Recent progress in many-body theory for nuclei and matter

Francesco Marino

Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz

Electroweak Physics InterseCtions workshop (EPIC 2024), Sardinia, Italy

PRISMA⁺

Outline

Open-shell nuclei with coupled-cluster

Outline

Open-shell nuclei with coupled-cluster

Part 1: Open-shell nuclei with coupled-cluster

Coupled-cluster (CC) ground-state ansatz

$$|\Psi_0\rangle = e^T |\Phi_0\rangle$$

Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)

Coupled-cluster (CC) ground-state ansatz

$$|\Psi_0\rangle = e^T |\Phi_0\rangle$$

Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)

Coupled-cluster (CC) ground-state ansatz

Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)

Coupled-cluster (CC) ground-state ansatz

 $T_1 =$

 T_2

CCSD: truncate at doubles (*2p2h*) level

CCSD(T): approximate triples (*3p3h*)

Hagen et al., Rep. Prog. Phys. 77, 096302 (2014)

Closed-shell nuclei $\implies |\Phi_0\rangle$: spherical reference state

Closed-shell nuclei $\implies |\Phi_0\rangle$: spherical reference state

Open-shell nuclei exhibit pairing and deformation

Closed-shell nuclei \implies $|\Phi_0\rangle$: spherical reference state

Open-shell nuclei exhibit pairing and deformation

Bogoliubov CC

Use symmetry-breaking reference

Tichai et al., Physics Letters B **851**, 138571 (2024)

Closed-shell nuclei $\implies |\Phi_0\rangle$: spherical reference state

Open-shell nuclei exhibit pairing and deformation

Use symmetry-breaking reference

Deformed CC

Tichai et al., Physics Letters B **851**, 138571 (2024)

Hagen et al. Phys. Rev. C **105**, 064311 (2022) Sun et al., arXiv:2404.00058

Closed-shell nuclei \implies $|\Phi_0\rangle$: spherical reference state

Open-shell nuclei exhibit pairing and deformation

- Use symmetry-breaking reference
 - ... but computationally expensive

Deformed CC

Tichai et al., Physics Letters B 851, 138571 (2024)

Hagen et al. Phys. Rev. C **105**, 064311 (2022) Sun et al., arXiv:2404.00058

 $|\Phi_0\rangle$: spherical reference state **Closed-shell nuclei**

Open-shell nuclei exhibit pairing and deformation

- Use symmetry-breaking reference
 - ... but computationally expensive

X

Equation-of-motion CC

Deformed CC See Gaute Hagen's talk

Tichai et al., Physics Letters B 851, 138571 (2024)

Hagen et al. Phys. Rev. C 105, 064311 (2022) Sun et al., arXiv:2404.00058 6

 $|\Phi_0\rangle$: spherical reference state Closed-shell nuclei

Open-shell nuclei exhibit pairing and deformation

- Use symmetry-breaking reference
 - ... but computationally expensive

X

Equation-of-motion CC

Efficient

Deformed CC

See Gaute Hagen's talk

Tichai et al., Physics Letters B **851**, 138571 (2024)

Hagen et al. Phys. Rev. C 105, 064311 (2022) Sun et al., arXiv:2404.00058 6

Closed-shell

Francesco Marino – EPIC, 26 Sep. 2024

7

 $|\Psi_0\rangle = e^T |\Phi_0\rangle$

Open-shell \Leftarrow $|\Psi_f^{(A-2)}\rangle$

Two-particle-removed (2PR) nucleus

7

 $|\Psi_0\rangle = e^T |\Phi_0\rangle$

Two-particle-removed (2PR) nucleus

7

$$H|\Psi_f^{(A-2)}\rangle = E_f|\Psi_f^{(A-2)}\rangle$$

Open-shell

Two-particle-removed (2PR) nucleus

7

$$H|\Psi_f^{(A-2)}\rangle = E_f|\Psi_f^{(A-2)}\rangle$$

Equation-of-motion ansatz

$$|\Psi_{f}^{(A-2)}\rangle = R_{f}^{(A-2)}|\Psi_{0}\rangle$$

Excitation operator

Francesco Marino – EPIC, 26 Sep. 2024

8

Francesco Marino – EPIC, 26 Sep. 2024

See also

One-particle-attached/

8

removed (1PA/1PR)


```
Binding energies in Ca chain
```


9

Eletric dipole polarizability

Response function
$$R(\omega) = \sum_{f} |\langle \Psi_{f} | \Theta | \Psi_{0} \rangle|^{2} \delta(E_{f} - E_{0} - \omega)$$

Θ : excitation operator

Electric dipole polarizability

$$\alpha_D = 2\alpha \int d\omega \frac{R(\omega)}{\omega}$$

See talks by Francesca Bonaiti and Weiguang Jiang

Eletric dipole polarizability

Response function
$$R(\omega) = \sum_{f} \left| \left\langle \Psi_{f} |\Theta| \Psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

 Θ : excitation operator

Electric dipole polarizability

$$\alpha_D = 2\alpha \int d\omega \frac{R(\omega)}{\omega}$$

See talks by Francesca Bonaiti and Weiguang Jiang

Strong linear **correlation** between α_D and the **slope** of the symmetry energy *L*

