Neutron skins, nucleon knockout and new polarized target technologies

Prof Dan Watts (University of York)

CM Tarbetrt (PhD), B Collins (PhD), R. Williams (Ph.D), Dr M Bashkanov, Dr N Zachariou (University of York - Physics) Prof S Ducket (Chemistry)

Outline

- Coh π method for ²⁰⁸Pb neutron skin; status of ⁴⁰Ca/⁴⁸Ca measurement
- Nuclear physics constraints for next generation neutrino facilties

Many-proton knockout from ¹²C with CLAS@JLAB

E4nu via A(e,e'X) (A=D,C,Ar) with CLAS12@JLAB

• Early York R&D for achieving room temperature liquid polarised target media at the intensity frontier

Neutron skins

Neutron skins from Coherent pion photoproduction

ARTICLES nature physics https://doi.org/10.1038/s41567-022-01715-8 Check for updates

OPEN

Ab initio predictions link the neutron skin of ²⁰⁸Pb to nuclear forces

Baishan Hu¹¹, Weiguang Jiang^{2,11}, Takayuki Miyagi^{1,1,4,11}, Zhonghao Sun^{5,6,11}, Andreas Ekström², Christian Forssén^{©2™}, Gaute Hagen^{©1,5,6}, Jason D. Holt^{©1,7}, Thomas Papenbrock^{©5,6}, S. Ragnar Stroberg^{8,9} and Ian Vernon¹⁰

Tarbert, DPW et. al., PRL 112, 242502 (2014)

⁴⁸Ca and ⁴⁰Ca currently under analysis

Coherent pion photoproduction in PWIA

²⁰⁸Pb(γ,π^0) Momentum transfer distributions

-- PWIA calculation - Full calculation Drechsel, Kamalov, Tiator et. al. NPA 660 (1999)

Fitting procedure

Calculate grid c_n= a_n=

c_n=6.28-7.07 fm a_n=0.35-0.65 fm

Predictions smeared by q resolution

Interpolated fit to experimental data (q = 0.3 - 0.9)

Free param. : norm, $c_{n_{,}} a_{n_{,}}$ Fixed param. : c_{p} =6.68 a_{p} = 0.447 (PRC 76 014211 (2011))

Information on the shape of the FF is used in the method However, the data and model agreed on absolute scale to within 5% (comp[arable with the experimental systematic)

Miler critique on $Coh\pi$ theory

PHYSICAL REVIEW C 100, 044608 (2019)

Coherent-nuclear pion photoproduction and neutron radii Gerald A. Miller®

Complex π -A optical potential in DKT theory neglects 2nd order CEFSI

Miller calculated the effect of including CEFSI

- Negligible effect on minima/maxima positions (0.001 fm⁻¹ for 1st min)
- Increase in cross section of order 5%
- Small effect on shape (±0.5 % change in rel 1st, 2nd maxima heights)

Miller estimates systematic by varying the neutron diffuseness such that **absolute** cross sections in the maxima agree with/without CEFSI

-> Skin with this modification in less tension with PREX result

$$\Delta r_{np} = 0.23 \pm 0.03 \,(\text{stat.})^{+0.02}_{-0.03} \,(\text{sys.}) \pm 0.07 (\text{th.sys.}) \,\text{fm.}$$

However - this is not the method employed in Tarbert et. al Using absolute cross sections (measured to $\sim \pm 5\%$) rather than FF shape is a nonstarter

The CEFSI induced 0.5% change in FF shape (with unaltered minima/maxima positions) would not significantly change the extracted skin

FIG. 3. Cross section as a function of momentum transfer $\Delta q \equiv |\mathbf{k} - \mathbf{q}|$. Solid (blue) is the complete calculation including the onebody and two-body terms. Dashed (red) includes one-body only.

