Precise nuclear radii with muonic atoms

light and not so light nuclei

Frederik Wauters on behalf of the muX and QUARTET collaborations Johannes Gutenberg University Mainz

5

Negative muons in matter:

Very much like the H atom, but:

Bohr energies:

Bohr radii:

$$E_n = \frac{1}{2} \frac{n^2}{n^2}$$
$$r_n = \frac{n^2}{mc^2} \frac{\hbar c}{\alpha Z}$$

 $mc^2 \alpha^2 Z^2$

Energies 200 higher: 2 keV \rightarrow few MeV range

Radii 200 times smaller: significant overlap with the nucleus

 $\boldsymbol{\Gamma}$

6

The muon lives partially inside the nucleus

 $\begin{array}{rl} {\sf E}_{\sf Is}({\sf Z}{=}{\sf 82}) \\ & \longrightarrow \ {\sf I9} \ {\sf MeV} \ ({\sf point \ nucleus}) \\ & \longrightarrow \ {\sf I1} \ {\sf MeV} \ ({\sf finite \ size}) \end{array}$

The muon lives partially inside the nucleus

 \rightarrow 19 MeV (point nucleus) \rightarrow 11 MeV (finite size)

E₁(Z=82)

Negative muons in matter:

Very much like the H atom, but:

Bohr energies:

Bohr radii:

 $E_n = \frac{mc^2}{2} \frac{\alpha^2 Z^2}{n^2}$ $r_n = \frac{n^2}{mc^2} \frac{\hbar c}{\alpha Z}$

Energies 200 higher: 2 keV \rightarrow few MeV range

Radii 200 times smaller: significant overlap with the nucleus

most $\langle r^2 \rangle$ of most stable nuclei in the tables

What to do with muonic atoms transitions?

Modern approach with *low* Z muonic atoms

What to do with muonic atoms transitions?

For Z=1,2 nuclei rigorous description in this RMP
$$E(n,\ell,j)/h = -\frac{cR_{\infty}}{n^2}\frac{m_{\rm red}}{m_e} + \frac{E_{NS}}{n^3} \delta_{\ell 0} + \Delta(n,\ell,j)$$

What to do with muonic atoms transitions?

It's not that simple ...

It's not that simple ...

- Precision muonic atom data for Z=1,2
- \Box Most of the stable nuclei have been measured with HPGe (70s / 80s)
 - Z>10 limited by Nuclear polarization / nuclear charge distribution
 - □ Z<10 limited by HPGe resolution
- □ ~1% precise radii from e-scattering to fill the gap

Thermal Bath

- Most of the stable nuclei have been measured with HPGe (70s / 80s)
 - Z>10 limited by Nuclear polarization / nuclear charge distribution
 - Z<10 limited by HPGe resolution
- ~1% precise radii from e-scattering to fill the gap
- Need for a 1-10 ppm precise energy determination if 2pls transitions.

```
Limitations of solid state X-ray detectors:
```

- $\sigma_o = \sqrt{FN_o}$
- S/N with ENC a few 100 e-

Unit of heat \ll Unit of Ionization:

- $\Delta T \cong E_{deposited} / C_{tot}$
- $\Delta T / T$ large \rightarrow operate < 0.1 K
- A very good temperature sensor

Quartet: precision muonic X-ray spectroscopy on low Z nuclei

https://doi.org/10.1007/s10909-024-03141-x https://doi.org/10.3390/physics6010015

Quartet: interesting because

- 1. opportunity: big gain in experimental sensitivity $1\% \rightarrow 0.1\%$ for light nuclei
- 2. few-body systems beyond helium
- 3. complement/reference existing and future laser spectroscopy data

Isotope shifts by <u>W. Nörterhäuser and Co</u>

8 C 2p	⁹ C _{β+}	¹⁰ С _{β+}	¹¹ C _{β+}	12C Stable	13C Stable	¹⁴ C β-	¹⁵ С _{β-}
⁷ В Р	*B?	⁹ B	10B Stable	¹¹ B _{Stable}	¹² Β β-	¹³ Β β-	¹⁴ Β β-
⁶ Be	7Be	⁸ Be α	9 <mark>6e</mark> Stable	¹⁰ Be ⊮	11Bo	¹² Ве _{β-}	¹³ Be

Muon can cross Z!

