

Overview on the three-body interactions with strangeness

Raffaele Del Grande^{1,*}

¹ Physik Department E62, Technische Universität München, 85748 Garching, Germany

JENAA workshop on Nuclear Physics at the LHC and connections to astrophysics

Geneva, Switzerland 19th August 2024

*raffaele.del-grande@tum.de

Three-body dynamics with hyperons

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Three-body forces in Effective Field Theories

E. Epelbaum, H.-W. Hammer, U.-G. Meißner, RMP 81, 1773 (2009)

*g*_i constants to be fixed by the **experimental data**

Three-body dynamics with hyperons

Dynamics of baryons involves formation of hadronic excitations

H.-W. Hammer, S. König, U. van Kolck RMP 92 (2020)

Ν π π Ν Ν Short-range dynamics (qm) Scattering data ь $\Lambda p \rightarrow \Lambda p$ Sechi-Zorn et al
 Alexander et al. Hauptman et al Piekenbrock 200 Cusp structure: $\Lambda N-\Sigma N$ coupling 100 Talk by L. Serksnyte 0 220 45 135 310 k^* (MeV/c) J. Haidenbauer, U. Meißner, EPJA 56 (2020), 3, 91

Three-body forces in **Effective Field Theories**

E. Epelbaum, H.-W. Hammer, U.-G. Meißner, RMP 81, 1773 (2009)

• Average distances: about 2 fm (Hypertriton: Λ -d about 10 fm)

385

The NA and NNA interactions in neutron stars

D. Lonardoni et al., PRL 114 (2019)

Small particle distances can be accessed using femtoscopy!

Raffaele Del Grande

Femtoscopy in three-particle system

Correlation function:

$$C(Q_3) = \int S(\rho) |\psi(Q_3, \rho)|^2 \rho^5 d\rho$$

Three-body scattering wave function

Hyper-momentum:

$$Q_3 = 2\sqrt{k_{12}^2 + k_{23}^2 + k_{31}^2}$$

R. Del Grande et al. EPJC 82 (2022) 244 ALICE Coll., EPJ A 59, 145 (2023) Hyper-radius:

$$\rho = 2\sqrt{r_{12}^2 + r_{23}^2 + r_{31}^2}$$

L. E. Marcucci et al., Front. in Phys. 8, 69 (2020).

Extension to three-particle system

- First measurement of the free scattering of three hadrons
- Deviation from unity in p-p-p and p-p- Λ correlation functions

ТЛП

Raffaele Del Grande

Source function for three particles in pp collisions

- Source function derived from three independent Gaussian emitters ALICE Coll., Phys. Lett. B 811, 135849 (2020) ALICE Coll., arXiv:2311.14527 (2023)
- In hypersperical coordinates

 $S(\rho) = \frac{1}{\pi^3 \rho_0^6} e^{-\left(\frac{\rho}{\rho_0}\right)^2}$

with $\rho_0 = 2 r_o$ and r_o is two-body source size. A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

- The value of ρ_0 is determinted from the $m_{\rm T}$ of the pairs in the triplets
- In pp collsions at the LHC small source: $ho_0 =$ 1-3 fm

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

- Wave function in hyperspherical harmonics $\Psi(\rho, Q_3) = \sum_{K} R_K(\rho) Y_K(\Omega)$
- First ever full three-body correlation function calculations

three-proton wave function

 $C(Q_3) = \int \rho^5 d\rho \, S(\rho, \rho_0) |\Psi(\rho, Q_3)|^2$ hyperradius

- Interactions:
 - pp strong interaction (AV18)
 - \circ Coulomb
 - \odot No three-body forces

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

 p-p-p correlation function: superposition of many partial waves

A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

Influence of the source size

• Using m_{τ} (source size) differential studies we can probe the interaction with the distances

Comparison Run-2 data

Comparison with the ALICE Run-2 measurement:

 calculations can describe the shape observed in the data

Required improvements:

- source model based on two-body femtoscopy measurements
- feed-down contribution from p-p-Λ must be evaluated
- More precision in the data is required

p-p-p correlation function in Run-3

Raffaele Del Grande

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics
- Sensitivity to three-body forces up to 5%

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Run 3 data from 2022 already analysed and results are promising!
- In Run 3 expected uncertainty of 1%

$p\Lambda$ and $pp\Lambda$ interactions

• AN interaction modelled using Gaussian potentials anchored to scattering parameters

$$V_{p\Lambda}(r) = \sum_{S} V_{S} e^{-(r/r_{s})^{2}} \mathcal{P}_{0,S}$$

NLO19 (600):
$$V_0 = -31.9 \text{ MeV}$$
 $r_0 = 1.4 \text{ fm}$
 $V_1 = -42.1 \text{ MeV}$ $r_1 = 1.1 \text{ fm}$

→ BE($^{3}_{\Lambda}$ H) = 2.904 MeV exp: 2.39 MeV

Binding energy from: https://hypernuclei.kph.uni-mainz.de

• ANN interaction modelled using Gaussian potentials

$$W(r_{13}, r_{23}) = W_3 e^{-(r_{13}^2 + r_{23}^2)/\rho_3^2}$$

 $W_3 = 11.8 \text{ MeV}$ (anchored to ${}^3_{\Lambda}\text{H}$ binding energy) $\rho_3 = 2.0 \text{ fm}$ (anchored to four-body hypernuclei, ${}^4_{\Lambda}\text{H}$ and ${}^4_{\Lambda}\text{He}$)

$p-p-\Lambda$ correlation function

- Reference calculations with NLO19 (600)
- ANN interaction gives 50% effect: only one partial wave (K=0) significantly contributes

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

$p-p-\Lambda$ correlation function

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

- Reference calculations with NLO19 (600)
- ANN interaction gives 50% effect: only one partial wave (K=0) significantly contributes

Experimental corrections applied to the theory (feed-down from resonances and

- Gauss NLO19 (600): 50% effect of three-body interactions
- Run-2 data: one data point in the region of the maximum

p-p-Λ correlation function

misidentifications)

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

p∧ **interaction**: scattering + femto

Results from recent paper: E. Garrido et al., arXiv: 2408.01750 (2024)

*Private comunication A. Kievsky and E. Garrido

Conclusions and Outlook

- Exciting results from femtoscopy:
 - o pp collisions at the LHC provides access to the interactions at short distances
 - p-p-p correlation function:
 - ✓ overlap of many partial waves
 - ✓ negligible effect of three-body forces (< 1%)</p>
 - p-d correlation function:
 - ✓ Many-body dynamics can be studied using hadron-deuteron correlations
 - \circ p-p- Λ correlations:
 - \checkmark only one contributing wave in the signal region
 - ✓ 50 % effect of three-body forces
- On-going Run 3 and future Run 4
 - Access to precise data on three-particle correlations
 - Sensitivity to the effect of three-body forces in the correlation functions
- Future: combined analysis of femtoscopy + scattering data + hypernuclei

Backup

Effect of the three-body interaction

• Effect of the three-body interaction for different interaction models: 30% (Usmani) - 80% (NLO13)

The $p\Lambda$ interaction in the femtoscopy era

• Cumulant method provides first hint of effects beyond two-body correlations

- A deviation of $n\sigma = 6.7$ from lower-order contributions
- Theoretical predictions necessary to understand the origin of the deviation further

• Cumulant method provides first hint of effects beyond two-body correlations

R. Kubo, J. Phys. Soc. Jpn. 17, 1100-1120 (1962)

Compatible with lower-order contributions (nσ = 0.8)

Hyperspherical Harmonics formalism

• The Jacobi coordinates:

$$\left\{ egin{array}{l} m{x} = m{r}_2 - m{r}_1 \ m{y} = \sqrt{rac{4}{(1+2m/M)}} \; (m{r}_3 - rac{m{r}_1 + m{r}_2}{2}) \end{array}
ight.$$