FIG. 5. Cross section as a function of momentum transfer q. Solid (blue) is the complete calculation including the one-body and two-body terms. Dashed (red) includes one-body only with $a_n = 0.61$ fm

Miler critique on $Coh\pi$ theory

180 190 200 210 220 230 240

0 180 190 200 210 220 230 240

s 2 q [fm]

i 2 q [fm]

0.8

0.6

0.9

Other systematic studies

Method	Diffuseness	Cn	Fitted range	skin
Analysis in Tarbert PRL	Free parameter	Free parameter	q=0.3-0.9 Fm ⁻¹ Over 1 st , 2 nd maxima	0.15 ± 0.03 (stat) ^{+0.01} -0.03 (sys)
Fixed diffuseness	0.55	Free parameter	1 st minima	0 14 +0 02 (stat)
Fixed diffuseness	0.50	Free parameter	1 st minima alono	0.18 ± 0.02 (stat)
FIXED UITUSETIESS	0.59	riee parameter		0.10 10.02 (stat)
Fixed diffuseness	0.59	Free parameter	2 nd minima alone	0.18 ± 0.02 (stat)
Fixed diffuesness	0.59	Free parameter	Region of 3 rd minima	0.18 ± 0.02 (stat)

Also - Consistent skin (within sys and stat errors) when fitting maxima only with fixed a_n

The tension with PREX is not resolved by inclusion of CEFSI in Coh π model

We welcome theoretical developments – and are happy to apply them in the extraction

⁴⁰Ca: A well understood challenge for Coh π method

 ^{40}Ca - powerful check on systematics (expt. and theory) for $\text{Coh}\pi$ (and other) methods

Theories agree on skin to within ~ 0.02 fermi – a "lighthouse" for the field

⁴⁰Ca: Momentum transfer distributions (same beamtime as ²⁰⁸Pb)

⁴⁰Ca and ⁴⁸Ca – New measurement, "raw" results

Charge distns in 40/48 are almost identical – sensitivity to neutron distribution clear in DKT model and data Contradicts "complete insensitivity" of $Coh\pi$ production to neutron skins claimed in recent paper

PHYSICAL REVIEW C 106, 044318 (2022)

Theoretical analysis of the extraction of neutron skin thicknes from coherent π^0 photoproduction off nuclei F. Colomer o, 1.2 P. Capel o, 1.2.* M. Ferretti, 2 J. Piekarewicz o, 3.+ C. Sfienti o, 2.+ M. Thiel o, 2

Photo- and electro- induced nucleon knockout to constrain neutrino-nucleus modelling

Many proton knockout and neutrino physics

Next generation v-facilities e.g. DUNE,.. -> use A(v,p) to determine incident v

Nuclear modelling -> Largest uncertainty in systematic error budget

e4v: Test modelling with EM induced knockout -> Where we know the incident energy accurately

Photo-induced – Q²=0 (removes uncertainty in Q² dependence of in-medium N*)

Electro-induced - Q^2 variable with reaction kinematics (e4v)

GiBUU model

Unified theory and transport framework MeV and GeV scales

Includes N* spectra, decay couplings (string models above resonance region) Models of medium modifications, ...

Hadrons propagate in mean field - scatter according to physics cross sections

Based on gradient expansion of Kadanoff-Baym eqn.

$$\frac{\partial(p_0-H)}{\partial p_{\mu}}\frac{\partial F(x,p)}{\partial x^{\mu}}-\frac{\partial(p_0-H)}{\partial x_{\mu}}\frac{\partial F(x,p)}{\partial p^{\mu}}=C(x,p)$$

Hamiltonian H Hadronic mean fields, Coulomb, "off-shell" Collision term C(x,p) Decays and scattering processes (2- and 3- body)

GiBUU Comprehensive but currently lacks 3-meson production, SRC/MEC convoluted (2p-2h parameterization from work of Bosted and Christy)

GENIE model

Based on a factorization approach

Nuclear models – a range available e.g. Fermi gas with SRC

Intranuclear cascade model for FSI

For more details see https://hep.ph.liv.ac.uk/~costasa/g enie/index.html

Study of photo-induced reactions (CLAS@JLAB)

Experimental data - Jefferson Lab

Electron beams up to 12 GeV

Halls A,C electron scattering spectrometers

Hall B electron scattering (and historically real tagged photons) with large acceptance spectrometer

Hall D – photon beams and (planned) neutral Kaon Beams with large acceptance Glue-X detector

Experimental aspects

CLAS spectrometer - Toroidal magnetic field provided by 6 superconducting coils

Instrumented with tracking, calorimetry, time-of flight, Cerenkov detectors.

