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Hyperons 1n Neutron Stars

The presence of hyperons in NS have been considered by many authors since the pioneering work of
Ambartsumyan & Saakyan (1960)

Phenomenological approaches

< Relativistic Mean Field Models: Glendenning 1985; Knorren et al. 1995; Shaffner-Bielich & Mishustin 1996, Bonano
& Sedrakian 2012, ...

<> Non-relativistic potential model: Balberg & Gal 1997

< Quark-meson coupling model: Pal et al. 1999, ...

< Chiral Effective Lagrangians: Hanauske et al., 2000

< Density dependent hadron field models: Hofmann, Keil & Lenske 2001

Microscopic approaches

< Brueckner-Hartree-Fock theory: Baldo et al. 2000; 1. V. et al. 2000, Schulze et al. 2006, 1.V. et al. 2011,
Burgio et al. 2011, Schulze & Rijken 2011, Logoteta, I.V. & Bombaci 2019

<> DBHF: Sammarruca (2009), Katayama & Saito (2014)
< View k. Djapo, Schaefer & Wambach, 2010

<> Quantum Monte Carlo: Lonardoni et al., (2014)



The Hyperon Puzzle: Still An Open Problem ?

Hyperons are expected to appear in the core of neutron stars at p ~
(2-3)p, when py 1s large enough to make the conversion of N into
Y energetically favorable

But

The relieve of Fermi pressure due to its appearance leads to a
softer EoS and, therefore, to a reduction of the mass to values
incompatible with recent observations

Observation of Any reliable EoS of dense matter
~2M_NS should predict M, [EoS]|>2M,

Can hyperons be present in the interior of neutron stars
in view of this stringent constraint ?
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Possible Solutions to the Hyperon Puzzle

The solution requires a mechanism that could eventually provide the additional pressure at high densities needed to
make the EoS stiffer and, therefore, M,,, compatible with current observational limits. Possible mechanisms could
come from:

» Two-body YN & YY interactions

* YY vector meson repulsion: ¢ meson coupled only to hyperons yielding strong repulsion at
high p

e Chiral forces: YN from yEFT predicts A s.p. potential more repulsive than those from meson
exchange

» Hyperonic Three Body Forces
Natural solution based on the known importance of 3N forces in nuclear physics

» Quark Matter Core

Phase transition to deconfined QM at densities lower than hyperon threshold
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Abstract. We study the effects of the nucleon-nucleon-lambda (NNA) three-body force on neutron stars.
In particular, we consider the NNA force recently derived by the Jiilich-Bonn-Munich group within the
framework of chiral effective field theory at next-to-next-to-leading order. This force, together with real-
istic nucleon-nucleon, nucleon-nucleon-nucleon and nucleon-hyperon interactions, is used to calculate the
equation of state and the structure of neutron stars within the many-body non-relativistic Brueckner-

Hartree-Fock approach. Our results show that the inclusion of the NN/ force leads to an equation of state ¢

stiff enough such that the resulting neutron star maximum mass is compatible with the largest currently
measured (~ 2 M) Ieutron star masses. USINg a perturbative many-body approach we calculate also the
separation energy of the A mn some hypernuclei finding that the agreement with the experimental data
improves for the heavier ones when the effect of the NNA force is taken into account.
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EPJ A Highlight - Towards the solution of the “hyperon puzzle”

“Even if the comparison with the observation still shows some tension,
this is the first work showing without any ad-hoc adjustment of
phenomenological parameters that the presence of hyperons in the core
can be compatible with hyper-massive neutron star”
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NS matter described as a mixture of n, p, e, 0~ & A’s in [3-

equilibrium

yEFT (NN, NNN, NNA) + meson-exchange (NY)

Even if the concentration of A’s is strongly reduced they

are still present in the interior of a 2M | NS

Moderate NNA repulsion ( ~ 10 MeV at saturation)

A separation energies of the s-wave state (not adjusted)

