Compton tensor}$

Outline

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections

Calculations for ⁷Li

- No-Core Shell Model
- Nuclear polarizability of ⁷Li

Pure electromagnetic part

- <u>Leptonic tensor:</u>
 - \circ Wave-function approx: free muon propagator $+ \phi_{1s}(0)$
 - Decouple leptonic from nuclear part

$$t_{\mu\nu}(q,k) = \frac{\frac{1}{4} \text{Tr} \left[\gamma_{\mu} (k - \not q + m_r) \gamma_{\nu} (k + m_r) \right]}{(k - q)^2 - m_r^2 + i\epsilon}$$

- Photon propagator:
 - Use Coulomb gauge
 - Decouple charge and transverse contributions

$$D^{\mu\nu}(q) = \begin{pmatrix} \frac{1}{\vec{q}^2} & 0 \\ 0 & \frac{1}{q^2} \left(\delta_{ij} - \frac{q_i q_j}{\vec{q}^2}\right) \end{pmatrix}$$

Overall relatively well under-controlled

Pure electromagnetic part

- <u>Leptonic tensor:</u>
 - Wave-function approx: free muon propagator $+ \phi_{1s}(0)$
 - **Decouple leptonic from nuclear part**

$$t_{\mu\nu}(q,k) = \frac{\frac{1}{4} \text{Tr} \left[\gamma_{\mu} (k - \not q + m_r) \gamma_{\nu} (k + m_r) \right]}{(k - q)^2 - m_r^2 + i\epsilon}$$

- Photon propagator:
 - Use Coulomb gauge
- Decouple charge and transverse contributions

$$D^{\mu\nu}(q) = \begin{pmatrix} \frac{1}{\vec{q}^2} & 0 \\ 0 & \frac{1}{q^2} \left(\delta_{ij} - \frac{q_i q_j}{\vec{q}^2}\right) \end{pmatrix}$$

Overall relatively well under-controlled

Hadronic part

[Bernabeu et al, Nuclear Physics A (1974)]

[Friar, Annals of Physics (1976)]

- Hadronic tensor:
 - Approximations: no recoil $+ p_{\mu} \ll m_{\mu}$
 - Compton tensor:

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int d^3x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle$$

$$+ \sum_{N\neq 0} \left[\frac{\left\langle \Psi \right| J_{\mu}(0) \left| N\vec{q} \right\rangle \left\langle N\vec{q} \right| J_{\nu}(0) \left| \Psi \right\rangle}{E_0 - E_N + q_0 + i\epsilon} \right.$$

$$+ \frac{\left\langle \Psi \right| J_{\nu}(0) \left| N - \vec{q} \right\rangle \left\langle N - \vec{q} \right| J_{\mu}(0) \left| \Psi \right\rangle}{E_0 - E_N - q_0 + i\epsilon} \right]$$

Seagull: necessary to cancel divergence

Pure electromagnetic part

- <u>Leptonic tensor:</u>
 - Wave-function approx: free muon propagator $+ \phi_{1s}(0)$
 - **→** Decouple leptonic from nuclear part

$$t_{\mu\nu}(q,k) = \frac{\frac{1}{4} \text{Tr} \left[\gamma_{\mu} (k - \not q + m_r) \gamma_{\nu} (k + m_r) \right]}{(k - q)^2 - m_r^2 + i\epsilon}$$

- Photon propagator:
 - Use Coulomb gauge
 - Decouple charge and transverse contributions

$$D^{\mu\nu}(q) = \begin{pmatrix} \frac{1}{\vec{q}^2} & 0 \\ 0 & \frac{1}{q^2} \left(\delta_{ij} - \frac{q_i q_j}{\vec{q}^2}\right) \end{pmatrix}$$

Overall relatively well under-controlled

Hadronic part

[Bernabeu et al, Nuclear Physics A (1974)]

[Friar, Annals of Physics (1976)]

- Hadronic tensor:
 - Approximations: no recoil $+ p_{\mu} \ll m_{\mu}$
 - Compton tensor:

Seagull term

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int d^3x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle$$

$$+ \sum_{N\neq 0} \left[\frac{\left\langle \Psi \right| J_{\mu}(0) \left| N\vec{q} \right\rangle \left\langle N\vec{q} \right| J_{\nu}(0) \left| \Psi \right\rangle}{E_0 - E_N + q_0 + i\epsilon} \right.$$

$$+ \frac{\left\langle \Psi \right| J_{\nu}(0) \left| N - \vec{q} \right\rangle \left\langle N - \vec{q} \right| J_{\mu}(0) \left| \Psi \right\rangle}{E_0 - E_N - q_0 + i\epsilon} \right]$$