Quartet: MMC from the *basement* to an online experimental environment

 \rightarrow 2023 test beam at PSI

- Accelerator facility
- Beamline elements
- Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- Limited beamtime

Quartet: MMC from the *basement* to an online experimental environment

 \rightarrow 2023 test beam at PSI.

- > Accelerator facility
- Beamline elements
- Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- Limited beamtime

Quartet: MMC from the *basement* to an online experimental environment

 \rightarrow 2023 test beam at PSI.

- > Accelerator facility
- Beamline elements
- Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- Limited beamtime

Quartet: MMC from the *basement* to an online experimental environment

 \rightarrow 2023 test beam at PSI.

- > Accelerator facility
- Beamline elements
- Neutron / electron / x-ray backgrounds (correlated and uncorrelated to the muon)
- Limited beamtime

Quartet: MMC from the *basement* to an online experimental environment

- \rightarrow 2023 test beam at PSI.
- \rightarrow First 6Li and 7Li measurements.

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI.
- \rightarrow First 6Li and 7Li measurements.
- \rightarrow Also did some Be & B.

Energy resolutions achieved of 15 eV @ 18-50 keV !

MMCs for muonic X-ray spectroscopy seems to work!

Quartet: MMC from the basement to an online experimental environment

- \rightarrow 2023 test beam at PSI with Li/B/Be
- \rightarrow Applying a new technology: it's not that simple

64 pixels thus detectors. Each with a slightly different working point/non linearity/...

Eingangsspannung [V]

50 MeV *Michel* electrons light (aka heat) up the entire detector

Quartet: MMC from the *basement* to an online experimental environment

- \rightarrow 2023 test beam at PSI with Li/B/Be
- \rightarrow Status and prospects with the current proposal

		2p-1s energy	2023 statistical reach	Quartet σ aim 0.1 - 0.3 fm	NP effect	
	^{6/7} Li	19 keV	0.1 eV	~ 0.05 eV	0.1-0.2	<u>Muli, Poggiallini, Bacca</u> 2020
	⁹ Be (¹⁰ Be)	33 keV	0.6 eV	~ 0.1 eV	0.7-0.8	Drake & Bye 1985
	^{10/11} B	52 keV	2 eV	~ 0.2 eV	1	
ſ	^{12/13} C	75 keV		~ 0.4 eV	~3	Rinker 1978
	^{14/15} N	102 keV		~ 0.5 eV	~5	
	^{16/18} O	134 keV		~ 0.5 eV	~5	
	¹⁹ F	169 keV		~ 0.6 eV	~9	
ſ	^{20/22} Ne	207 keV		~ 0.7 eV	~20	Ļ

New detector needed with thicker absorber

Quartet: MMC from the *basement* to an online experimental environment

- \rightarrow 2023 test beam at PSI with Li/B/Be
- \rightarrow Status and prospects with the current proposal

		2p-1s energy	2023 statistical reach	Quartet σ aim 0.1 - 0.3 fm	NP effect			
	^{6/7} Li	19 keV	0.1 eV	~ 0.05 eV	0.1-0.2		Muli, Poggiallini, Bacca 2020	
	⁹ Be (¹⁰ Be)	33 keV	0.6 eV ~ 0.1 eV		0.7-0.8		Drake & Bye 1985	
	^{10/11} B	52 keV	2 eV	~ 0.2 eV	1			
ſ	^{12/13} C		e radii of light nu	clei coming soon			Rinker 1978	
	14/15N (next beamtime next week)							
	^{16/18} O							
	¹⁹ F	```	. ,					
l	^{20/22} Ne	207 keV		~ 0.7 eV	~20		Ļ	
							1	

