

Electroweak constraints for nucleonic matter

Weiguang Jiang

Johannes Gutenberg University of Mainz

EPIC 2024, Sardinia, Sept. 27

• Neutrino interactions with finite nuclei and matter

• Data-driven AI analysis of dipole strength functions

Motivation – neutrino, nucleon and supernova

supernova explosion animation

Copyright © 1998 - 2024 SciTechDaily

Neutrino plays an important role in astrophysics, particularly in the dynamics of core-collapse supernovas.

During a supernova explosion, the collapsing core of a massive star releases an immense flux of neutrinos (10⁵⁸).

It is crucial to understand how neutrinos interact with nucleonic matter.

Hubble space telescope (X-rays)

Copyright © NASA

SN1987A is the first supernova (core-collapse supernova) that modern astronomers were able to study in detail. Also, it is the first time neutrinos are known to be emitted from a supernova.

Motivation - neutrinos interact with nucleonic matter

¹⁶O electroweak response

See G. Hagen's talk

charge-changing weak current

spacelike component

$$\mathbf{j}_{\alpha}^{5(\pm)} = -G_A(Q^2) \left(\boldsymbol{\sigma}_j - \frac{\mathbf{q}\,\boldsymbol{\sigma}_j \cdot \mathbf{q}}{m_\pi^2 + q^2} \right) \, e^{i\mathbf{q}\cdot\mathbf{r}_j} \, \frac{\tau_{j,\pm}}{2}$$

timelike (axial charge) component $j_0^5 = -G_A(Q^2) \left(\boldsymbol{\sigma}_j \cdot \frac{\bar{\mathbf{p}}_j}{m} - \frac{\omega \, \boldsymbol{\sigma}_j \cdot \mathbf{q}}{m_\pi^2 + q^2} \right) \, e^{i\mathbf{q}\cdot\mathbf{r}_j} \, \frac{\tau_{j,\pm}}{2}$

charge current neutrino scattering

EW responses for finite nuclei with LIT-CC

See G. Hagen's talk

Spin response of neutron matter

A proto-neutron star (PNS) is the early stage of a neutron star, originating from a core-collapse supernova

Method – Integral transform

Response: $R^{\mu\nu} = \oint_{f} \langle 0|J^{\mu\dagger}(q)|f \rangle \langle f|J^{\nu}(q)|0 \rangle \delta(E_{0} + \omega - E_{f})$ ¹⁶O: Lorentz kernel neutron matter: Gaussian kernel

$$I(\nu;\lambda) = \int d\omega K(\nu,\omega;\lambda) R(\omega)$$

$$K(\nu,\omega;\lambda) = \sum_{k}^{\infty} c_k(\nu;\lambda)T_k(\omega)$$

Moments m_k this we can calculate

$$m_{k} = \int d\omega T_{k}(\omega) R(\omega) = \frac{\left\langle \Phi_{0} | \hat{\Theta} T_{k}(\hat{H}) \hat{\Theta} | \Phi_{0} \right\rangle}{\left\langle \Phi_{0} | \hat{\Theta}^{2} | \Phi_{0} \right\rangle}$$

$$I(\nu;\lambda) = \sum_{k}^{\infty} c_k(\nu;\lambda) m_k$$

The spin response of the neutron matter computed under the coupled cluster framework

$$H_N e^T |\Phi_0\rangle = E e^T |\Phi_0\rangle$$

See Francesco Marino's talk

9

Nuclear matter with transitional invariance The basis of the system is discrete momentum state on a cubic lattice (kx, ky, kz)

Chiral interaction DNNLO_GO

Magic number: N = 2, 14, 38, 54, 66, 114, 132, . . . for pure neutron matter

Spin response of neutron matter

arXiv:2407.20986

Finite-size effect

Spin response of neutron matter

Mode of the response function shifted towards higher $\boldsymbol{\omega}$ when density of the neutron matter increases

arXiv:2407.20986

Interaction sensitive (tensor part)