Seagull: necessary to cancel divergence

Pure electromagnetic part

- <u>Leptonic tensor:</u>
 - Wave-function approx: free muon propagator $+ \phi_{1s}(0)$
 - **→** Decouple leptonic from nuclear part

$$t_{\mu\nu}(q,k) = \frac{\frac{1}{4} \text{Tr} \left[\gamma_{\mu} (k - \not q + m_r) \gamma_{\nu} (k + m_r) \right]}{(k - q)^2 - m_r^2 + i\epsilon}$$

- Photon propagator:
 - Use Coulomb gauge
 - Decouple charge and transverse contributions

$$D^{\mu\nu}(q) = \begin{pmatrix} \frac{1}{\vec{q}^2} & 0 \\ 0 & \frac{1}{q^2} \left(\delta_{ij} - \frac{q_i q_j}{\vec{q}^2} \right) \end{pmatrix}$$

Overall relatively well under-controlled

Hadronic part

[Bernabeu et al, Nuclear Physics A (1974)]

[Friar, Annals of Physics (1976)]

- Hadronic tensor:
 - Approximations: no recoil $+ p_{\mu} \ll m_{\mu}$
 - Compton tensor:

Seagull term

$$T_{\mu\nu}(q) = \delta_{\mu\nu} \left\langle \Psi \left| \int d^3x e^{iq.x} f_{SG}(x,0) \right| \Psi \right\rangle$$

$$+ \sum_{N\neq 0} \left[\frac{\left\langle \Psi \left| J_{\mu}(0) \right| N\vec{q} \right\rangle \left\langle N\vec{q} \right| J_{\nu}(0) \right| \Psi \right\rangle}{E_0 - E_N + q_0 + i\epsilon}$$

$$+ \frac{\left\langle \Psi \left| J_{\nu}(0) \right| N - \vec{q} \right\rangle \left\langle N - \vec{q} \right| J_{\mu}(0) \left| \Psi \right\rangle}{E_0 - E_N - q_0 + i\epsilon} \right]$$

Seagull: necessary to cancel divergence

Decomposition of two-photon exchange

• <u>Nucleon/Nucleus decomposition:</u> (in the end use DR)

$$\delta_{TPE} = (\delta_{el}^N + \delta_{pol}^N) + (\delta_{el}^A + \delta_{pol}^A)$$

Model used of nuclear currents

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

$$M_{JM_J;TM_T}(q) \equiv \int d^3x \ \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$$

$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) \right] . \overrightarrow{J}(x)_{TM_T}$$

$$T_{JM_J;TM_T}^M(q) \equiv \int d^3x \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) . \overrightarrow{J}(x)_{TM_T}$$

 \rightarrow Truncation at J=3

14

Model used of nuclear currents

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

$$M_{JM_J;TM_T}(q) \equiv \int d^3x \ \mathbf{M}_J^{M_J}(qx) J_0(x)_{TM_T}$$

$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) \right] . \overrightarrow{J}(x)_{TM_T}$$

$$T_{JM_J;TM_T}^M(q) \equiv \int d^3x \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) . \overrightarrow{J}(x)_{TM_T}$$

- \rightarrow Truncation at J=3
- Electromagnetic current modeling
 - Decomposed within the seven operator basis
 - Form factors given by the isovector dipole model

$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}, \quad F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$$

where $F_{1,2}^{(T)}(0)$ based on $\mu^{S,V}$ (nucleon magnetic moments)

14

Model used of nuclear currents

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

$$M_{JM_J;TM_T}(q) \equiv \int d^3x \ \mathbf{M}_J^{M_J}(qx)J_0(x)_{TM_T}$$

$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) \right] . \overrightarrow{J}(x)_{TM_T}$$

$$T_{JM_J;TM_T}^M(q) \equiv \int d^3x \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) . \overrightarrow{J}(x)_{TM_T}$$

- \rightarrow Truncation at J=3
- Electromagnetic current modeling
 - Decomposed within the seven operator basis
 - Form factors given by the isovector dipole model

$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}, \quad F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$$

where $F_{1,2}^{(T)}(0)$ based on $\mu^{S,V}$ (nucleon magnetic moments)

Model used of nuclear many-body state

- Ab initio nuclear interaction [Entem et al. (2017)] [Somà et al. (2020)]
 - Two chiral interactions considered
 - N4LO-E7 and N3LO
 - **Estimate interaction uncertainty**
- Model space
 - Harmonic oscillator Slater determinant
 - $^{\circ}$ Vary $\hbar\Omega$ and $N_{
 m max}$
 - **Estimate model space uncertainty**
- Many-body approximation
 - No-Core Shell Model
 - More details in next section

