Precise nuclear radii with muonic atoms

light and not so light nuclei

Frederik Wauters on behalf of the muX and QUARTET collaborations Johannes Gutenberg University Mainz

Negative muons in matter:

Very much like the H atom, but:

Bohr radii:

 $E_n = \frac{mc^2}{2} \frac{\alpha^2 Z^2}{n^2}$ Bohr energies:

 $r_n = \frac{n^2}{mc^2} \frac{\hbar c}{\alpha Z}$

Energies 200 higher: 2 keV \rightarrow few MeV range

Radii 200 times smaller: significant overlap with the nucleus

6

)
R -

 $E_{1s}(Z=82)$ \rightarrow 19 MeV (point nucleus) \rightarrow 11 MeV (finite size)

Negative muons in matter:

Very much like the H atom, but:

 $E_n = \frac{mc^2}{2} \frac{\alpha^2 Z^2}{n^2}$ Bohr energies:

Bohr radii:

Energies 200 higher: 2 keV \rightarrow few MeV range

Radii 200 times smaller: significant overlap with the nucleus

7

)
R -

most $\langle r^2 \rangle$ of most stable nuclei in the tables

 $E_{1s}(Z=82)$

 \rightarrow 19 MeV (point nucleus) \rightarrow 11 MeV (finite size)

What to do with muonic atoms transitions?

Modern approach with low Z muonic atoms

What to do with muonic atoms transitions?

What to do with muonic atoms transitions?

It's not that simple …

It's not that simple …

- ❏ Precision muonic atom data for Z=1,2
- ❏ Most of the stable nuclei have been measured with HPGe (70s / 80s)
	- ❏ Z>10 limited by Nuclear polarization / nuclear charge distribution
	- ❏ Z<10 limited by HPGe resolution
- ❏ ~1% precise radii from e-scattering to fill the gap

Thermal Bath

- ❏ Most of the stable nuclei have been measured with HPGe (70s / 80s)
	- ❏ Z>10 limited by Nuclear polarization / nuclear charge distribution
	- ❏ Z<10 limited by HPGe resolution
- ❏ ~1% precise radii from e-scattering to fill the gap
- ❏ Need for a 1-10 ppm precise energy determination if 2p1s transitions.

```
Limitations of solid state X-ray detectors:
```

$$
\Box \qquad \sigma_Q = \sqrt{FN_Q}
$$

❏ S/N with ENC a few 100 e-

Unit of heat ≪ Unit of Ionization:

- \Box $\Delta T \cong E_{\text{deposited}} / C_{\text{tot}}$
- \Box $\Delta T / T$ large \rightarrow operate < 0.1 K
- ❏ A very good temperature sensor

[A.Fleischmann, C. Enss and G. M. Seidel,](https://link.springer.com/chapter/10.1007/10933596_4) Topics in Applied Physics 99 (2005) 63
A Fleischmann et al. AIP Conf. Proc. 1185 (2009) 571 [AIP Conf. Proc. 1185 \(2009\) 571](https://pubs.aip.org/aip/acp/article/1185/1/571/692599/Metallic-magnetic-calorimeters)

Quartet: precision muonic X-ray spectroscopy on low Z nuclei

<https://doi.org/10.1007/s10909-024-03141-x> <https://doi.org/10.3390/physics6010015>

Quartet: interesting because

- 1. opportunity: big gain in experimental sensitivity $1\% \rightarrow 0.1\%$ for light nuclei
- 2. few-body systems beyond helium
- 3. complement/reference existing and future laser spectroscopy data

Isotope shifts by [W. Nörterhäuser and Co](https://www.ikp.tu-darmstadt.de/forschung_kernphysik/gruppen_kernphysik/experiment/ag_w_noertershaeuser/index.de.jsp)

Quartet: MMC from the basement to an online experimental environment

 \rightarrow 2023 test beam at PSI

- \triangleright Accelerator facility
- \triangleright Beamline elements
- \triangleright Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- ➢ Limited beamtime

Quartet: MMC from the basement to an online experimental environment \rightarrow 2023 test beam at PSI.

- \triangleright Accelerator facility
- Beamline elements
- \triangleright Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- ➢ Limited beamtime

Quartet: MMC from the basement to an online experimental environment \rightarrow 2023 test beam at PSI.