 \circ $\,$ We introduce the hyperradius and hyperangle:

$$\rho = \sqrt{x^2 + y^2}$$
 $\phi = \arctan\left(\frac{y}{x}\right)$

 $\,\circ\,\,$ Now the 6 variables are: $(\rho,\phi,\,\hat{\mathbf{x}}\,\,,\,\hat{\mathbf{y}}\,\,)\,\,$ $\,$ 1 radius, 5 angles

Hyperspherical Harmonics formalism

Defining the wave function as:

$$\psi = \sum_{[K]} \rho^{-5/2} u_{[K]}(\rho) Y_{[K]}(\Omega)$$

Schroedinger equation with the interaction:

$$\left(\frac{\partial^2 u_{[K]}(\rho)}{\partial \rho^2} - \frac{(K+3/2)(K+5/2)}{\rho^2} u_{[K]}(\rho)\right) + \sum_{[K']} U_{[K][K']}(\rho) u_{[K']}(\rho) = Q^2 u_{[K]}(\rho)$$

Where the hypercentral potential is obtained as

$$U_{[K][K']}(\rho) = \int d\Omega Y_{[K]}^*(\Omega) [V_{12} + V_{23} + V_{31} + V_{123}] Y_{[K']}(\Omega)$$

Kaon/Proton-deuteron correlation

- Effective two-body system
 - Coulomb + Strong interactions via Lednický model; only s-wave
 - Anchored to scattering experiments
 - Emission source: from m_T scaling

System	Spin averaged		S = 1/2		S = 3/2	
	$a_0(\mathrm{fm})$	$d_0(\mathrm{fm})$	$a_0(\mathrm{fm})$	$d_0(\text{fm})$	$a_0(\mathrm{fm})$	$d_0(\mathrm{fm})$
p-d			$1.30^{+0.20}_{-0.20}$	2 2	$11.40^{+1.80}_{-1.20}$	$2.05^{+0.25}_{-0.25}$
			$2.73_{-0.10}^{+0.10}$	$2.27^{+0.12}_{-0.12}$	$11.88_{+0.40}^{-0.10}$	$2.63_{-0.02}^{+0.01}$
			4.0		11.1	<u></u>
			0.024		13.8	
	-		$-0.13^{+0.04}_{-0.04}$	2 	$14.70^{+2.30}_{-2.30}$	3-32
K ⁺ -d	-0.470	1.75				
	-0.540	0.0				

**R. Lednicky and V. L. Lyuboshits Sov. J. Nucl. Phys. 35 (1982)

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f(k^*)^S}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f(k^*)^S}{\sqrt{\pi}r_0} F_1(2k^*r_0) - \frac{2If(k^*)^S}{\sqrt{\pi}r_0} F_2(2k^*r_0) \right]$$

R. Lednický, Phys. Part. Nucl. 40, 307(2009)

W. T. H. Van Oers, & K. W. Brockman Jr, NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983);

A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

Kaon/Proton-deuteron correlation

It works very well for k-d since this interaction is only repulsive and there are no features of the interaction that appears only at short distances. The asymptotic description is sufficient

Proton-deuteron correlation

- The picture of two point-like particles does not work for p-d
 - the deuteron is a composite object
 - Pauli blocking at work for p-(pn) at short distances
 - The asymptotic interaction is different from the short distance one
 - One need a full-fledged three-body calculation

Proton-deuteron correlation

- The picture of two point-like particles does not work for p-d
 - the deuteron is a composite object
 - Pauli blocking at work for p-(pn) at short distances
 - The asymptotic interaction is different from the short distance one
 - One need a full-fledged three-body calculation

Pisa model: p-d as three-body system

- Starting with the p-p-n state that goes into p-d state:
 - Nucleons with the Gaussian sources distributions