Model used of nuclear currents

Multipole decomposition of nuclear currents

[Donnelly, Haxton, Atomic and Nuclear Data Tables (1979)]

$$M_{JM_J;TM_T}(q) \equiv \int d^3x \ \mathbf{M}_J^{M_J}(qx)J_0(x)_{TM_T}$$

$$T_{JM_J;TM_T}^E(q) \equiv \int d^3x \left[\frac{1}{q} \nabla \times \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) \right] . \overrightarrow{J}(x)_{TM_T}$$

$$T_{JM_J;TM_T}^M(q) \equiv \int d^3x \overrightarrow{\mathbf{M}}_{JJ}^{M_J}(qx) . \overrightarrow{J}(x)_{TM_T}$$

- \rightarrow Truncation at J=3
- Electromagnetic current modeling
 - Decomposed within the seven operator basis
 - Form factors given by the isovector dipole model

$$f_{SN}(q) = \left(1 + \frac{q^2}{M_V^2}\right)^{-2}, \quad F_{1,2}^{(T)}(q) = F_{1,2}^{(T)}(0) f_{SN}(q)$$

where $F_{1,2}^{(T)}(0)$ based on $\mu^{S,V}$ (nucleon magnetic moments)

Model used of nuclear many-body state

- Ab initio nuclear interaction [Entem et al. (2017)] [Somà et al. (2020)]
 - Two chiral interactions considered
 - N4LO-E7 and N3LO
 - **Estimate interaction uncertainty**
- Model space
 - Harmonic oscillator Slater determinant
 - $^{\circ}$ Vary $\hbar\Omega$ and $N_{
 m max}$
 - **Estimate model space uncertainty**
- Many-body approximation
 - No-Core Shell Model
 - More details in next section

Need expression of δ^A_{pol} in terms of multipole currents !

Master formula

Inputs to evaluate nuclear polarizability

Charge spectral function

$$S_{C,J}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | M_{J0}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$$

Transverse electric spectral function

$$S_{T,J}^{E}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{E}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Transverse magnetic spectral function

$$S_{T,J}^{M}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{M}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

15

15

Master formula

Inputs to evaluate nuclear polarizability

Charge spectral function

$$S_{C,J}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | M_{J0}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$$

Transverse electric spectral function

$$S_{T,J}^{E}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{E}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Transverse magnetic spectral function

$$S_{T,J}^{M}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{M}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Relativistic formulation

[Rosenfelder Nuclear Physics A (1983)]

- Decomposition of nuclear polarizability: [Hernandez et al. Physical Review C (2019)]
 - Contribution from charge, transverse electric and magnetic

15

Master formula

Inputs to evaluate nuclear polarizability

Charge spectral function

$$S_{C,J}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | M_{J0}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$$

Transverse electric spectral function

$$S_{T,J}^{E}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{E}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Transverse magnetic spectral function

$$S_{T,J}^{M}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{M}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Relativistic formulation

[Rosenfelder Nuclear Physics A (1983)]

- Decomposition of nuclear polarizability: [Hernandez et al. Physical Review C (2019)]
 - Contribution from charge, transverse electric and magnetic

$$\Delta_C = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_C(\omega, q) S_C(\omega, q) ,$$

$$\Delta_{T,E} = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_T(\omega, q) S_T^E(\omega, q) + K_S(\omega, q) S_T^E(\omega, 0) ,$$

$$\Delta_{T,M} = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_T(\omega, q) S_T^M(\omega, q)$$

15

Master formula

Inputs to evaluate nuclear polarizability

Charge spectral function

$$S_{C,J}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | M_{J0}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$$

Transverse electric spectral function

$$S_{T,J}^{E}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{E}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Transverse magnetic spectral function

$$S_{T,J}^{M}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{M}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Relativistic formulation

[Rosenfelder Nuclear Physics A (1983)]

- Decomposition of nuclear polarizability: [Hernandez et al. Physical Review C (2019)]
 - Contribution from charge, transverse electric and magnetic

$$\Delta_C = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_C(\omega, q) S_C(\omega, q) ,$$

$$\Delta_{T,E} = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_T(\omega, q) S_T^E(\omega, q) + K_S(\omega, q) S_T^E(\omega, 0) ,$$

$$\Delta_{T,M} = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_T(\omega, q) S_T^M(\omega, q)$$

