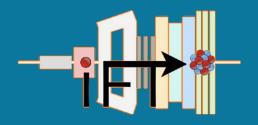


Antiproton results from SMOG at LHCb



Chiara Lucarelli

on behalf of the LHCb collaboration

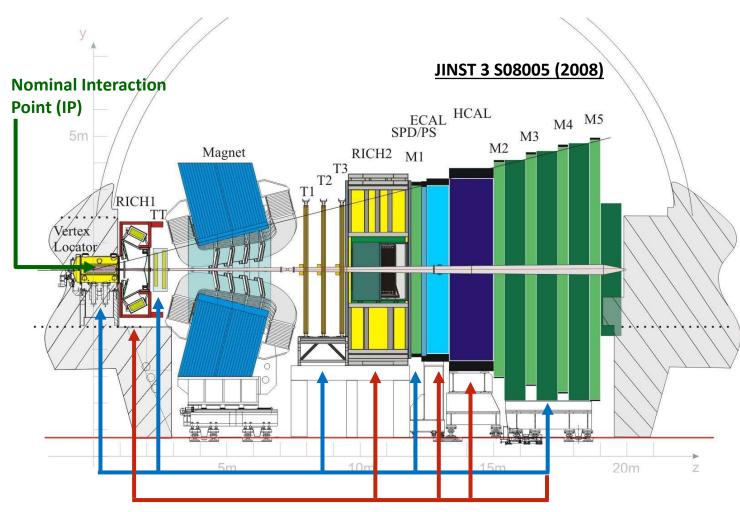
LHCD

JENAA workshop 2024, 19-20 August 2024, CERN

Dark Matter and antimatter in space

Antimatter fraction in Cosmic Rays is a sensitive **indirect probe** for Dark Matter:

- Signatures of Dark Matter annihilation and decay processes
- Constrain on Dark Matter candidates

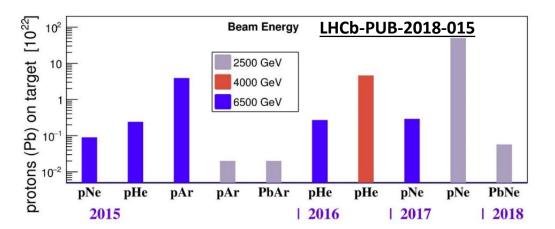

Space experiments (PAMELA, AMS) measured antimatter fluxes in Cosmic Rays but conclusive interpretations curbed by **limited knowledge of production processes**.

Accelerator experiments can complement Cosmic Rays investigations

Thanks to its unique injection of gases in the LHC (e.g. H_2 , D_2 , He), LHCb is contributing with its space mission to improve the precision of models.

The LHCb experiment

LHCb is a general-purpose experiment in the forward direction:


- Single-arm forward spectrometer: optimized for $b\bar{b}$ production, $2 < \eta < 5$, $\Theta \in [10, 250]$ mrad.
 - Tracking: excellent vertexing, IP resolution: $15+29/p_{\rm T}$ [GeV] μ m, momentum resolution: $\Delta p/p = 0.5\% 1.0\%$.
- Particle Identification (PID): excellent separation among π , K and p with momentum in [10, 110] GeV/c range.
- Trigger: flexible and versatile, bandwidth up to 15 kHz to disk.
- Its forward geometry is very well suited for <u>fixed-target physics.</u>

LHCb fixed-target apparatus

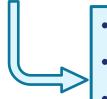
SMOG: The System for Measuring Overlap with Gas (2011-2018)

- Originally conceived for precise luminosity measurements through Beam-Gas Imaging (lowest uncertainty on the LHC luminosity measurement: 1.2-1.5%).
- Inject noble gases (He, Ne, Ar) in the LHC beam pipe around ±20 m of the LHCb IP
- Pressure of 2x10⁻⁷ mbar (x100 nominal LHC vacuum)