Y Ca 9 Zr 209pt,
NSC97a 23.0 31.3 38.8
NSC97a+NN/; 14.9 21.1 26.8
NSC97a+NN A2 13.3 19.3 24.7
NSC97e 24.2 32.3 39.5
NSC97e+NNA,; 16.1 22.3 27.9
NSC97e+NN A2 14.7 20.7 26.1
Exp. 18.7(1.1)1 23.6(5) 26.9(8)
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Transport coefficients of hyperonic neutron star cores

Most of the effort have been concentrated on the role of
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Hyperons & NS cooling

Hyperonic direct URCA processes are possible as soon as hyperons appear leading to additional fast cooling mechanisms

p R (Schaab, Shaffner-Bielich & Balberg 1998)
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The r-mode instability: Hyperon Bulk Viscosity &y

(Lindblom et al. 2002, Haensel et al 2002, van Dalen et al. 2002, Chatterjee et al. 2008, Gusakov
et al. 2008, Shina et al. 2009, Jha et al. 2010,...)

Sources of Ev:

(Haensel, Levenfish & Yakovlev 2002) (Vldaﬁa & Albertus 1n preparation)
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Pairing gaps are important for cooling calculations since they reduce specific heat & emissivities by an

exponential factor exp(—2/y 1)
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The main ingredients to understand the role of hyperons in NSs are the YN &YY
interactions. But how much do we know to constrain them ?

Unfortunately, much less than in the pure nucleonic sector

Soo'f'l'l-'l'-l'l'l'
el EESCLﬁ?Qet al » Very few YN scattering data due to short lifetime
i ° Mexander et al. of hyperons & low intensity beam fluxes
200+ J. Haidenbauer et al., _|
Nucl. Phys. A 915 = ~35 data points, all from the 1960s
= (2013) 24-58 -
% = 10 new data points, from KEK-PS E251
Ap — Ap ‘ collaboration (2000)
100+
» No YY scattering data exists
. it 2 (cf. > 4000 NN data for Ej,;, <350 MeV)
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Alternative and complementary information can be obtained from the study of

hypernucle1 with the goal of relating hypernuclear observables with the underlying bare
YN & YY interactions

Y spectroscopy

production spectroscopy
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< Strangeness exchange (BNL, KEK, JPARC)
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Production of single-A hypernuclei
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< Hypernuclei production

in relativistic

heavy ion collisions (HypHII collaboration

FAIR/GSI)

First experiment with °Li beam on '2C
target at 2GeV. A, 3, H & #,H observed.



Production of double-A hypernuclei

Best systems to investigate the properties of S = - 2 baryon—baryon interaction

Contrary to single-A hypernuclei they are
produced in a two-step process

» E-production in process like
v (K-,K*) reaction (BNL, KEK)
K +p—E +K"

v" Antiproton production (PANDA@FAIR)

+

[x]|

p+p—=2 +

» X~ captured in an atomic orbit interacts
with the nuclear core producing two A’s

= +p—=>A+A+285MeV

Binding energy ABp, of two As in double-A
hypernuclei

ABAA(A:Z) = BAA(A:Z)_zBA(A;\]Z) = BA(A/I\AZ)_BA(A;\]Z)

Earlier emulsion experiments reported the formation of
ASHe, AfBe & A3B but the identification of the last two

was ambiguous. The value of the Nagara event recently
revised ABpp=0.6710.17 MeV due to a change of the

=~ mass

B, (MeV) | AB,, (MeV) Nagara
~He 10.9+0.5 47+0.6 Prowse  (1966) s event
He 7.25+0.197] 1.0120.2037% KEK-E373 (2001)
J°Be 17.7+0.4 43+0.4 Danysz  (1963) same
°Be 85+07 |-49:07 KEK-E176 (1991) e
B 27.6+0.7 48=+0.7 KEK-E176 (1991)
"“Be P ey KEK-E373 (2001, unpublished)