• Kernels in the integrals:

$$K_{C}(\omega, q) = \frac{1}{E_{q}} \left[\frac{1}{(E_{q} - m_{r})(\omega + E_{q} - m_{r})} - \frac{1}{(E_{q} + m_{r})(\omega + E_{q} + m_{r})} \right]$$

$$K_{L}(\omega, q) = \frac{q^{2}}{4m_{r}^{2}} K_{C}(\omega, q) - \frac{1}{4m_{r}q} \frac{\omega + 2q}{(\omega + q)^{2}}$$

$$K_{S}(\omega, q) = \frac{1}{4m_{r}\omega} \left[\frac{1}{q} - \frac{1}{E_{q}} \right]$$

Master formula

Inputs to evaluate nuclear polarizability

Charge spectral function

$$S_{C,J}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | M_{J0}(q) | \Psi \rangle|^2 \delta(E_N - E_0 - \omega)$$

Transverse electric spectral function

$$S_{T,J}^{E}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{E}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Transverse magnetic spectral function

$$S_{T,J}^{M}(\omega,q) \equiv \sum_{N \neq 0} |\langle N | T_{J0}^{M}(q) | \Psi \rangle|^{2} \delta(E_{N} - E_{0} - \omega)$$

Non-relativistic reduction

- Limit: $q \ll m_r$
 - \rightarrow Only **charge** kernel remains \Rightarrow simpler + consistency check

$$K_C(\omega, q) \to K_{NR}(\omega, q) = \frac{1}{q^2 \left(\frac{q^2}{2m_r} + \omega\right)}$$

$$K_L(\omega, q) \to 0$$

$$K_S(\omega, q) \to 0$$

Relativistic formulation

[Rosenfelder Nuclear Physics A (1983)]

- Decomposition of nuclear polarizability: [Hernandez et al. Physical Review C (2019)]
 - Contribution from charge, transverse electric and magnetic

$$\Delta_C = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_C(\omega, q) S_C(\omega, q) ,$$

$$\Delta_{T,E} = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_T(\omega, q) S_T^E(\omega, q) + K_S(\omega, q) S_T^E(\omega, 0) ,$$

$$\Delta_{T,M} = -8(Z\alpha)^2 |\phi_{2S}(0)|^2 \int dq \int d\omega \ K_T(\omega, q) S_T^M(\omega, q)$$

• Kernels in the integrals:

$$K_{C}(\omega, q) = \frac{1}{E_{q}} \left[\frac{1}{(E_{q} - m_{r})(\omega + E_{q} - m_{r})} - \frac{1}{(E_{q} + m_{r})(\omega + E_{q} + m_{r})} \right]$$

$$K_{L}(\omega, q) = \frac{q^{2}}{4m_{r}^{2}} K_{C}(\omega, q) - \frac{1}{4m_{r}q} \frac{\omega + 2q}{(\omega + q)^{2}}$$

$$K_{S}(\omega, q) = \frac{1}{4m_{r}\omega} \left[\frac{1}{q} - \frac{1}{E_{q}} \right]$$

Outline

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections

Calculations for ⁷Li

- No-Core Shell Model
- Nuclear polarizability of ⁷Li

Anti-symmetrized products of many-body HO states

Lanczos tridiagonalization algorithm [Lanczos (1950)]

- ullet Initialization: normalized pivot $|\phi_1
 angle$
- Recursion: α_i , β_i and $|\phi_i\rangle$
 - $\circ \quad \beta_{i+1} | \phi_{i+1} \rangle = H | \phi_i \rangle \alpha_i | \phi_i \rangle \beta_i | \phi_{i-1} \rangle$
 - $\circ \quad \alpha_i = \langle \phi_i | H | \phi_i \rangle \text{ and } \beta_{i+1} \text{ st } \langle \phi_{i+1} | \phi_{i+1} \rangle = 1$

- Output:
 - Lanczos basis and coefficients $\{ | \phi_i \rangle, \alpha_i, \beta_i \}$

H in Lanczos basis

• Lanczos basis \equiv orthonormal basis in Krylov space $\left\{ |\phi_1\rangle, H |\phi_1\rangle, ..., H^{N_L} |\phi_1\rangle \right\}$

Anti-symmetrized products of many-body HO states

Lanczos tridiagonalization algorithm [Lanczos (1950)]