New detector needed with thicker absorber

And $Z>10 \rightarrow$ reference radii

But *everything* has been done already, and is *input* (NP/distribution) limited

TABLE IIIA. Muonic 2p → 1s Transition Energies and Barrett Radii for Z < 60 and Z > 77

Isotope	Easp. [keV]	Etheo. [keV]	NPol [keV]	c [fm]	$\langle r^2 \rangle_{model}^{1/2}$ [fm]	α [1/fm]	k	C_s [am/eV]	R_{ka}^{μ} [fm]	Ref.
°Be†	33.402 10	33.402	0.001	1.7890 3700	2.390	0.0420	2.1160	-20.80	3.0725 (2080;60)	[Sc80a]
$^{nat}B^{\dagger}$	52.257 7	52.262	0.001	1.9280 900	2.452	0.0440	2.1190	-8.600	3.1549 (602;30)	[Sc80a]
¹³ C	75.2582 5	75.2582	0.0025	2.0005 23	2.468	0.0208	2.0231	-4.141	3.1996 (21;33)	[Ru84a] [Sc82]
1ªC‡	75.3127 40	75.3127	0.0025	1.9958 187	2.466	0.0208	2.0231	-4.135	3.1967 (165;31)	[Sc82] [Ru84a]
¹⁴ C [‡]	75.3514 30	75.3514	0.0025	2.0445 137	2.492	0.0208	2.0234	-4.095	3.2273 (123;29)	[Sc82] [Ru84a]
$^{nat}N^{\dagger}$	102.403 5	102.404	0.003	2.1510 230	2.560	0.0470	2.1120	-2.200	3.2921 (110;20)	[Sc80a]
¹⁶ O	133.535 2	133.534	0.005	2.4130 26	2.693	0.0272	2.0330	-1.287	3.4694 (26;22)	[Fr92]
10	133.572 9	133.572	0.005	2.5540 130	3.586	0.0258	2.0287	-1.258	3.5680 (113;21)	[Fr92]
¹⁹ F	168.515 2	168.515	0.009	2.7759 15	2.898	0.0300	2.0392	-0.782	3.7291 (16;24)	[Fr92]
20 Ne	207.282 5	207.282	0.019	2.9589 24	3.006	0.0329	2.0445	-0.516	3.8656 (26;33)	[Fr92]
21Ne	207.429 4	207.430	0.018	2.8941 20	2.967	0.0330	2.0441	-0.521	3.8163 (21;31)	[Fr92]
²² Ne	207.512 4	207.512	0.018	2.8706 11	2.954	0.0330	2.0439	-0.522	3.7986 (21;31)	[Fr92]

30

And $Z>I0 \rightarrow$ reference radii:

- Generic motivation to support the vast amount of laser spectroscopy data. (Nuclear model tests, nuclear astrophysics input, ...)
- \succ Nuclear physics data \rightarrow NFS effects of precision experiments

Table 1 | Contributions to the g-factor difference of $^{20}Ne^{9+}$ and $^{22}Ne^{9+}$ and the final experimental result

(×10 ⁻⁹)				
1,998,767,277.112(117)				
1,998,767,263.638(117)				
0.166(11)				
13.2827				
0.0435				
-0.0103				
-0.0077				
0.0001(3)				
13.474(11) _{FNS}				
13.475 24(53) _{stat} (99) _{sys}				
	(*10°) 1,998,767,277,112(117) 1,998,767,263,638(117) 0,166(11) 13,2827 0,0435 -0,0103 -0,003 -0,0001(3) 13,474(11)ms 13,475 24(53) _{ittl} (99) _{iys}			

The dominating uncertainty stems from the FNS. All digits are significant when no uncertainties are given. m_e and M are the electron and nuclear mass, respectively. For the individual contributions, see Extended Data Table 1.