~80% acceptance for single proton Minimum momentum 0.4 GeV/c

Carbon containing targets included with FROST (frozen spin target - butanol) experiment

Measure: ${}^{12}C(\gamma, Xp) \{X:1 \rightarrow 6\}$

What happens when ~GeV photon interacts with a nucleus?

Main seed reaction is **meson photoproduction** off a nucleon (often via intermediate N*) -> nucleon knockout

- → Recoiling nucleon from initial M production
- → Subsequent (M,2N), (M,3N), ...
- → Subsequent (N,N')
- \rightarrow Heavier M add to multiplicity e.g. ω ->3 π

Also:

→ Highly off-shell (high momenta) nucleonic components in 1B interactions (SRCs)
→ Off-shell contributions (e.g. MEC, N*N->NN)

Cartoon of one possible knockout mechanism Spectator Nucleus (A-4) in this case

Kinematic observables

 $M_{Miss}^{2} = (E_{\gamma} + M_{t})^{2} - (P_{\gamma} + \Sigma P_{pi})^{2}$

 M^2_{Miss} (shift) = M^2_{Miss} – M(A-i,Z-i)

 θ_{recoil} – Angle of recoil

P^{perp} - **Transverse momentum of recoil**

GiBUU predictions passed through CLAS detector acceptance, resolutions and directly compared to data – "visible" cross section

Missing mass in pp, ppp knockout

Direct (γ,pp) knockout from nuclei above A=4 never seen above ~0.4 GeV – and never with such clean separation New challenge for models e.g. N*N->NN (and SRC?)

Data has cuts to enhance direct processes (recoil in central angular region, P^{perp} < 0.2 GeV/c2 (Fermi range)

PhD analysis Williams (York)

Missing mass – 2p knockout

(direct) recoil fragment ¹⁰Be (~stable)

Direct knockout yield clear but underpredicted (N*, SRC,..?)

Some features not evident in data at higher Eγ (2M modelling?)

Direct pp knockout clearly Evidenced up to ~2 GeV

Missing mass – 3p knockout

(direct) recoil fragment ⁹Li (~200ms)

Features from direct ppp Knockout observed

Tend to be underpredicted by GiBUU

Missing mass – 4p knockout

(direct) recoil fragment ⁸He (~119ms)

Weaker features from direct pppp knockout GiBUU ~ agrees

(direct) recoil fragment ⁷H (~652 yattoseconds)

Broad agreement within stats

Underprediction high E γ , M_{miss} -lack of 3π production?

6	
	Carbon
$E_{\gamma} = 5.7 - 4.5 \text{ GeV}$	Butanol
	Polythene
2	GiBUU
	Systematic
0	Systematic

Carbon	6
Butanol	4
Polythene	
GiBUU	2
Systematic	~
Systematic No Momentum	0

Missing mass – 6p knockout

(direct) recoil fragment ⁶n (??)

Only visible Eγ >2 GeVCLAS acceptance effects

GiBUU underpredicts ~factor 5

Seeded by missing 3M?

GiBUU predictions for spallation from ²⁰⁸Pb target

Identify recoil ion in GiBUU (from emitted particles)

Production rates per hour with:

- Current CPS beam (~µA)
- Equivalent of 1mm Pb Factor 10⁶ increase with 3A ER linacs Longer targets?— factor ~10²

Yield map extremes limited by current simulation statistics – currently running on computer farm [©]

Study of electro-induced reactions (CLAS12@JLAB)

Part of e4nu initiative – reaching kinematics closer to future neutrino faciliities

E4v – preliminary results with CLAS12 detector in Hall B

~Hermetic acceptance for scattered e⁻ (and reaction products)

Reconstruct (known) e⁻ beam energy independently from products (e.g detected proton)

Compare with GeniE, GiBUU model predictions (passed through detector acceptance)

These new 12 GeV data advance on previous CLAS6 Data with improved statistics, wider kinematic reach and first measurements with Argon targets