- ullet Initialization: normalized pivot $|\phi_1
 angle$
- Recursion: α_i , β_i and $|\phi_i\rangle$
 - $\circ \quad \beta_{i+1} | \phi_{i+1} \rangle = H | \phi_i \rangle \alpha_i | \phi_i \rangle \beta_i | \phi_{i-1} \rangle$
 - $\circ \quad \alpha_i = \langle \phi_i | H | \phi_i \rangle \text{ and } \beta_{i+1} \text{ st } \langle \phi_{i+1} | \phi_{i+1} \rangle = 1$

- Output:
 - Lanczos basis and coefficients $\{ | \phi_i \rangle, \alpha_i, \beta_i \}$

H in Lanczos basis

• Lanczos basis \equiv orthonormal basis in Krylov space $\left\{ |\phi_1\rangle, H |\phi_1\rangle, ..., H^{N_L} |\phi_1\rangle \right\}$

Application to nuclear structure

- Efficient calculation of spectra
 - \circ Selection rules sparsity \Rightarrow **Fast matrix-vector multiplication**
 - $^{\circ}$ In practice: $N_L \sim 100-200$ is sufficient to converge low-lying states
 - Cost of diagonalization of the tridiagonal matrix is negligible

Anti-symmetrized products of many-body HO states

Lanczos tridiagonalization algorithm [Lanczos (1950)]

- ullet Initialization: normalized pivot $|\phi_1
 angle$
- Recursion: α_i , β_i and $|\phi_i\rangle$
 - $\circ \quad \beta_{i+1} | \phi_{i+1} \rangle = H | \phi_i \rangle \alpha_i | \phi_i \rangle \beta_i | \phi_{i-1} \rangle$
 - $\circ \quad \alpha_i = \langle \phi_i | H | \phi_i \rangle \text{ and } \beta_{i+1} \text{ st } \langle \phi_{i+1} | \phi_{i+1} \rangle = 1$

- Output:
 - Lanczos basis and coefficients $\{ |\phi_i\rangle, \alpha_i, \beta_i \}$

H in Lanczos basis

• Lanczos basis \equiv orthonormal basis in Krylov space $\left\{ |\phi_1\rangle, H |\phi_1\rangle, ..., H^{N_L} |\phi_1\rangle \right\}$

Application to nuclear structure

- Efficient calculation of spectra
 - \circ Selection rules sparsity \Rightarrow **Fast matrix-vector multiplication**
 - $^{\circ}$ In practice: $N_L \sim 100-200$ is sufficient to converge low-lying states
 - Cost of diagonalization of the tridiagonal matrix is negligible

Anti-symmetrized products of many-body HO states

Application to ⁷Li

- Parameters of many-body calculation
 - $N_L = 200 \text{ for } N_{max} = 1 \text{ to } 9$
- Results
- Ground-state of ${}^{7}{\rm Li} \ |\Psi\rangle \Rightarrow$ Starting point for δ^{A}_{pol}

Strength functions

- We need to compute
- Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
- Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
- Variant of Lanczos: extract only relevant information

Strength functions

- We need to compute
- Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
- Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
 - Variant of Lanczos: extract only relevant information

Idea of the algorithm

ullet For each operator O

o Compute
$$\frac{O|\Psi\rangle}{\sqrt{\langle\Psi|O^{\dagger}O|\Psi\rangle}}$$
 \Rightarrow Pivot $|\phi_1\rangle$ for $2^{\rm nd}$ Lanczos

$$\circ \langle \Psi | O | N \rangle = \sqrt{\langle \Psi | O^{\dagger} O | \Psi \rangle \times \langle \phi_0 | N \rangle}$$

Strength functions

- We need to compute
- Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
- Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
 - Variant of Lanczos: extract only relevant information

Idea of the algorithm

 \bullet For each operator O

o Compute
$$\frac{O|\Psi\rangle}{\sqrt{\langle\Psi|O^{\dagger}O|\Psi\rangle}}$$
 \Rightarrow Pivot $|\phi_1\rangle$ for $2^{\rm nd}$ Lanczos

$$\circ \ \langle \Psi \,|\, O \,|\, N \rangle = \sqrt{\langle \Psi \,|\, O^\dagger O \,|\, \Psi \rangle} \times \langle \phi_0 \,|\, N \rangle \longrightarrow \text{Obtained for free during diagonalization}$$

Strength functions

- We need to compute
 - Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
- Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
 - Variant of Lanczos: extract only relevant information

Idea of the algorithm

 \bullet For each operator O

o Compute
$$\frac{O|\Psi\rangle}{\sqrt{\langle\Psi|O^{\dagger}O|\Psi\rangle}}$$
 \Rightarrow Pivot $|\phi_1\rangle$ for $2^{\rm nd}$ Lanczos