Constraints on neutron matter equation of state from dipole response of nuclei

Eletric dipole polarizability in O isotopes

Bonaiti et al., arXiv: 2405.05608 (2024) Francesco Marino – EPIC, 26 Sep. 2024

Eletric dipole polarizability in O isotopes

Bonaiti et al., arXiv: 2405.05608 (2024) Francesco Marino – EPIC, 26 Sep. 2024

Eletric dipole polarizability in Ca isotopes

Francesco Marino – EPIC, 26 Sep. 2024

Eletric dipole polarizability in Ca isotopes

Eletric dipole polarizability in Ca isotopes

Part 2: Green's functions for infinite nuclear matter

Infinite nuclear matter

Infinite nuclear matter is a homogeneous system of nucleons that interact through the strong interaction only

Equation of state (EOS): energy per particle e = E/A as a function of the density ρ and isospin asymmetry $\beta = (\rho_n - \rho_p)/\rho$

Infinite nuclear matter

Infinite nuclear matter is a homogeneous system of nucleons that interact through the strong interaction only

Equation of state (EOS): energy per particle e = E/A as a function of the density ρ and isospin asymmetry $\beta = (\rho_n - \rho_p)/\rho$

Astrophysical implications

Watts et al., Rev. Mod. Phys. **88**, 021001 (2016)

Infinite nuclear matter

Infinite nuclear matter is a homogeneous system of nucleons that interact through the strong interaction only

Equation of state (EOS): energy per particle e = E/A as a function of the density ρ and isospin asymmetry $\beta = (\rho_n - \rho_p)/\rho$

Astrophysical implications

Constraint for nuclear interactions

Saturation density ρ_0 vs. Saturation energy E_0/A

Jiang et al., Phys. Rev. C 109, L061302 (2024)

Francesco Marino – EPIC, 26 Sep. 2024

Watts et al., Rev. Mod. Phys. 88, 021001 (2016)

Self-consistent Green's functions

Gorkov theory = Green's functions for **superfluid** systems

Somà et al., Phys. Rev. C **84**, 064317 (2011) Barbieri et al., Phys. Rev. C **105**, 044330 (2022)

Self-consistent Green's functions

Gorkov theory = Green's functions for superfluid systems

Somà et al., Phys. Rev. C **84**, 064317 (2011) Barbieri et al., Phys. Rev. C **105**, 044330 (2022)

Self-consistent Green's functions

Gorkov theory = Green's functions for superfluid systems

Somà et al., Phys. Rev. C **84**, 064317 (2011) Barbieri et al., Phys. Rev. C **105**, 044330 (2022)

Algebraic diagrammatic construction

Self-consistent GF $\Sigma^{\star} = \Sigma^{\star}[g(\omega)]$

Raimondi et al., Phys Rev C **97**, 054308 (2018) Barbieri et al., Phys. Rev. C **105**, 044330 (2022)

Algebraic diagrammatic construction

ADC(3) includes third-order perturbation theory, ladders, rings...

Raimondi et al., Phys Rev C 97, 054308 (2018) Barbieri et al., Phys. Rev. C **105**, 044330 (2022)

ADC + coupled-cluster amplitudes

Extension of ADC(3)

ADC(3)-D

ADC + coupled-cluster amplitudes

Extension of ADC(3) \longrightarrow ADC(3)-D

In $\tilde{\Sigma}(\omega)$, replace $t^{(0)}$ with converged T_2 amplitudes

 $(t^{(0)})_{ij}^{ab} = \frac{\langle ab|v|ij\rangle_A}{\epsilon_i + \epsilon_j - \epsilon_a - \epsilon_b}$

Barbieri et al., Lect. Notes Phys. **936**, 571 (2017) **FM** et al., arXiv:2407.17098

Equation of state

Francesco Marino – EPIC, 26 Sep. 2024

Saturation point of symmetric nuclear matter

Momentum distributions

 $\Delta {\rm NNLO}_{\rm go} (450) \mbox{ interaction } \label{eq:relation} \rho = 0.16 \mbox{ fm}^{-3}$

Spectral functions

Spectral functions

Spectral functions

Conclusions and perspectives

- Coupled-cluster has been used to study the ground state and electric dipole polarizability of **open-shell** nuclei
- Ongoing: dipole polarizability of open-shell nuclei; binding energies and radii with higher-order CC truncations

Conclusions and perspectives

- Coupled-cluster has been used to study the ground state and electric dipole polarizability of **open-shell** nuclei
- Ongoing: dipole polarizability of open-shell nuclei; binding energies and radii with higher-order CC truncations
- The ADC(3) Green's functions method is a powerful ab initio tool to study the EOS and single-particle properties of nuclear matter
- Future developments: low-density neutron matter, quasi-particle properties ...

How can we improve theoretical predictions of the electric dipole polarizability?

How can we connect nuclear matter quantities to finite nuclei?

Thank you for your attention!

Collaborators

Darmstadt: Alex Tichai

Mainz: Sonia Bacca, Francesca Bonaiti, Weiguang Jiang

Milano: Carlo Barbieri, Gianluca Colò

Oak Ridge: Gaute Hagen, Gustav Jansen

St. Louis: Sam Novario

Eletric dipole polarizability

Courtesy: Francesca Bonaiti

Spectral functions – neutron matter

Momentum distributions

Preliminary!