- \triangleright Accelerator facility
- \triangleright Beamline elements
- \triangleright Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- \triangleright Limited beamtime

Quartet: MMC from the basement to an online experimental environment

 \rightarrow 2023 test beam at PSI.

- \triangleright Accelerator facility
- \triangleright Beamline elements
- \triangleright Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- \triangleright Limited beamtime

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI.
- \rightarrow First 6Li and 7Li measurements.

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI.
- \rightarrow First 6Li and 7Li measurements.
- \rightarrow Also did some Be & B.

Energy resolutions achieved of 15 eV @ 18-50 keV !

MMCs for muonic X-ray spectroscopy seems to work!

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI with Li/B/Be
- \rightarrow Applying a new technology: it's not that simple

64 pixels thus detectors. Each with a slightly different working point/non linearity/…

Eingangsspannung [V]

50 MeV Michel electrons light (aka heat) up the entire detector

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI with Li/B/Be
- \rightarrow Status and prospects with the current proposal

New detector needed with New detector needed with
thicker absorber thicker absorber

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI with Li/B/Be
- \rightarrow Status and prospects with the current proposal

New detector needed with New detector needed with
thicker absorber thicker absorber

And Z>10 → reference radii

But everything has been done already, and is input (NP/distribution) limited

TABLE IIIA. Muonic $2n \rightarrow 1s$ Transition Energies and Barrett Radii for $Z < 60$ and $Z > 77$

29

And Z>10 → reference radii:

- \triangleright Generic motivation to support the vast amount of laser spectroscopy data. (Nuclear model tests, nuclear astrophysics input, …)
- \triangleright Nuclear physics data \rightarrow NFS effects of precision experiments

Table 1 | Contributions to the g-factor difference of ²⁰Ne⁹⁺ and ²²Ne⁹⁺ and the final experimental result

The dominating uncertainty stems from the FNS. All digits are significant when no uncertainties are given. m. and M are the electron and nuclear mass, respectively. For the individual contributions, see Extended Data Table 1.

And Z>10 → reference radii:

- \triangleright Generic motivation to support the vast amount of laser spectroscopy data. (Nuclear model tests, nuclear astrophysics input, …)
- \triangleright Nuclear physics data \rightarrow NFS effects of precision experiments
- \triangleright Isospin difference, isospin triplets & Vud

muX will (redo) the stable Si isotopes, meaning that
) There are more solid ref/stable (29 & 30) Si radii available , and one does not have to rely on the natSi multiplet fit o ://doi.org/10.1103/physrevc.45.80
e should contact e.g. Ruiz from https://doi.org/10.1103/PhysRevLett.132.162502,

not continue with towards

And Z>10 → reference radii:

- \triangleright Generic motivation to support the vast amount of laser spectroscopy data. (Nuclear model tests, nuclear astrophysics input, …)
- \triangleright Nuclear physics data \rightarrow NFS effects of precision experiments
- ➢ Isospin difference, isospin triplets & Vud
- \rightarrow There is some low-hanging fruit,

e.g. laser spectroscopy on Si and Mg relying on natSi and nat[Mg](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.042504) data **muX** at PSI will measure with isotopically pure Si target this year (well, this week!)

And Z>10 → reference radii:

- \triangleright Generic motivation to support the vast amount of laser spectroscopy data. (Nuclear model tests, nuclear astrophysics input, …)
- \triangleright Nuclear physics data \rightarrow NFS effects of precision experiments
- ➢ Isospin difference, isospin triplets & Vud
- \rightarrow There is some low-hanging fruit, e.g. laser spectroscopy on Si and Mg relying on natSi and nat[Mg](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.042504) data **muX** at PSI will measure with isotopically pure Si target this year (well, this week!)
- \rightarrow To make a significant impact on a chain, measure 3 isotopes with μ Z, of which one is quite often <u>not stable</u>

Traditional muonic atom spectroscopy requires macroscopic targets \rightarrow stable isotopes What about long lived isotopes?