Strength functions

- We need to compute
 - Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
- Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
 - Variant of Lanczos: extract only relevant information

Idea of the algorithm

 \bullet For each operator O

o Compute
$$\frac{O|\Psi\rangle}{\sqrt{\langle\Psi|O^{\dagger}O|\Psi\rangle}}$$
 \Rightarrow Pivot $|\phi_1\rangle$ for $2^{\rm nd}$ Lanczos

$$\circ \ \langle \Psi \,|\, O \,|\, N \rangle = \sqrt{\langle \Psi \,|\, O^\dagger O \,|\, \Psi \rangle} \times \langle \phi_0 \,|\, N \rangle \longrightarrow \text{Obtained for free during diagonalization}$$

Strength functions

- We need to compute
 - Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
 - Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
 - Variant of Lanczos: extract only relevant information

Idea of the algorithm

For each operator O

o Compute
$$\frac{O|\Psi\rangle}{\sqrt{\langle\Psi|O^{\dagger}O|\Psi\rangle}}$$
 \Rightarrow Pivot $|\phi_1\rangle$ for $2^{\rm nd}$ Lanczos

Extract strength from orthonormality of Lanczos basis

$$\circ \ \langle \Psi \,|\, O \,|\, N \rangle = \sqrt{\langle \Psi \,|\, O^\dagger O \,|\, \Psi \rangle} \times \langle \phi_0 \,|\, N \rangle \longrightarrow \begin{array}{c} \text{Obtained for free during diagonalization} \\ \text{during diagonalization} \end{array}$$

Sum rules convergence

- Convergence problem
 - Often the strength is fragmented
 - Only low-lying states converged in general

Strength functions

- We need to compute
 - Eigenvalues: $E_N \Rightarrow$ obtained already with Lanczos
 - Overlaps: $|\langle N|O|\Psi\rangle|^2$ for each eigenstate and operator \Rightarrow expansive
- Lanczos strength algorithm
 - Variant of Lanczos: extract only relevant information

Idea of the algorithm

For each operator O

o Compute
$$\frac{O|\Psi\rangle}{\sqrt{\langle\Psi|O^{\dagger}O|\Psi\rangle}}$$
 \Rightarrow Pivot $|\phi_1\rangle$ for $2^{\rm nd}$ Lanczos

Extract strength from orthonormality of Lanczos basis

$$\circ \langle \Psi | O | N \rangle = \sqrt{\langle \Psi | O^{\dagger} O | \Psi \rangle} \times \langle \phi_0 | N \rangle \longrightarrow \text{du}$$

Obtained for free during diagonalization

Sum rules convergence

- Convergence problem
- Often the strength is fragmented
- Only low-lying states converged in general
- Lanczos strength algorithm
- Recover exactly $\int d\omega \ S_O(\omega) \ \omega^n$ for any $n \le 2N_L$ **Fast convergence of** $\int d\omega \ f(\omega) S_O(\omega)$ (if $f \sim P_{100}(\omega)$)

Outline

Theoretical modeling

- Lamb-shift to atomic energy levels
- Two-photon exchange corrections

Calculations for ⁷Li

- No-Core Shell Model
- Nuclear polarizability of ⁷Li

Testing convergence of sum rules for δ^A_{pol}

First tests of sum rule convergence

- \bullet Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on electric dipole operator

Testing convergence of sum rules for δ_{nol}^A

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on electric dipole operator
- \bullet Sum rules tested: $d\omega f(\omega)S_D(\omega)$
- $f_{norm}(\omega) = 1$

$$f_{D1}(\omega) = \sqrt{\frac{2m_{\gamma}}{\omega}}$$

$$f_{D1}(\omega) = \sqrt{\frac{2m_r}{\omega}}$$

$$f_C(\omega) = \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega}$$

• (+ more complicated one)

Testing convergence of sum rules for δ_{nol}^A

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on electric dipole operator
- \bullet Sum rules tested: $d\omega f(\omega)S_D(\omega)$

$$f_{norm}(\omega) = 1$$

$$f_{D1}(\omega) = \sqrt{\frac{2m_{\gamma}}{\omega}}$$

•
$$f_{norm}(\omega) = 1$$

• $f_{D1}(\omega) = \sqrt{\frac{2m_r}{\omega}}$
• $f_C(\omega) = \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega}$

• (+ more complicated one)

Leading order η -expansion of δ^A_{pol}

[Hernandez et al. PRC (2019)]