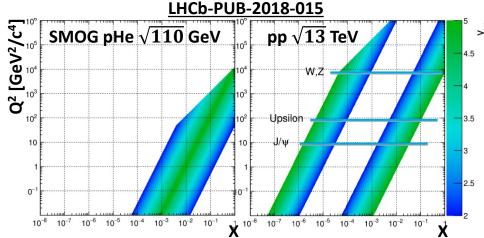
Forward geometry + gas target = highest-energy ever fixed-target physics experiment

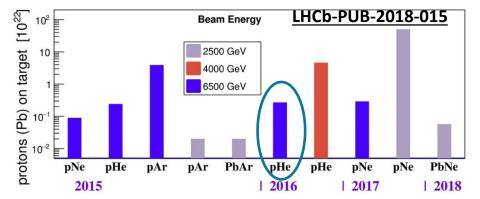
ed pA and PbA physics

Effective gas target

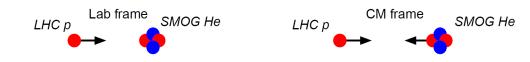

Nominal p-p collision point

In 2015-2018, LHCb collected *pA* and PbA physics samples in fixed-target configuration with different targets and different centre of mass energies.

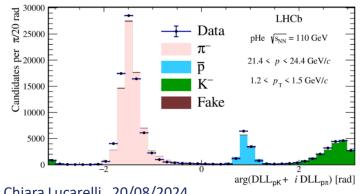

LHCb fixed-target apparatus


Unique physics opportunities at the LHC

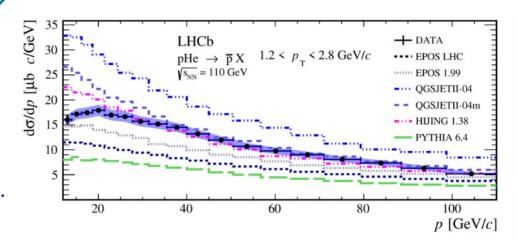
- Unexplored **intermediate energy** to SpS and LHC: $\sqrt{s_{NN}} \in [30, 115]$ GeV
- Large target Bjorken-x at intermediate Q²
- Collisions with targets of mass number A intermediate between p and Pb


- Cold nuclear-matter effects (CNM) for QGP studies
- Nuclear PDFs at high-x and strange hadronization process
- Polarization studies in baryon production
- Hadron production and spectra measurements for CRs physics

e.g. 6.5 TeV LHC p on at-rest He ($\sqrt{s_{NN}}=110~GeV$)

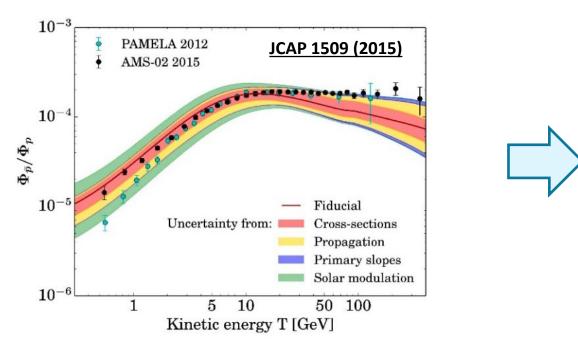

Proposal from the CR community to exploit the LHCb SMOG system to measure for the first time the antiproton production in pHe collisions

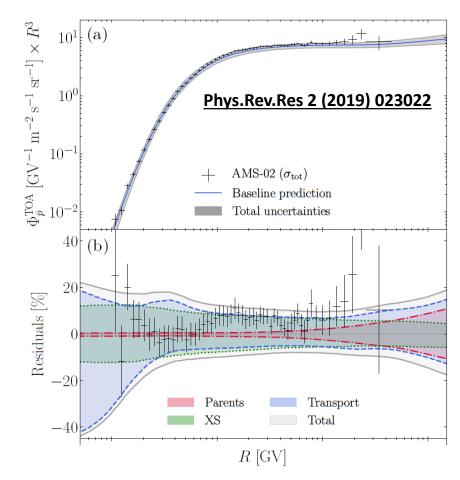
Prompt antiproton production in pHe collisions