AA

-0.21



Production of single-2 and single-= hypernuclei

v" Production of single-X hypernuclei mechanisms similar to the ones considered for A
hypernuclei like, e.g., strangeness exchange (K-, 7%). However, their existence has not

been experimentally confirmed yet without ambiguity, suggesting that the X nucleon
interaction 1s most probably repulsive.

v' Single-= hypernuclei can be produced by means of (K-, K") reactions &
antroproton production

= A first analysis [1] of "*C(K~,K*)32Be reaction indicated an attractive Z-nucleus interaction
of the order of about -14 MeV, but an independent analysis [2] of the (K~,K*)Z production
spectrum on *C found instead an almost zero Z-nucleus potential

= A deeply bound state of the 2~ — '*N system with a binding energy of 4.38 + 0.25 MeV has
been observed [3]. Future E-hypernuclei production experiments are being planned at JPARC

[1] Khaustov et al. PRC 61, 054603 (2000)
[2] Kohno et al. PTP 123, 157 (2010); NPA 835, 358 (2010)
[3] Nakazawa et al. PTEP 033D02 (2015)



Hypernuclear y-ray spectroscopy

< Produced hypernuclei can be in an excited state

< Energy released by emission of neutrons or protons
or sometimes by y-ray when the hyperon moves to B e

lower states.

=

Ge detector
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Weak decay ?\ Z y-spectroscopy

AE~3 keV

<> The detection of y-ray transitions with with Ge (Nal)
detectors has allowed the analysis of hypernuclear excited
states with excellent resolution. Some weaks points still
exists:

» A depth potential in nucleus ~ 30 MeV =>
observation of y-rays limited to low excitation
region

» vy-ray transition measures only energy difference

between two states. Measurement of two y rays in
coincidence might help to resolve it



| free A decay '

pan~ 100 MeV/c

N
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(well reproduced by theoretical models)



But there are some problems ...

< Limited amount of scattering data not enough to fully constrain the bare YN & YY
interactions —» Strategy: start from a NN model & impose SU(3); constraints to build YN
& YY (e.g., meson-exchange & chiral effective field theory models)

< Bare YN & YY is not easy to derive from hypernuclei. Hyperons in nuclei are not free but in-
medium. Hypernuclei provide effective hyperon-nucleus interactions

< Amount of experimental data on hypernuclei is not enough to constrain the uncertainties of
phenomenological models. Parameters are most of the times arbitrarily chosen

< Ab-initio hypernuclear structure calculations with bare YN & Y'Y interactions exists but are
less accurate than phenomenological ones due to the difficulties to solve the very complicated
nuclear many-body problem



Constraints of YN, YY & YNN interactions from Femtoscopy

Information on the YN interaction, additional to that
from scattering & hypernuclei, together with constraints
on the YY one and YNN has begun to be recently
available thanks the to femtoscopy technique by
measuring the correlations of YN pairs and YNN triads
in p-p and p-Pb collisions at LHC by the ALICE
collaboration

N
J
)\

b Interaction \ ﬁ \

. Correlation Function
Repulsive

V(r*) (MeV

] e — ~
3 X
R %) Attractive Attractive
S
) 0 0.5 1 1.5 2 11—
r(fm) || | .
1 Schrédinger equation. || | .- Repulsive
g q
50 100 150 200

Two-particle wave k*(MeV/c)
\ / \ function|¥ (k*, r*)| \ /

\ S t

* 12 @3p* = E(k*) . Nsame(KT)
WU TOFdT =8R) " L atey

[+

Ck*)= |

ALICE collaboration, Nature 588, 232 (2021)

Acharya et al., PLB 811, 135849 (2020)

—
X

x

1.8f

16F

2.2}

2_

1.4}

1.2}

ALICE plp {s=13 ITeV I
High-mult. (0-0.17% INEL > 0)
m; €[1.26, 1.32) GeV/c?
Gaussian Source

8 p-AepA
—— » EFT NLO (fit)
— % EFT LO (fit)

o o

Acharya et al., PLB 844, 137223 (2022)