Single-particle Gaussian emission source

$$(A_d) C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int d^3 r_1 d^3 r_2 d^3 r_3 S_1(r_1) S_1(r_2) S_1(r_3) |\Psi_{m_2, m_1}|^2 ,$$

- $\Psi_{m_{(,m)}}(x, y)$ three-nucleon wave function asymptotically behaves as p–d state

Calculation done by PISA theory group: Michele Viviani, Alejandro Kievsky and Laura Marcucci

Pisa model: p-d as three-body system

- Starting with the p-p-n state that goes into p-d state:
 - Nucleons with the Gaussian sources distributions

Single-particle Gaussian emission source

$$(A_d) C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int d^3 r_1 d^3 r_2 d^3 r_3 \underbrace{S_1(r_1) S_1(r_2) S_1(r_3)}_{m_2, m_1} |\Psi_{m_2, m_1}|^2 ,$$

- $\Psi_{m_i,m_j}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state
- A_d is the deuteron formation probability using deuteron wavefunction

Pisa model: p-d as three-body system

- Starting with the p-p-n state that goes into p-d state:
 - Nucleons with the Gaussian sources distributions

Single-particle Gaussian emission source

$$A_{d}C_{pd}(k) = \frac{1}{6} \sum_{m_{2},m_{1}} \int d^{3}r_{1}d^{3}r_{2}d^{3}r_{3} \underbrace{S_{1}(r_{1})S_{1}(r_{2})S_{1}(r_{3})} |\Psi_{m_{2},m_{1}}|^{2},$$

- $\Psi_{m_{(,m)}}(x, y)$ three-nucleon wave function asymptotically behaves as p-d state
- A_d is the deuteron formation probability using deuteron wavefunction
- Final definition of the correlation with p-p source size R_M :

$$A_d C_{pd}(k) = \frac{1}{6} \sum_{m_2, m_1} \int \rho^5 d\rho d\Omega \, \frac{e^{-\rho^2/4R_M^2}}{(4\pi R_M^2)^3} |\Psi_{m_2, m_1}|^2 \, .$$

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics
- Sensitivity to three-body forces up to 5%

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Run 3 data from 2022 already analysed and results are promising!
- In Run 3 expected uncertainty of 1%

• Point-like particle models anchored to scattering experiments

W. T. H. Van Oers et al., NPA 561 (1967); J. Arvieux et al., NPA 221 (1973); E. Huttel et al., NPA 406 (1983); A. Kievsky et al., PLB 406 (1997); T. C. Black et al., PLB 471 (1999);

- Coulomb + strong interaction using Lednický model Lednický, R. Phys. Part. Nuclei 40, 307–352 (2009)
- Only s-wave interaction
- Source radius evaluated using the universal m_{τ} scaling

Point-like particle description doesn't work for p-d

ALICE Coll. arXiv:2308.16120 (2023), accepted by PRX

Raffaele Del Grande

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics

Raffaele Del Grande

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Hadron-nuclei correlations at the LHC can be used to study many-body dynamics
- Sensitivity to three-body forces up to 5%

- Full three-body calculations are required (NN + NNN + Quantum Statistics)
- Run 3 data from 2022 already analysed and results are promising!
- In Run 3 expected uncertainty of 1%

Talk by Laura Serksnyte/Anton Riedel 4 Jun, 17:30

p-d correlation function: d as composite object

The three body wave function with proper treatment of 2N and 3N interaction at very short distances goes to a p-d state.

• Three–body wavefunction for p–d: $\Psi_{m_2,m_1}(x, y)$ describing three-body dynamics,

anchored to p-d scattering observables.

- x = distance of p-n system within the deuteron
- y = p-d distance
- m_2 and m_1 deuteron and proton spin

• $\Psi_{m_2,m_1}(x,y)$ three-nucleon wave function asymptotically behaves as p-d state:

Mrówczyński et al Eur. Phys. J. Special Topics 229, 3559 (2020)