First measurement of $\sigma(pHe \to \overline{p}_{prompt}X)$ at $\sqrt{s_{NN}} = 110 \; GeV$:

- \bar{p} reconstructed in the kinematic region $(p \in [12,110] \text{ GeV/c})$ $p_{\rm T} \in [0.4, 4]~{\it GeV/c}$) to optimize reconstruction and particle identification efficiencies.
- Only \overline{p} promptly produced considered → detached component reduced cutting on the impact parameter wrt the primary vertex.
- \bar{p} number from simultaneous fit to PID variables in (p, p_{T}) bins.
- Luminosity from *pe* elastic scattering with gas atomic electrons.
 - → Dominant contribution to systematic:

- Luminosity measurement: injected gas pressure not precisely measured.
- Particle identification performance: poor calibration statistics.

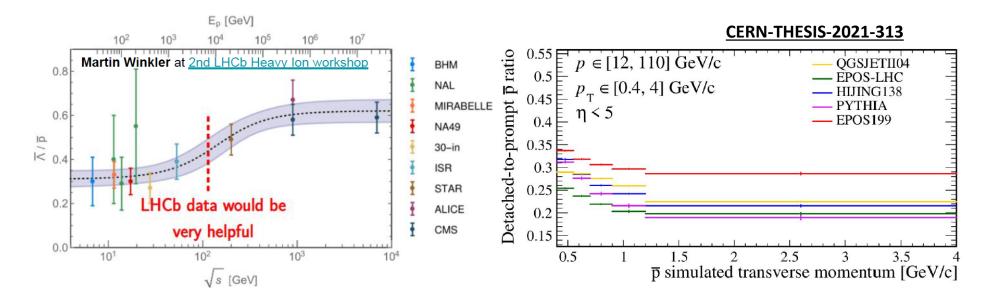

- Result on XS is compared to different MC event generator.
- **Experimental uncertainties (<10%) are** lower than the spread among theoretical models.


Impact of the measurement

Important contribution to the improvement of the secondary \overline{p} flux prediction:

- Validation of the extrapolation of the cross section from pH to pHe.
- Validate models for the cross section energy evolution (violation of Feynman scaling above 50 GeV).

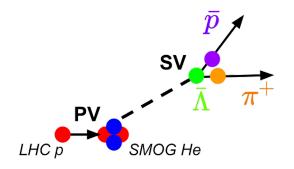
- The uncertainty on the predicted secondary \overline{p} flux is reduced but cross section uncertainties are still dominating.
- Room for exotic contribution heavily reduced

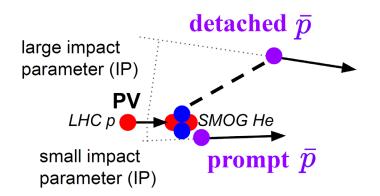

Antiproton production from antihyperon decays

Detached antiproton production

• Around **20-30%** of \overline{p} production comes from anti-hyperon decays \rightarrow Dedicated measurement to the component from anti-hyperon decays in pHe, extending first LHCb result only dealing with prompt processes

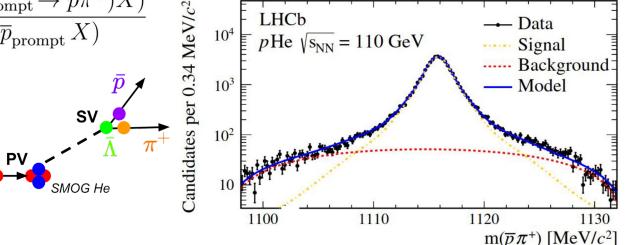
$$ar{\Lambda}_{
m prompt}^0 o ar{p} \pi^+ \hspace{0.5cm} ar{\Sigma}^- o ar{p} \pi^0 \hspace{0.5cm} ar{\Xi}^+ o ar{\Lambda} \pi^+ \hspace{0.5cm} ar{\Xi}^0 o ar{\Lambda} \pi^0 \hspace{0.5cm} ar{\Omega}^+ o ar{\Lambda} K^+$$