C(k™)

4+

o
©

A L B AL B LR
ALICE pp Vs =13 TeV

High Mult. (0-0.17% INEL>0)

om A-E @ A-E (A = 32%)
o xEFT LO
@ xEFT NLO16
m xEFT NLO19

NSC97a
------- Baseline

{

| ISR I S B R |

oI||l|

150

200
k* (MeV/c)

100 150 200 250 300
k* (MeV/c)

ALICE collaboration, EPJA 59, 145 (2023)

o 30
25
20

15

10

Il,lllllIllllllllllllllllllllll_.
;s &

LI L

* | p-p-A®P-p-A Data
E— p-p-A Two-particle correlations,
projector method

T T

|

06 0.7 0.8

Q, (GeVic)




Very recently the NLO19 chiral model has been constrained from the
combined analysis of pA cross section and pA CF

Phys. Lett. B 850 (2024) 138550
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Constraining the pA interaction from a combined analysis of scattering

data and correlation functions
D.L. Mihaylov “’b@’*, J. Haidenbauer ¢, V. Mantovani Sarti?
 Technische Universitdt Miinchen, Physics Department, James-Franck-Str., Garching, 85748, Germany

b Sofia University, Faculty of Physics, 5 J. Bourchier Blvd, Sofia, 1164, Bulgaria
¢ Forschungszentrum Jiilich, Institute for Advanced Simulation (IAS-4), Jiilich, 52428, Germany

ARTICLE INFO ABSTRACT

Editor: A. Schwenk This work provides the first combined analysis of low-energy pA scattering, considering both cross section
and correlation data. The obtained results establish the most stringent constraints to date on the two-body

Is(eyworA ds: PA interaction, pointing to a weaker attraction than so far accepted. The best set of scattering lengths for the
FZ:;:‘::)SW spin singlet and triplet are found to range from f;, f; = (2.1,1.56) to (3.34,1.18) fm. With a chiral NY potential

Chiral effective field theory fine-tuned to those scattering parameters, the in-medium properties of the A are explored and a potential depth
of Uy =-363+ 1.3(stat)f§j(syst) MeV is found at nuclear matter saturation density.

Usmani f 0 (fm) f 1 (fl‘l‘l) rlt’-fmt nGsct no-tot
parameterization

NLO13(600) 2.91 1.54 5.2 0.0 4.6
NLO19(600) 2.91 1.41 1.7 0.4 1.1
N2LO(550) 2.79 1.58 5.4 0.0 4.8
i 2.10 1.44 0.2 2.1 1.0
i 2.10 1.56 0.0 0.9 0.0
iii 2.10 1.66 1.8 0.2 1.0
iv 2.50 1.32 0.2 2.2 1.1
v 2.50 1.46 0.2 0.8 0.0
vi 2.50 1.55 1.8 0.2 1.0
vii 2.91 1.32 0.1 1.5 0.3

viii 3.34 1.18 1.2 0.9 1.0
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Particle fractions

Composition of Neutron Star Matter

NN (Av18)+ NNNI1 (K=160 MeV) * NN (Av18)+ NNN2 (K=270 MeV)
NY (Tuned NLO19 to femtoscopic data) e NY (Tuned NLOI19 to femtoscopic data)
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Large bands: residual cut-off uncertainty
Small bands: uncertainty from femtoscopic data (cut-off 600 MeV)



Neutron star EoS & Mass-Radius Relation
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Several compensation mechanisms, always leading to a soft EoS and keeping the maximum mass low: A stiffer
nucleonic EoS leads to an earlier onset of hyperons and thus enhanced softening due to their presence. The resulting
maximum mass is surprisingly quite insensitive to the purely nucleonic EoS.



Inclusion of strangeness S = -2 AA & N=- channels

* NN (Av18)+ UIX NNN (K=180 MeV)
* NY (Tuned NLOI19 to femtoscopic data)
« AA+NE-(LQCD)
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The final message of this talk
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