And $Z > 10 \rightarrow$ reference radii:

- Generic motivation to support the vast amount of laser spectroscopy data. >(Nuclear model tests, nuclear astrophysics input, ...)
- Nuclear physics data \rightarrow NFS effects of precision experiments >
- Isospin difference, isospin triplets & Vud \succ

		<u>Misha</u>	<u>& Seng</u> Vud cor	rections		
ed from wilfried's gro at a charge breeder gr LA to radioactive bear is 160 will back in the	up to in ping at ms of e pictur	ISOLDE, and apply the offlir .g. O & C. This means that t e. (we can improve with a fa	project there is the techniques of the reference actor of ~4-5)	https://doi.org/10.1016 We aim to get 9Be to 0 ambitous goal	5/0375-9474(72)90062-0. 0.1%, and can set 10Be as an	
Table	e 1: D	eterminations of (7 cm	ting from the ground state to tate can be done with some prepeat TEC's arguments) based on available d	the ecision. ata of nuclear charge	radii for isotriplets in	
meas	ured s	superallowed decays.	Notation: 123.12(234)	means 123.12 ± 2.34	. Superscripts denote	
the s	ource	of data: Ref. 59 ^a , R	Ref. 61 ^b , Ref 62 ^c , Ref.	63 ^d , Ref. 64 ^e , and	Ref. 65 f	-
	A	$\langle r_{\rm ch}^2 \rangle^{1/2} ({\rm fm})$	$\langle r_{\rm ch,0}^2 \rangle^{1/2} ({\rm fm})$	$\langle r_{ch,1}^2 \rangle^{1/2}$ (fm)	$\langle r_{\rm cw}^2 \rangle^{1/2} ({\rm fm})$	NCA -
	10	100	$^{10}_{5}B(ex)$	¹⁰ ₄ Be: 2.3550(170) ^a	N/A	2(2)
	14	140	$\frac{14}{7}$ N(ex)	¹⁴ C: 2.5025(87) ^a	N/A	
	18	¹⁸ ₁₀ Ne: 2.9714(76) ^a	¹⁸ F(ex)	¹⁸ O: 2.7726(56) ^a	3.661(72)	1
	22	²² ₁₂ Mg: 3.0691(89) ^b	$\frac{22}{11}Na(ex)$	²² ₁₀ Ne: 2.9525(40) ^a	3.596(99)	R
or enor C and D	26	26Si*	^{26m} Al: 3.130(15) ^f	$^{26}_{12}$ Mg: 3.0337(18) ^a	4.11(15)	3.1.5
topes will not	-30	30S	³⁰ ₁₅ P(ex)	³⁰ ₁₄ Si: *3.1336(40) ^a	N/A	*(2)
open any time soon	34	³⁴ ₁₈ Ar: 3.3654(40) ^a	34 17CI **	$^{34}_{16}S: 3.2847(21)^a$	3.954(68)	
	38	$^{38}_{20}$ Ca: 3.467(1) ^c	$^{38m}_{19}$ K: 3.437(4) ^d	³⁸ ₁₈ Ar: 3.4028(19) ^a	3.999(35)	^
	42	42 22 Ti	$^{42}_{21}$ Sc: 3.5702(238) ^a	⁴² ₂₀ Ca: 3.5081(21) ^a	4.64(39)	E.
A few eV accuracy	46	$\frac{46}{24}$ Cr	46 23	⁴⁶ ₂₂ Ti: 3.6070(22) ^a	N/A	6
on the 2p2s in	50	⁵⁰ ₂₆ Fe	⁵⁰ ₂₅ Mn: 3 7120(196) ^a	${}^{50}_{24}$ Cr: 3.6588(65) ^a	4.82(39)	S
significantly	54	${}^{54}_{28}$ Ni: 3.738(4) ^e	27Co	⁵⁴ ₂₆ Fe: 3.6933(19) ^a	4.28(11)	301
according to BO)	62	$^{62}_{32}$ Ge	62 31 Ga	⁶² ₃₀ Zn: 3.9031(69) ^b	N/A	(~)
	66	66 34Se	66 33As	$^{66}_{32}$ Ge	N/A	- \
	70	⁷⁰ ₃₆ Kr	70 35Br	$^{70}_{34}$ Se	N/A	0
	74	$^{74}_{38}Sr$	⁷⁴ ₃₇ Rb: 4.1935(172) ^b	⁷⁴ ₃₆ Kr: 4.1870(41) ^a	4.42(62)	S.
			V.	54CO already done at Jyvi	āskylā, a will happen	34 (3-)
* mu 1) Ti	X will (here are	redo) the stable Si isotopes, e more solid ref/stable (29 &	, meaning that 30) Si radii available , and or	e does not have to rely on t	he natSi multiplet fit of	