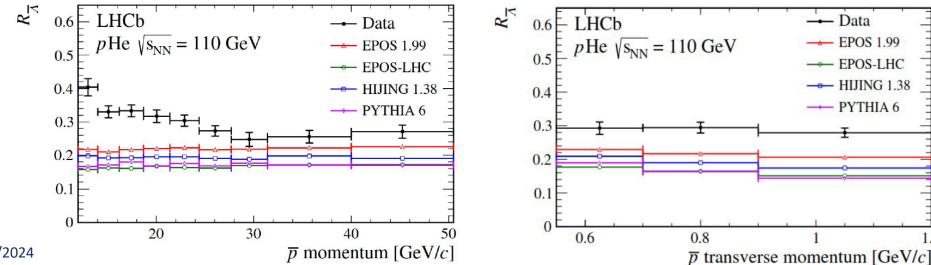

- Available data indicate strangeness enhancement but large spread among different theoretical models
 - → LHCb SMOG measurement can constrain the models


Analysis strategy

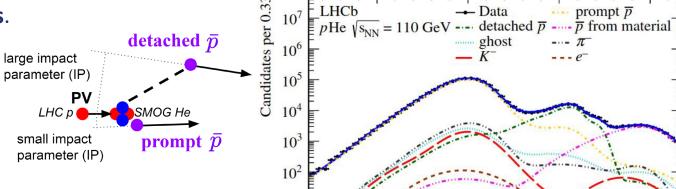
Analysis for secondary-to-primary \bar{p} ratio $R = \sigma_{sec}/\sigma_{prim}$ following two complementary approaches:

- Exclusive approach: $R_{\overline{A}} = \frac{\sigma(p \operatorname{He} \to (\overline{A}_{\operatorname{prompt}} \to \overline{p}\pi^+)X)}{\sigma(p \operatorname{He} \to \overline{p}_{\operatorname{prompt}} X)}$
 - Measure $\overline{\varLambda} \to \overline{p}\pi^+$, dominant detached component.
 - Identifying decay exploiting LHCb excellent mass resolution (no PID info).

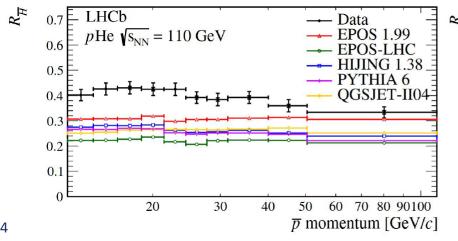

- Inclusive approach: $R_{\overline{H}} \equiv \frac{\sigma(p{
 m He} o \overline{H}X o \overline{p}X)}{\sigma(p{
 m He} o \overline{p}_{
 m prompt}X)} \, , \bar{H} = \bar{\Lambda}, \bar{\Sigma}, \bar{\Xi}, \bar{\Omega}$
 - Focused on all detached components.
 - Selecting **antiproton with PID information** and distinguishing between prompt and detached \bar{p} via excellent VELO IP resolution.

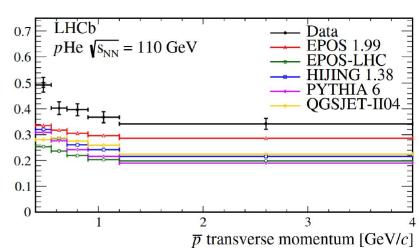

Exclusive approach

- Event selection via kinematic description in the Armenteros plot and impact parameters to select signal decays.
- Most systematic uncertainties (luminosity, reco, ...)
 cancel in the ratio.