So we have:

- \triangleright μ -time \rightarrow t=0
- \geq Beam halo veto
- \triangleright μ decay in orbit time
- \triangleright X-ray time/energy/angle

Stop 30 MeV/c muons in a small amount of material

- 1. Stop in 100 Bar of H₂ + 0.25% 1% of D₂
- 2. Transfer from μ H to μ D in ~100 ns + 45 eV of kinetic energy

- \triangleright Beam halo veto
- \triangleright μ decay in orbit time
- \triangleright X-ray time/energy/angle

Stop 30 MeV/c muons in a small amount of material

- 1. Stop in 100 Bar of H₂ + 0.25% 1% of D₂
- 2. Transfer from μ H to $\bar{\mu}$ D in ~100 ns + 45 eV of kinetic energy
3. μ D moves freely through H2 gas at ca. 5 eV
- μD moves freely through H2 gas at ca. 5 eV

So we have:

- \triangleright μ -time \rightarrow t=0
- \geq Beam halo veto
- \triangleright μ decay in orbit time
- \triangleright X-ray time/energy/angle

Stop 30 MeV/c muons in a small amount of material

- 1. Stop in 100 Bar of H₂ + 0.25% 1% of D₂
- 2. Transfer from μ H to μ D in ~100 ns + 45 eV of kinetic energy
- 3. μD moves freely through H2 gas at ca. 5 eV
- 4. Upon hitting the chamber walls: $\mu D \rightarrow \mu Z$ transfer

Since 2017 muX has been running a decent size HPGe array + transfer targ

And Z>10 → reference radii:

- \triangleright First data with $39/40/41$ K
- \triangleright With a <r²> sensitivity of ~0.1% / 100 eV, We control the HPGe detectors to a few 10 eV (< 20 ppm!)

Why heavy nuclei? → our main target is 226Ra because of APV

➢ Unstable nuclei

Hyperfine Interact (2011) 199:9-19 DOI 10.1007/s10751-011-0296-6

Atomic parity violation in a single trapped radium ion

O. O. Versolato · L. W. Wansbeek · G. S. Giri · J. E. van den Berg · D. J. van der Hoek · K. Jungmann · W. L. Kruithof · C. J. G. Onderwater · B. K. Sahoo · B. Santra · P. D. Shidling · R. G. E. Timmermans · L. Willmann · H. W. Wilschut

Why heavy nuclei? → our main target is 226Ra because of APV

- \triangleright Unstable nuclei
- \triangleright Complicated hyperfine structure and nuclear charge distribution

```
Fine splitting (FS): \vec{J} = \vec{1} + \vec{s}Static hyperfine splitting (HFS): \vec{F} = \vec{I} + \vec{J}
```


- ❏ Significant quadrupole and dipole shifts
- ❏ Hyperfine splitting from ground and excited states (I=0 nuclei don't save you)
- ❏ Ph.D. [Thesis](https://www.research-collection.ethz.ch/handle/20.500.11850/612640) Stella vogiatzi and work by N. [Oreshkina](https://inspirehep.net/literature/1628009) (nuclear wave functions from skyrme interactions for NP)

Why heavy nuclei? → our main target is 226Ra because of APV

- \triangleright Unstable nuclei
- \triangleright Complicated hyperfine structure and nuclear charge distribution
- ➢ Persisting fine splitting anomaly (From Bergem et. al. [1988](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.37.2821) data persistent to Oreshkina [2022](https://inspirehep.net/literature/2016342))

```
Fine splitting (FS): \vec{J} = \vec{1} + \vec{s}Static hyperfine splitting (HFS): \vec{F} = \vec{I} + \vec{J}
```
μPb measurement to determine the NP, and then then it has not event the correct sign

- $F F'$ $2p_{3/2}$ $2p$ $2p_{1/2}$ \mathbf{s}_{10} $I_{ground} = \frac{1}{2}$ $I_{\text{excited}} = -$
- ❏ Significant quadrupola and dipole shifts
	- ❏ Hyperfine splitting from ground **and excited states (I=0 nuclei)** don't save you)
	- ❏ Ph.D. [Thesis](https://www.research-collection.ethz.ch/handle/20.500.11850/612640) Stella vogiatzi and work by N. [Oreshkina](https://inspirehep.net/literature/1628009) (nuclear wave functions from skyrme interactions)

Why heavy nuclei? → our main target is 226Ra because of APV

 \triangleright Unstable nuclei

Target preparation at Mainz nuclear chemistry

- \triangleright Complicated hyperfine structure and nuclear charge distribution
- \triangleright First radioactive target measurement with $248Cm$

15.5 µg 248Cm target

Why heavy nuclei? → our main target is 226Ra because of APV

- \triangleright Unstable nuclei
- \triangleright Complicated hyperfine structure and nuclear charge distribution
- \triangleright First radioactive target measurement with $248Cm$
- $>$ 3 failed attempts with chemically prepared ²²⁶Ra targets

A teaser upon request

What about APV with muonic atoms?