olid ref/stable (29 & 30) Si radii available , and one does not have to tact e.g. Ruiz from https://doi.org/10.1103/PhysRevLett.132 e FRIB people, so why not continue with towards 2

And $Z>10 \rightarrow$ reference radii:

- Generic motivation to support the vast amount of laser spectroscopy data.
 (Nuclear model tests, nuclear astrophysics input, ...)
- \succ Nuclear physics data \rightarrow NFS effects of precision experiments
- Isospin difference, isospin triplets & Vud
- \rightarrow There is some low-hanging fruit,

e.g. laser spectroscopy on <u>Si</u> and <u>Mg</u> relying on <u>natSi</u> and <u>natMg</u> data *muX* at *PSI* will measure with isotopically pure Si target this year (well, this week!)

And $Z>I0 \rightarrow$ reference radii:

- Generic motivation to support the vast amount of laser spectroscopy data.
 (Nuclear model tests, nuclear astrophysics input, ...)
- \succ Nuclear physics data \rightarrow NFS effects of precision experiments
- Isospin difference, isospin triplets & Vud
- → There is some low-hanging fruit, e.g. laser spectroscopy on <u>Si</u> and <u>Mg</u> relying on <u>natSi</u> and <u>natMg</u> data *muX* at PSI will measure with isotopically pure Si target this year (well, this week!)
- \rightarrow To make a significant impact on a chain, measure 3 isotopes with μ Z, of which one is quite often <u>not stable</u>

Traditional muonic atom spectroscopy requires macroscopic targets \rightarrow stable isotopes What about long lived isotopes?

So we have:

- \rightarrow µ-time \rightarrow t=0
- > Beam halo veto
- \succ µ decay in orbit time
- > X-ray time/energy/angle

Stop 30 MeV/c muons in a small amount of material

- I. Stop in 100 Bar of $H_2 + 0.25\% 1\%$ of D_2
- 2. Transfer from μ H to μ D in ~100 ns + 45 eV of kinetic energy

- \succ µ decay in orbit time
- > X-ray time/energy/angle

Stop 30 MeV/c muons in a small amount of material

- I. Stop in 100 Bar of $H_2 + 0.25\% 1\%$ of D_2
- 2. Transfer from μ H to μ D in ~100 ns + 45 eV of kinetic energy
- 3. µD moves freely through H2 gas at ca. 5 eV

So we have:

- \rightarrow µ-time \rightarrow t=0
- Beam halo veto
- \succ µ decay in orbit time
- > X-ray time/energy/angle

Stop 30 MeV/c muons in a small amount of material

- I. Stop in 100 Bar of $H_2 + 0.25\% 1\%$ of D_2
- 2. Transfer from μ H to μ D in ~100 ns + 45 eV of kinetic energy
- 3. μD moves freely through H2 gas at ca. 5 eV
- 4. Upon hitting the chamber walls: $\mu D \rightarrow \mu Z$ transfer

Since 2017 muX has been running a decent size HPGe array + transfer targ

And $Z>10 \rightarrow$ reference radii:

- > First data with $^{39/40/41}$ K
- With a <r²> sensitivity of ~0.1% / 100 eV,We control the HPGe detectors to a few 10 eV (< 20 ppm!)</p>