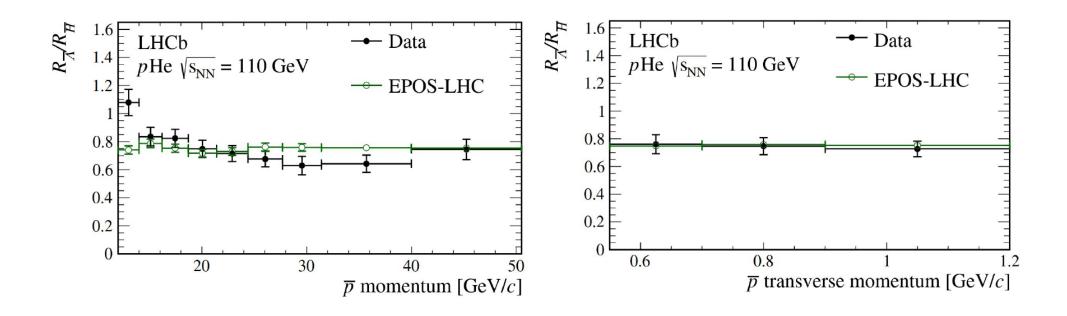
Larger contribution measured wrt all most widely used theoretical models




Inclusive approach

- Sample enriched with \overline{p} selected with tight PID cuts.
- Components statistically separated as prompt, detached and secondary with a fit to the pHe data impact parameter with the composition of templates (Gaussian compositions applied to simulation).

<u>Larger contribution measured wrt all most widely used theoretical models</u>


10

 $\log(\chi_{\text{ID}}^2)$

Comparison between the approaches

Eur. Phys. J. C83 (2023) 543

- Ratio of the results is expected to be **predicted more reliably** than the single terms (depends only on the hadronization).
- Results mutually cross-checked since found to be consistent with EPOS-LHC prediction.

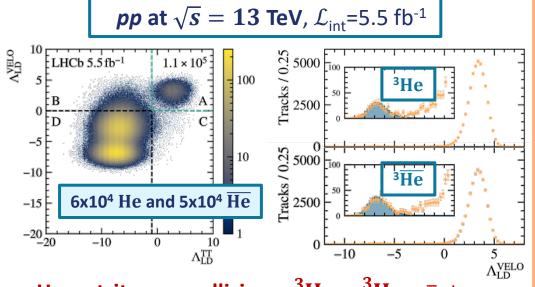
Extension of Run 2 analysis and prospects for Run 3

Light (anti-)nuclei identification

Talk by Thomas on monday

Expand antimatter **production** measurements to **light anti-nuclei**:

- No known primary sources
- Low production cross-section in secondary collisions


LHCb-FIGURE-2023-017

LHCb not designed to identify light (anti-)nuclei

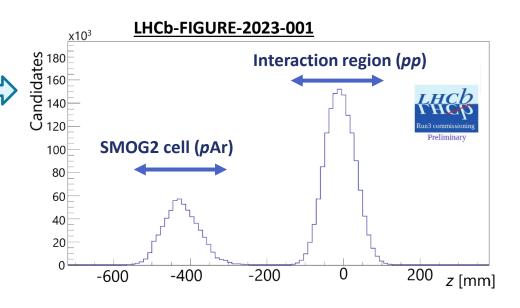
→ New techniques under development.

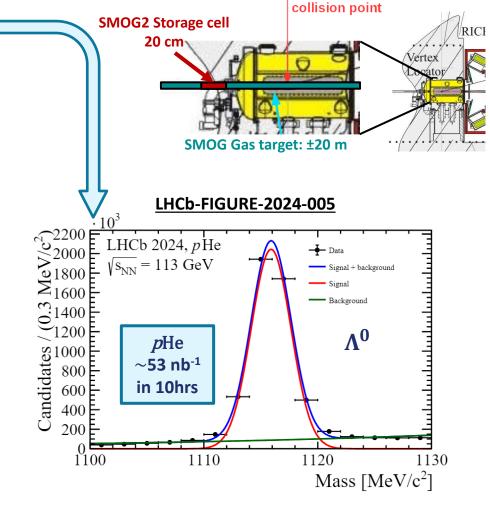
LHCb-DP-2023-002

Ionisation losses in silicon sensors: Z^2 dependence in Bethe-Bloch \rightarrow dE/dx to identify He