Testing convergence of sum rules for δ^A_{pol}

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on electric dipole operator
- Sum rules tested: $\int d\omega f(\omega) S_D(\omega)$
 - $f_{norm}(\omega) = 1$

$$f_{D1}(\omega) = \sqrt{\frac{2m_r}{\omega}}$$

$$f_C(\omega) = \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega}$$

• (+ more complicated one)

Leading order η -expansion of δ^A_{pol}

[Hernandez et al. PRC (2019)]

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on electric dipole operator
- Sum rules tested: $d\omega f(\omega)S_D(\omega)$
 - $f_{norm}(\omega) = 1$

$$f_{D1}(\omega) = \sqrt{\frac{2m_r}{\omega}}$$

$$f_C(\omega) = \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega}$$

• (+ more complicated one)

Leading order η -expansion of δ^A_{pol}

[Hernandez et al. PRC (2019)]

- Observations
 - Sum rules converge quickly $\Rightarrow N_L = 50$ is sufficient
 - Reaches plateau around $\sim 10^{-5}$ relative error

First tests of sum rule convergence

- Before running expansive q-dependent
 - Test convergence of strength integrals
 - Cases tested based on electric dipole operator
- Sum rules tested: $\int d\omega f(\omega) S_D(\omega)$
 - $f_{norm}(\omega) = 1$
- $f_{D1}(\omega) = \sqrt{\frac{2m_r}{\omega}}$
 - $f_C(\omega) = \frac{m_r}{\omega} \ln \frac{2(Z\alpha)^2 m_r}{\omega}$
- (+ more complicated one)

Leading order η -expansion of δ_{pol}^A

[Hernandez et al. PRC (2019)]

- Observations
 - Sum rules converge quickly $\Rightarrow N_L = 50$ is sufficient
 - $^{\circ}$ Reaches plateau around $\sim 10^{-5}$ relative error

First conclusion: numerical noise from Lanczos algo is negligible Next step: q-dependent calculations of δ_{pol}^A !

 N_L

A first test case for N4LO-E7 and $N_{\rm max}=7$

Numerical calculations

- \bullet $q_{\rm max}=700$ MeV and $\Delta q=10$ MeV
- \bullet 10 different operators for $J_{\text{max}} = 3$
- → 700 NCSM calculations at $N_{\rm max} = 7$

A first test case for N4LO-E7 and $N_{\rm max}=7$

Numerical calculations

- \bullet $q_{\rm max}=700$ MeV and $\Delta q=10$ MeV
- \bullet 10 different operators for $J_{\text{max}} = 3$
- → 700 NCSM calculations at $N_{\rm max} = 7$

A first test case for N4LO-E7 and $N_{\rm max}=7$

Numerical calculations

- \bullet $q_{\rm max}=700$ MeV and $\Delta q=10$ MeV
- \bullet 10 different operators for $J_{\text{max}} = 3$
- **700 NCSM** calculations at $N_{\rm max}=7$

Observations

- Contribution repartitions
 - Well-known dipole dominance
 - Charge contributions are dominant

A first test case for N4LO-E7 and $N_{\rm max}=7$

Numerical calculations

- \bullet $q_{\rm max}=700$ MeV and $\Delta q=10$ MeV
- \bullet 10 different operators for $J_{\text{max}} = 3$
- **700 NCSM** calculations at $N_{\rm max}=7$

Observations

- Contribution repartitions
 - Well-known **dipole** dominance
 - Charge contributions are dominant
- Negligible contributions
 - $^{\circ}$ TM is negligible for any J
 - $^{\circ}$ TE is relevant only for J=1
 - Only half the operators are relevant

Checking convergence in $J_{\rm max}$

Results

- Here shown for $N_{\rm max}=7$ and N4LO-E7
- All other cases are similar
- **→** Fast exponential convergence

Checking convergence in $J_{\rm max}$

Results

- Here shown for $N_{\text{max}} = 7$ and N4LO-E7
- All other cases are similar
- **→** Fast exponential convergence

$$\epsilon_{J_{\text{max}}} \lesssim 0.1 \text{ meV}$$

Multipole truncation \Rightarrow negligible uncertainty

Convergence in N_{max} and interaction dependence

Convergence in $N_{ m max}$ and interaction dependence

Results

- N4LO-E7 interaction
 - $N_{\rm max}$ fluctuation $\simeq 1-2~{\rm meV}$
 - Multiple frequencies still to be run
 - ightharpoonup Anticipated estimation: $\epsilon_{N_{\rm max}} \simeq 2~{\rm meV}$
- N3LO interaction
 - $^{\circ}$ $N_{\rm max} = 9$ still to be completed
 - Heavy calculations ⇒ run on Frontiers
 - \rightarrow Anticipated estimation: $\epsilon_{int} \simeq 5 \text{ meV}$

[Li Muli, Poggialini, Bacca (2021)]

Overall consistent with previous estimation!