Why heavy nuclei? \rightarrow our main target is 226Ra because of APV

> Unstable nuclei

Hyperfine Interact (2011) 199:9–19 DOI 10.1007/s10751-011-0296-6

Atomic parity violation in a single trapped radium ion

O. O. Versolato · L. W. Wansbeek · G. S. Giri · J. E. van den Berg. D. J. van der Hoek · K. Jungmann · W. L. Kruithof · C. J. G. Onderwater · B. K. Sahoo · B. Santra · P. D. Shidling · R. G. E. Timmermans · L. Willmann · H. W. Wilschut

Why heavy nuclei? \rightarrow *our* main target is 226Ra because of APV

- > Unstable nuclei
- > Complicated hyperfine structure and nuclear charge distribution

```
Fine splitting (FS): \vec{J}=\vec{l}+\vec{s} Static hyperfine splitting (HFS): \vec{F}=\vec{l}+\vec{J}
```


- Significant quadrupole and dipole shifts
- Hyperfine splitting from ground and excited states (I=0 nuclei don't save you)
- Ph.D. <u>Thesis</u> Stella vogiatzi and work by N. <u>Oreshkina</u> (nuclear wave functions from skyrme interactions for NP)

an 111		B 1	1.1.0				6.10		×
Iransition	Energy (keV)	Relative intensity (%)	(n, l, j) _i	Fi	J _i	\rightarrow	(n, l, j) _f	Ff	ł
1	6328.938	100.000	$(2, 1, \frac{3}{2})$	2	2	\rightarrow	$(1, 0, \frac{1}{2})$	2	0
2	6310.062	82.977	$(2, 1, \frac{1}{2})$	32	2	\rightarrow	$(1, 0, \frac{1}{2})$	22	2
3	6687.082	81.904	$(2, 1, \frac{3}{2})$	32	0	\rightarrow	$(1, 0, \frac{1}{2})$	$\frac{1}{2}$	0
4	6643.682	72.105	$(2, 1, \frac{3}{2})$	32	0	\rightarrow	$(1, 0, \frac{1}{2})$	32	2
5	6285.538	36.977	$(2, 1, \frac{3}{2})$	$\frac{1}{2}$	2	\rightarrow	$(1, 0, \frac{1}{2})$	32	2
6	6338.078	35.070	$(2, 1, \frac{1}{2})$	52	2	\rightarrow	$(1, 0, \frac{1}{2})$	3	2
7	6757.410	27.326	$(2, 1, \frac{3}{2})$	$\frac{3}{2}$	2	\rightarrow	$(1, 0, \frac{1}{2})$	32	2
8	6353.462	20.541	$(2, 1, \frac{1}{2})$	32	2	\rightarrow	$(1, 0, \frac{1}{2})$	$\frac{1}{2}$	0
9	6800.810	17.731	$(2, 1, \frac{3}{2})$	32	2	\rightarrow	$(1, 0, \frac{1}{2})$	$\frac{1}{2}$	0
10	6713.451	17.247	$(2, 1, \frac{3}{2})$	52	2	\rightarrow	$(1, 0, \frac{1}{2})$	52	2
11	6649.718	13.562	$(2, 1, \frac{3}{2})$	$\frac{1}{2}$	2	\rightarrow	$(1, 0, \frac{1}{2})$	32	2
12	6643.682	12.370	$(2, 1, \frac{3}{2})$	32	0	\rightarrow	$(1, 0, \frac{1}{2})$	52	2
13	6293.267	10.986	$(2, 1, \frac{1}{2})$	7	4	\rightarrow	$(1, 0, \frac{1}{2})$	2	4
14	6338.078	10.899	$(2, 1, \frac{1}{2})$	5	2	\rightarrow	$(1, 0, \frac{1}{2})$	5	2
15	6613.051	10.898	$(2, 1, \frac{3}{2})$	55	2	\rightarrow	$(1, 0, \frac{1}{2})$	Z	4
16	6237.678	10.125	$(2, 1, \frac{1}{2})$	5	2	\rightarrow	$(1,0,\frac{1}{2})$	- Z	4
17	6393.667	5.391	$(2, 1, \frac{1}{2})$	ž	4	\rightarrow	$(1,0,\frac{1}{2})$	5	2
18	6757.410	4.476	(2,1,3)	3	2	\rightarrow	(1,0, 1)	-5	2
19	6703.025	4.184	$(2, 1, \frac{3}{4})$	500	2	\rightarrow	(1,0, 1)	Z	4
20	6693.118	3.982	$(2, 1, \frac{3}{7})$	1	2	\rightarrow	$(1,0,\frac{1}{2})$	ļ	0
21	6803.425	3.404	$(2, 1, \frac{3}{7})$	5	2	\rightarrow	(1,0, 1)	3	2
22	6708.642	2.612	(2,1,3)	2	2	\rightarrow	(1,0,1)	58	2
23	6803.425	1.869	$(2, 1, \frac{3}{4})$	5	2	\rightarrow	$(1,0,\frac{1}{2})$	5	2
24	6608.242	1.043	$(2,1,\frac{3}{4})$	7	2	\rightarrow	$(1,0,\frac{1}{2})$	Z	4
25	6752.645	0.928	$(2,1,\frac{3}{2})$	7	4	-+	(1.0.1)	7	4
26	6713.451	0.671	(2.1.3)	4 1.8	2	\rightarrow	(1.0.1)	4 38	2
27	6608.242	0.636	$(2,1,\frac{2}{3})$	2	2	\rightarrow	(1.0.1)	2	4
28	6853.045	0.186	$(2,1,\frac{3}{2})$	2	4	-	(1.0.1)	2	2
29	6752.645	0.180	(2,1,3)	2	4	-	(1.0.1)	2	4
-	07.04.040	0.100	(~, 1, 2)	2		1	(1,0,2)	2	1