Hypertriton pp collisions: ${}^3_\Lambda {
m H}
ightarrow {}^3_{
m He} \pi^- + cc$ [LHCb-CONF-2023-002]

Anti-helium from $\overline{\varLambda}^0_b$ decay: $\overline{\varLambda}^0_b
ightarrow {}^3_{
m He} X$

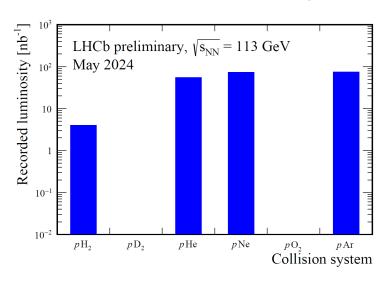

[LHCb-CONF-2024-005]

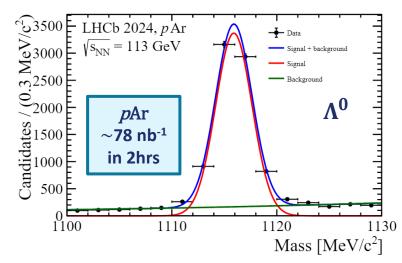

Light nuclei much slower than c: M dependence of particle speed → Time-of-flight to identify d, distinguish ³He and ⁴He \sim 10% of SMOG *p*He $\sqrt{s_{NN}} = 110 \text{ GeV}$ 10^{2} 10 0.7 0.6 2000 4000 8000 6000 reconstructed Momentum [MeV/c] First deuteron candidates observed in pHe data!

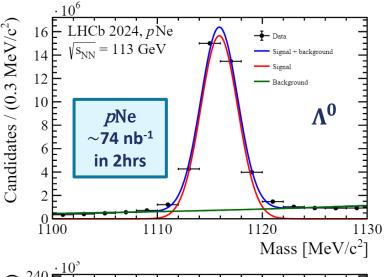
SMOG upgrade: SMOG2

SMOG2: gas confined in a 20 cm long storage cell upstream the interaction point:

- x100 average pressure with same gas flow
- Direct and precise gas pressure and temperature measurement
- Simultaneous pp + fixed-target data taking
- Wider choice of injectable gases: **H₂, D₂, N₂, O₂**, Kr, Xe (+He, Ne, Ar)

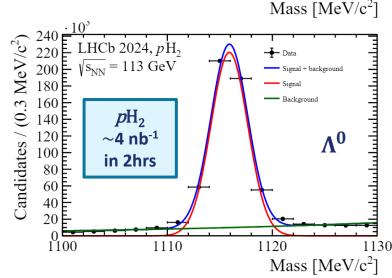


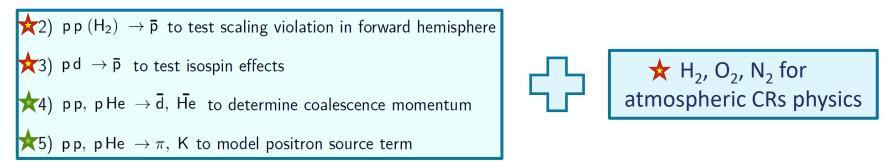

Nominal p-p


SMOG upgrade: SMOG2

LHCb-FIGURE-2024-005

Data samples collected during April and May 2024 with all available gases!




Unique physics opportunities never explored at LHC:

- Charmonium, bottomonia and exotica production from H₂ to Kr.
- Flow measurements at low energy over wide pseudorapidity range.
- **Ultra-peripheral collisions** in *p*A and PbA.
- pH_2 , pHe, pD_2 , pO_2 and OH_2 collisions to extend **modelling of productions of CR interest.**

LHCb cosmic programme

Many open possibilities to be explored with LHCb fixed-target programme, both with SMOG (*) and SMOG2 (*) data samples:

Martin Winkler at 2nd LHCb Heavy Ion workshop

- With H_2 injection: $\sigma(pp \to \overline{p}X)$ and $\sigma(pHe \to \overline{p}X)/\sigma(pp \to \overline{p}X)$ to constrain the production cross section.
- With D_2 injection: $\sigma(pD \to \overline{p}X)/\sigma(pp \to \overline{p}X)$ to test for isospin violation and constrain the \overline{n} production.
- With O_2 target and O beam: pO_2 and OH_2 ($\eta \sim 7.6$ in the pO system) collisions to study **air showers**

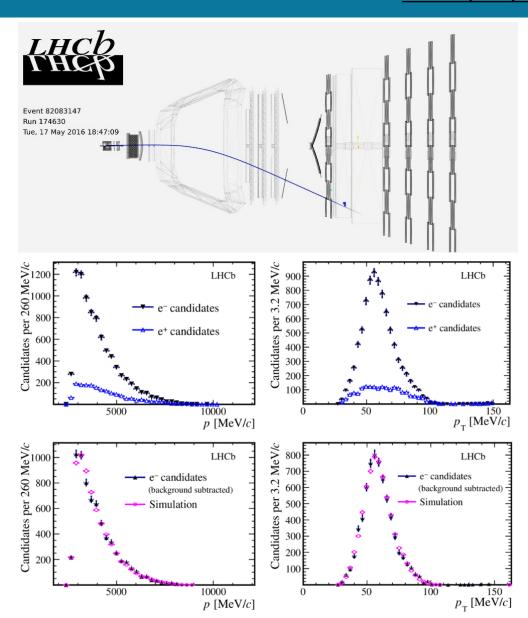
Conclusions

Fixed-target physics is acknowledged as a key opportunity for the future in the 2020 ESPPU

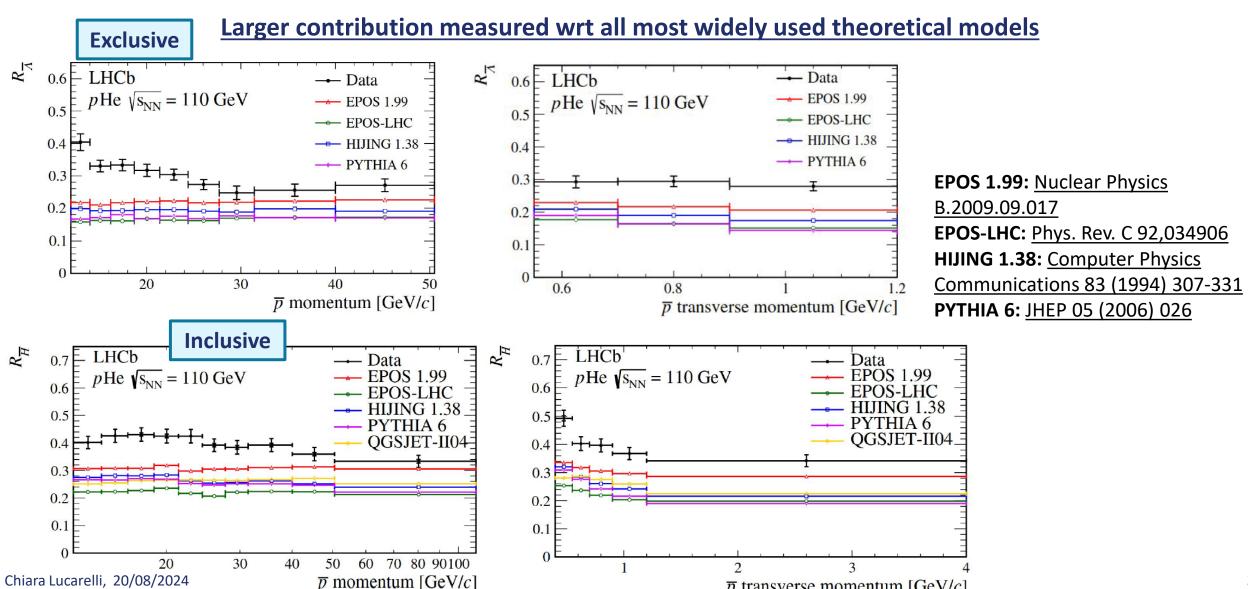
- LHCb is developing a pioneering fixed-target programme in a mostly unexplored kinematic regime
- It performed two antiproton production measurements in *p*He collisions, crucial input to models of antimatter production in space:
 - The **measurement at fixed-target of** $\sigma(p\text{He} \to \overline{p}X)$ with a 6.5 TeV proton beam helped to improve the secondary \overline{p} flux predictions.
 - Detached-to-prompt production shows a large underestimation of all theoretical models for antihyperon decay contributions.
- The **analysis on the Run2 samples are still ongoing:** exploit lower energy datasamples and extension towards antinuclei measurements.
- The LHCb fixed-target programme **upgrade SMOG2** will improve the accuracy and extend these measurements, operating with up to x100 gas pressure and more gas species.