- \triangleright Long standing idea to measure APV with the 2s1s [Missimer & Simons](https://doi.org/10.1016/0370-1573(85)90013-4) **,** [Feinberg & Chen](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.190)
- \triangleright Large PNC amplitudes 10^{-2} @ Z=5 10^{-4} @ Z=30 (circular polarization, e-γ or γ-**P** correlation)
- \triangleright Challenging transition to observe \rightarrow muX aimed to observe 2s1s for the first time

Conclusions

Significant progress (expected) all over the nuclear chart

- ❏ Light nuclei with Quartet / MMC detectors
- ❏ Modern HPGe detector array at PSI and
- ❏ A novel HD transfer target for ug targets

Future:

- ❏ Li, B, Be, … Ca, K, Cl, Ag, … Re, U, Cm, … data under analysis
- ❏ Push MMC + muonic-rays to the limits
- ❏ Eying 7Be-7 Li, 8B-8 Li, 18Ne-18O, 19F-19Ne mirror pairs
- \Box ¹⁰Be combining MMC with transfer target
- ❏ measure 26/27Al, 28/29/30Si, 108mAg, … reference radii

Some challenges & needs:

- ❏ Need NP input to go from E to <r2> from A=6→226
- ❏ Understand all spectral features for the high Z nuclei
- ❏ Produce propper 226Ra target (implant!) and measure
- ❏ Push MMC + muonic-rays to the limits

All aiming for \sim 0.1 % accuracy on charge radii

> muX (A. Knecht & F.Wauters), QUARTET (B. Ohayon, N. Paul), and Reference Radii
(B. Ohayon, N. Paul), and Reference Radii (T.E.Cocolios) collaborations

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

So why (re)measure muonic X-rays (with HPGe detectors)

- \triangleright Specific rare and/or heavy isotopes of interest
- \triangleright Unstable isotopes?

→ **muX project at PSI <https://arxiv.org/abs/2108.10765>**

Physics case: Measuring 2P1S in 226Ra \rightarrow **Input** for a APV experiment on a single trapped Ra ion.

❏ Determine E(2P1S) < 10 keV to determine charge radius < 0.2% needed to calculate Kr ❏ But all Ra isotopes are radioactive! → **< 5 μg of 226Ra ↔ You need O(0.1 mm) of high-Z material to stop standard muon beam**

- Measure 2S1S for $Z \approx 30$ nuclei \rightarrow measure APV with muons directly?
	- Motivation:
		- i. Can we get $sin^2(\theta_w)$?
		- ii. Is the muon special
		- iii. Neutral currents at low Q^2 have not yet been measured
	- **○ Goal of muX:**
		- **i. Observe 2S1S transition**
		- **ii. Achieve good S/B for a 10-4 B.R. transition**

Is the muon special?

Extending theories on muon-specific interactions

Carl E. Carlson and Michael Freid Phys. Rev. D 92, 095024 - Published 23 November 2015

Constraints on muon-specific dark forces

Savely G. Karshenbolm, David McKeen, and Maxim Pospelov Phys. Rev. D 90, 073004 - Published 13 October 2014; Erratum Phys. Rev. D 90, 079905 (2014)

Testing Parity with Atomic Radiative Capture of μ^-

David McKeen and Maxim Pospelov Phys. Rev. Lett. 108, 263401 - Published 29 June 2012

51

First we start simple

- \triangleright Shoot directly on a rhenium target
- ➢ Two Germanium detectors

5→4 transitions to extract Q

- 1. Extract X-ray spectrum from data
- 2. Determine experimental line shape
- 3. Re-evaluate the (hyper)fine structure
- 4. Fit the multiplet
- 5. Extract Q

$$
\Delta E^{if}(Q) = \Delta E_0^{if} + \Delta E_1^{if} Q + \Delta E_2^{if} Q^2,
$$

$$
I^{if}(Q) = I_0^{if} + I_1^{if} Q + I_2^{if} Q^2.
$$