Article

Electron-beam energy reconstruction for neutrino oscillation measurements

https://doi.org/10.1038/s41586-021-04046-5 Received: 20 June 2020 M. Khachatryan¹⁵⁶, A. Papadopoulou²⁵⁶, A. Ashkenazi²⁶⁷, F. Hauenstein¹², L. B. Weinstein¹, O. Hen², E. Piasetzky³, the CLAS Collaboration* & e4v Collaboration*

⁴⁰Ar(e,e'p)X 4 GeV e⁻ beam

All Pperp

P^{perp} < 0.2 GeV/c

PhD analysis Williams (York)

New technologies for polarized targets

Chemical hyperpolarisation

- Utilises a catalyst to transfer nuclear spin order from parahydrogen (singlet state of H₂) to target nuclei (¹H) by transiently binding the target substrate. (Also polarisation of D, ¹³C, ¹⁵N has been demonstrated)
- Operates at room temperature
- Polarisation largely insensitive to <~10° temp changes
- ChHYP media aligns with weak applied field (earth's magnetic field if none applied !)
- York (Physics/Chemistry) -> new R&D to optimise substrates, catalysts and methods for application in nuclear and particle physics (>Volumes, >polarisation degree, <dilution, >relaxation times,..)

pH₂ spin configuration

ChHYP substrates- baseline

	Pyridine	Pyrazine	3,5-dichloropyridine
Formula	C_5H_5N	$C_4H_4N_2$	$C_5H_3Cl_2N$
Fraction of protons	5/42 = 11.9%	4/42 = 9.5%	3/74 = 4.1%
(typical) Polarisation lifetime	T1 _{Ortho} : 6.4s T1 _{Meta} :10.4s T1 _{Para} :7.9s	T1 _{Otho/Meta} : 13.2s	T1 _{Ortho} : 63.6s T1 _{Para} : 116.9s

Pyridine

Pyrazine

Butanol used in DNP has 10/42 protons polarisable (24%)

A range of substrates are being explored

3,5-dichloropyridine

Continuous replenished polarization?

Bubbling parahydrogen

- → Stable equilibrium polarization
- → Enhanced by longer relaxations times
 - progressed from 20s to 3 minutes!

New injector systems under R&D

Polarised fluid can be

Transport?

flow in pipes without loss!

Radiation hardness

Cell placed in MAMI γ–beam within MRI

No visible effects on polarisation/relaxation

Purfication R&D for catalyst barriers, solvent evaporation and recovery are ongoing

Active polarized target?

Cerenkov visible (transparent) 10-20% iiquid scintillator doping provides viable scintillation detector **R&D** ongong to polarize the scintillator!

Can it work in high B fields?

Potential benefits of ChHYP at scale

- At intensity frontier (e.g. CLAS12) traditional DNP fails heat deposition radiation
- DNP is expensive (sub Kelvin cryostats, superconducting holding fields, 5T polarising magnets, ..)
- Many facilities could benefit from polarised target infrastructure but prohibitive due to cost/size.. (R3B@GSI, laser-plasma, ..,)
- The technology is very cheap Is it scalable to much larger volume polarised detectors (neutrino, dark matter, ..) ?
- The capability of polarising heavy (non-zero spin) nuclei is established –R&D for a polarised pellet target capability at EIC is ongoing

Summary

- Coh π method for ²⁰⁸Pb consistent with dipole extraction and abinitio expectations
- Recent critiques do not resolve the tension with PREX
- New measurements with calcium 40/48 isotopes under analysis
- New photo and electro-induced nucleon knockout data will provide important new constraints on nuclear models for neutrino physics
- Early R&D for achieving room temperature liquid polarised target media (at scale) looks promising

Acknowledgements

C Tarbert (PhD), B Collins (PhD), R. Williams (PhD), M Mocanu (PhD) Dr M Bashkanov, Dr N Zachariou, Dr S Fegan, Dr S Kay (University of York (Edinburgh) - Physics)

> Prof S Ducket (University of York Chemistry)

E4nu collaborations CLAS/CLAS12 collaborations A2 collaboration at MAMI