Convergence in $N_{ m max}$ and interaction dependence

Results

- N4LO-E7 interaction
 - $N_{\rm max}$ fluctuation $\simeq 1-2~{\rm meV}$
 - Multiple frequencies still to be run
 - ightharpoonup Anticipated estimation: $\epsilon_{N_{\rm max}} \simeq 2~{\rm meV}$
- N3LO interaction
 - $\circ N_{\text{max}} = 9$ still to be completed
 - Heavy calculations ⇒ run on Frontiers
 - \rightarrow Anticipated estimation: $\epsilon_{int} \simeq 5 \text{ meV}$

[Li Muli, Poggialini, Bacca (2021)]

Overall consistent with previous estimation!

Convergence in $N_{ m max}$ and interaction dependence

Results

- N4LO-E7 interaction
 - $N_{\rm max}$ fluctuation $\simeq 1-2~{\rm meV}$
 - Multiple frequencies still to be run
 - ightharpoonup Anticipated estimation: $\epsilon_{N_{\rm max}} \simeq 2~{\rm meV}$
- N3LO interaction
 - $^{\circ}$ $N_{\rm max} = 9$ still to be completed
 - Heavy calculations ⇒ run on Frontiers
 - \rightarrow Anticipated estimation: $\epsilon_{int} \simeq 5 \text{ meV}$

[Li Muli, Poggialini, Bacca (2021)]

Overall consistent with previous estimation!

A 10 meV precision for nuclear structure corrections seems doable in the near future!

23

Outlook

- Short-term: completing ab initio calculation
 - Essential for robust nuclear uncertainty

Outlook

- Short-term: completing ab initio calculation
 - Essential for robust nuclear uncertainty

- Mid-term: combining with atomic and nucleon models
 - Essential for a total theoretical uncertainty

Outlook

- Short-term: completing ab initio calculation
 - Essential for robust nuclear uncertainty

- Mid-term: combining with atomic and nucleon models
 - Essential for a total theoretical uncertainty

- Longer-term: better controlling theoretical uncertainty
 - Developing a complete tower of EFTs

Outlook

- Short-term: completing ab initio calculation
 - Essential for robust nuclear uncertainty

- Mid-term: combining with atomic and nucleon models
 - Essential for a total theoretical uncertainty

- Longer-term: better controlling theoretical uncertainty
 - Developing a complete tower of EFTs

Questions

- Easy: for completing ab initio calculation
 - $^{\circ}$ Is it valuable for you that we compute δ_{el}^{A} in NCSMC ?
 - $^{\circ}$ Does everyone at QUARTET agree on ${\sim}10$ meV goal ?

Outlook

- Short-term: completing ab initio calculation
 - Essential for robust nuclear uncertainty

- Mid-term: combining with atomic and nucleon models
 - Essential for a total theoretical uncertainty

- Longer-term: better controlling theoretical uncertainty
 - Developing a complete tower of EFTs

Questions

- Easy: for completing ab initio calculation
 - Is it valuable for you that we compute δ_{el}^A in NCSMC ?
 - $^{\circ}$ Does everyone at QUARTET agree on $\sim \! 10$ meV goal ?
- Medium: for combining with atomic and nucleon models
 - Are $\langle \phi_m | O_J(q) | \phi_n \rangle$ sufficient nuclear inputs for 3PE ?
 - What kind of hadronic model should we use ?

Outlook

- Short-term: completing ab initio calculation
 - Essential for robust nuclear uncertainty

- Mid-term: combining with atomic and nucleon models
 - Essential for a total theoretical uncertainty

- Longer-term: better controlling theoretical uncertainty
 - Developing a complete tower of EFTs

Questions

- Easy: for completing ab initio calculation
 - Is it valuable for you that we compute δ_{el}^A in NCSMC ?
 - $^{\circ}$ Does everyone at QUARTET agree on ${\sim}10$ meV goal ?
- Medium: for combining with atomic and nucleon models
 - Are $\langle \phi_m | O_J(q) | \phi_n \rangle$ sufficient nuclear inputs for 3PE ?
 - What kind of hadronic model should we use ?
- Hard: for better controlling theoretical uncertainty
 - Is there already a standard tower of EFTs to use ?
 - Is potential-NRQED a good way to go?

%TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