Why heavy nuclei? \rightarrow *our* main target is 226Ra because of APV

- > Unstable nuclei
- Complicated hyperfine structure and nuclear charge distribution
- Persisting fine splitting anomaly (From Bergem et. al. <u>1988</u> data persistent to Oreshkina <u>2022</u>)

```
Fine splitting (FS): \vec{J} = \vec{l} + \vec{s}
```

Static hyperfine splitting (HFS): $\vec{F} = \vec{I} + \vec{J}$

 $P = \frac{2p_{3/2}}{2p_{1/2}}$ $P = \frac{2p_{1/2}}{1s}$ $P = \frac{2p_{1/2}}{1s}$ $P = \frac{2p_{1/2}}{1s}$ $P = \frac{1}{2}$ $P = \frac{1}{2}$

 μPb measurement to determine the NP, and then then it has not event the correct sign

- Significant quadrupola and dipole shifts
- Hyperfine splitting from ground and excited states (I=0 nuclei don't save you)
- Ph.D. <u>Thesis</u> Stella vogiatzi and work by N. <u>Oreshkina</u> (nuclear wave functions from skyrme interactions)

Why heavy nuclei? \rightarrow *our* main target is 226Ra because of APV

> Unstable nuclei

Target preparation at Mainz nuclear chemistry

- > Complicated hyperfine structure and nuclear charge distribution
- First radioactive target measurement with <u>248Cm</u>

15.5 µg ²⁴⁸Cm target

Why heavy nuclei? \rightarrow *our* main target is 226Ra because of APV

- > Unstable nuclei
- > Complicated hyperfine structure and nuclear charge distribution
- First radioactive target measurement with <u>248Cm</u>
- > 3 failed attempts with chemically prepared ²²⁶Ra targets

A teaser upon request

What about APV with muonic atoms?