Δ LO(450 MeV) Hamiltonian

method	\mathcal{H}_{kin}	$\mathcal{H}_{contact}$	\mathcal{H}_{π}	$\mathcal{H}_{\pi} - \mathcal{H}_{T}$	E_{tot}	m_1	m_0
CIMC	37.489(31)	-31.379(97)	11.300(59)	13.161(46)	17.400(15)	7.467(55)	0.0662
CC	37.0939	-31.3374	11.6571	13.107	17.4141	5.809	0.0434

Similar binding energy

deviated spin response (energy-weighted sum rule)

Δ LO(500 MeV) Hamiltonian

method	\mathcal{H}_{kin}	$\mathcal{H}_{contact}$	\mathcal{H}_{π}	$\mathcal{H}_{\pi} - \mathcal{H}_{T}$	E_{tot}	m_1	m_0
CIMC	38.307(50)	-32.338(88)	11.471(63)	14.359(47)	17.433(26)	11.553(85)	0.1015
CC	37.8515	-32.41071	11.91662	14.36435	17.3574	10.02966	0.070

Neutrino interactions with finite nuclei and matter

• Data-driven AI analysis of dipole strength functions

Motivation – Electric dipole polarizability (α_D)

See Francesca Bonaiti's talk

 α_D is a fundamental observable that characterizes the response of a nucleus to an external electric field.

Provides key insights into the behavior of nuclear matter under varying conditions.

- neutron skin thickness
- symmetry energy, slope

Motivation – Electric dipole polarizability (α_D)

There is a need for accurate predictions of α_D to constrain the nuclear EoS and deepen our understanding of neutron-rich matter.

Limited experimental α_D data

Expensive theoretical calculations

Theory:

$$R = \oint_{f} |\langle f|\Theta|i\rangle|^{2} \,\delta(E_{0} + \omega - E_{f})$$

$$\alpha_{D} = 2\alpha \int d\omega \frac{R(\omega)}{\omega} = 2\alpha \oint_{f} \frac{|\langle f|\Theta|i\rangle|^{2}}{E_{f} - E_{i}}$$

Motivation – Electric dipole polarizability (α_D)

There is a need for accurate predictions of α_D to constrain the nuclear EoS and deepen our understanding of neutron-rich matter.

Limited experimental α_D data

Expensive theoretical calculations

Method – data preparation

Data-driven α_D emulator based on machine learning technique

Capture the pattern of cross-section instead of α_D

See Tim Egert's poster

Expt. data points (used): 30,635

data points after (used): 162,968

 $\alpha_D \propto \int \frac{\sigma_\gamma(E)}{E^2} dE$

experimental data extracted from the well-established EXFOR database

Method – Neural Network architecture

See Tim's poster

Our goal: given A, Z, E_v , predict σ_v or f_{E1}

hidden layer: ReLU + Sigmoid 0000 input output 0000

[16, 32, 32, 32] neurons

Schematic representation of a selected fully connected feed-forward neural network used in this work

Find a network that is able to capture the relation between them

	Layer (type)	Output	Shape	Param #			
	dense (Dense)	(None,	16)	64			
	dense_1 (Dense)	(None,	32)	544			
	dense_2 (Dense)	(None,	32)	1056			
	dense_3 (Dense)	(None,	32)	1056			
	dense_4 (Dense)	(None,	1)	33			
	Total params: 2753 (10.75 KB) Trainable params: 2753 (10 75 KB)						
Non-trainable params: 0 (0.00 Byte)							

number of all weights:2640

Method – model complexity vs overfitting

balance between model complexity and overfitting

1. Is the network giving satisfactory predictions for the training data?

2. Is the network overfitting?

input data size: 162,968 data points trainable parameters: 2,753

There is still potential to further deepen or widen the network before encountering significant overfitting.

training set: 90% validation set: 10%

Method – Uncertainty Analysis

To fully understand the limitations and reliability of our machine learning model, it is essential to discuss and quantify the uncertainties embedded in the neural network prediction

Model uncertainty: parameter uncertainty, architecture sensitivity ...

Data uncertainty: quality and consistency of the input data ...

To quantify the main uncertainties we employed **the ensemble learning methods** that train multiple neural network models (500) with different initializations and different subsets of data.

Method – ensemble learning methods

weights (lines) and biases (dots), represented in grayscale and normalized to the range [0,1]

Results – NN vs experiments

Training nuclei

Testing nuclei (prediction)

Results – NN vs theoretical calculations

Neural network predictions compared with different coupled cluster approaches

• Is there other calculations for the response function that we can benchmark with?