- Long standing idea to measure APV with the 2sls Missimer & Simons, Feinberg & Chen
- Large PNC amplitudes 10⁻² @ Z=5 10⁻⁴ @ Z=30 \succ (circular polarization, $e-\gamma$ or γ -**P** correlation)
- Challenging transition to observe \succ \rightarrow muX aimed to observe 2s ls for the first time

Son	<u>Some (fun) references:</u>							
	J-PARC efforts: https://doi.org/10.1051/epiconf/202226201010							
	Meta-stable 2S in Boron: https://doi.org/10.1103/PhysRevLett.78.4363							
	D. Budker Gamma factories and highly charged ions https://doi.org/10.1002/andp.202100561							
	HiMB physics case https://doi.org/10.48550/arXiv.2111.05788							
	M. Pospelov ideas in the proton puzzle days https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.263401 https://doi.org/10.1103/PhysRevLett.107.011803							
	46							

Conclusions

Significant progress (expected) all over the nuclear chart

- □ Light nuclei with Quartet / MMC detectors
- □ Modern HPGe detector array at PSI and
- □ A novel HD transfer target for ug targets

Future:

- Li, B, Be, ... Ca, K, Cl, Ag, ... Re, U, Cm, ... data under analysis
- Push MMC + muonic-rays to the limits
- Eying ⁷Be-⁷Li, ⁸B-⁸Li, ¹⁸Ne-¹⁸O, ¹⁹F-¹⁹Ne mirror pairs
- ¹⁰Be combining MMC with transfer target
- measure ^{26/27}Al, ^{28/29/30}Si, ^{108m}Ag, ... reference radii

Some challenges & needs:

- □ Need NP input to go from E to $\langle r^2 \rangle$ from A=6 \rightarrow 226
- Understand all spectral features for the high Z nuclei
- Produce propper ²²⁶Ra target (implant!) and measure
- Push MMC + muonic-rays to the limits

All aiming for ~0.1 % accuracy on charge radii

muX (A. Knecht & F, Wauters), QUARTET (B. Ohayon, N. Paul), and Reference Radi (T.E.Cocolios) collaborations

UNIVERSITÄT MAINZ

So why (re)measure muonic X-rays (with HPGe detectors)

- Specific rare and/or heavy isotopes of interest
- > Unstable isotopes?

-> muX project at PSI <u>https://arxiv.org/abs/2108.10765</u>

Physics case: <u>Measuring 2P1S in 226Ra</u> \rightarrow **Input** for a APV experiment on a single trapped Ra ion.

Determine E(2PIS) < 10 keV to determine charge radius < 0.2% needed to calculate K_r

But all Ra isotopes are radioactive! \rightarrow < 5 µg of 226Ra

 \leftrightarrow You need O(0.1 mm) of high-Z material to stop standard muon beam

- Measure 2SIS for $Z \approx 30$ nuclei \rightarrow measure APV with muons directly?
 - Motivation:
 - i. Can we get $\sin^2(\theta_w)$?
 - ii. Is the muon special
 - iii. Neutral currents at low Q² have not yet been measured
 - Goal of muX:
 - i. Observe 2SIS transition
 - ii. Achieve good S/B for a 10⁻⁴ B.R. transition

Extending theories on muon-specific interactions

Carl E. Carlson and Michael Freid Phys. Rev. D **92**, 095024 – Published 23 November 2015

Constraints on muon-specific dark forces

Savely G. Karshenbolm, David McKeen, and Maxim Pospelov Phys. Rev. D 90, 073004 – Published 13 October 2014; Erratum Phys. Rev. D 90, 079905 (2014)

Testing Parity with Atomic Radiative Capture of μ^-

David McKeen and Maxim Pospelov Phys. Rev. Lett. **108**, 263401 – Published 29 June 2012

First we start *simple*

Shoot directly on a rhenium target

Counts [a.u.]

10

Two Germanium detectors

$5{\rightarrow}4$ transitions to extract Q

- I. Extract X-ray spectrum from data
- 2. Determine experimental line shape
- 3. Re-evaluate the (hyper)fine structure
- 4. Fit the multiplet
- 5. Extract Q

$$\begin{split} \Delta E^{if}(Q) &= \Delta E_0^{if} + \Delta E_1^{if}Q + \Delta E_2^{if}Q^2 \\ I^{if}(Q) &= I_0^{if} + I_1^{if}Q + I_2^{if}Q^2. \end{split}$$