• New experiment?

Collaborators

Mainz: Sonia Bacca, Francesca Bonaiti, Tim Egert, Joanna Ewa Sobczyk, Francesco Marino

Oak Ridge: Bijaya Acharya, Gaute Hagen

St. Louis: Samuel J. Novari

Trento: Alessandro Rogger

Motivation – Previous studies

- Quantum Monte Carlo method + realistic AV8 potential, reconstruct the dynamical spin response from three energy-weighted sum rules. *
- Virial expansion + pseudopotential, construct the responses at low fugacity, low density, and/or high temperature. **

Our goal: To obtain an explicit response function with robust many-body methods and modern chiral interaction.

* Phys. Rev. C 87, 025802 (2013)

** Phys. Rev. C 98, 015802 (2018)

Method – Integral transform

$$\begin{array}{ll} \text{Response:} & \text{See Immo C. Reis's poster} \\ R^{\mu\nu} = \oint_{f} \left\langle 0 | J^{\mu\dagger}(q) | f \right\rangle \left\langle f | J^{\nu}(q) | 0 \right\rangle \delta(E_{0} + \omega - E_{f}) & \text{formatter: Gaussian kernel} \\ \hline \\ \text{Integral transform} & \longrightarrow I(\nu; \lambda) = \int d\omega K(\nu, \omega; \lambda) R(\omega) \\ \hline \\ \text{Lorentz kernel} & \text{Gaussian kernel} \\ K^{(L)}(\nu, \omega; \lambda) = \frac{1}{\pi\lambda} \frac{\lambda^{2}}{(\omega - \nu)^{2} + \lambda^{2}} & K^{(\alpha)}(\nu, \omega; \lambda) = \frac{1}{\sqrt{2\pi\lambda}} \exp\left(-\frac{(\omega - \nu)^{2}}{2\lambda^{2}}\right) \\ \hline \\ \text{Expansion in a complete basis of orthogonal polynomials} & \longrightarrow K(\nu, \omega; \lambda) = \sum_{k}^{\infty} c_{k}(\nu; \lambda) T_{k}(\omega) \\ I(\nu; \lambda) = \sum_{k}^{\infty} c_{k}(\nu; \lambda) m_{k} \\ \hline \\ Moments m_{k} & m_{k} = \int d\omega T_{k}(\omega) R(\omega) = \frac{\left\langle \Phi_{0} | \hat{\Theta} T_{k}(\hat{H}) \hat{\Theta} | \Phi_{0} \right\rangle}{\left\langle \Phi_{0} | \hat{\Theta}^{2} | \Phi_{0} \right\rangle} \end{array}$$

Method – GIT Coupled Cluster (GIT-CC)

We can expand Gaussian kernel, in Chebyshev polynomials:

 $T_{0}(H) = 1$ $T_{-1}(H) = T_{1}(H) = H$ $T_{n+1}(H) = 2H \cdot T_{n}(H) - T_{n-1}(H)$

$$\begin{split} |\Phi_{1}\rangle &\equiv \hat{\Theta} |\Phi_{0}\rangle \\ |\Phi_{n}\rangle &= \hat{H} |\Phi_{n-1}\rangle \\ m_{0} &= \langle \Phi_{1} |\Phi_{1}\rangle \\ m_{1} &= \langle \Phi_{1} |\Phi_{2}\rangle \equiv \langle \Phi_{2} |\Phi_{1}\rangle \\ m_{n+1} &= 2 \langle \Phi_{1} |\Phi_{n+1}\rangle - m_{n-1} \equiv 2 \langle \Phi_{n+1} |\Phi_{1}\rangle - m_{n-1} \end{split}$$

A numerical inversion of the resulting integral transform to recover the response function:

$$I(\nu;\lambda) = \int d\omega K(\nu,\omega;\lambda) R(\omega)$$

To evaluate the Chebyshev moments, we apply Coupled Cluster (CC) method:

$$\hat{H} = e^{-T} H e^{T}$$
$$\hat{\Theta} = e^{-T} \Theta e^{T}$$

Motivation – Photoabsorption