Thanks for the attention!

BACKUP

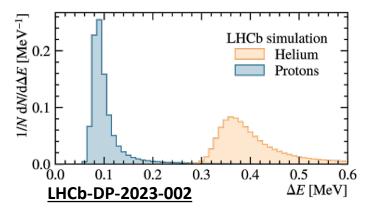

Luminosity measurement in SMOG data samples

PRL 121 (2018) 222001

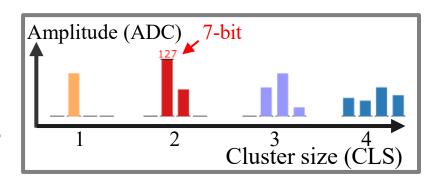

SMOG is not equipped with precise gauges for the gas pressure:

- → Luminosity is determined through pe elastic scattering with gas atomic electrons.
- pe events are identified as an isolated low-energy electron track.
- Charge symmetric background is evaluated through positron yield and subtracted from electron yield.
- Poor electron reconstruction efficiency (16%) → 6% uncertainty on luminosity

Dominant contribution to systematic uncertainty on $\sigma!$



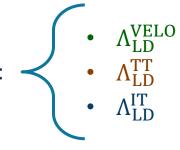
Results


 \overline{p} transverse momentum [GeV/c]

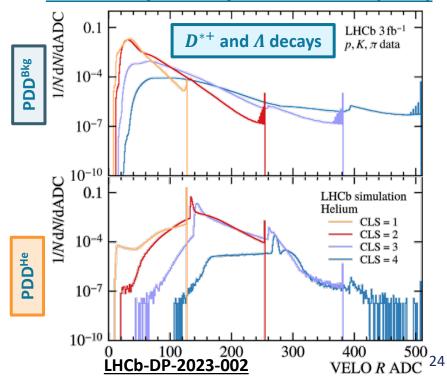
(Anti-)Helium identification

<u>Bethe-Bloch</u>: Z=2 particles deposits ~4 times the energy of Z=1 particles

→ He: higher ADC counts and wider cluster size



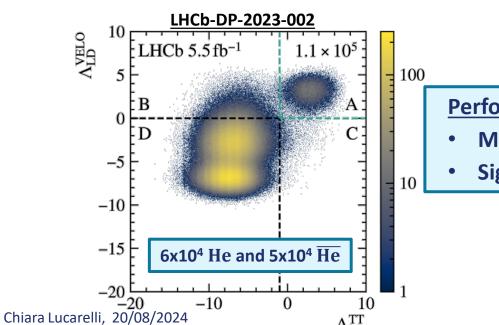
Define Likelihood discriminators based on cluster size and ADC counts:


$$\mathcal{L}^{X} = \left(\prod_{i=1}^{n} \text{PDD}_{i}^{X}\right)^{1/n}, X = \{\text{He, Bkg}\}$$

$$\Lambda_{\text{LD}} = \log \mathcal{L}^{\text{He}} - \log \mathcal{L}^{\text{Bkg}}$$

One discriminator for each subdetector:

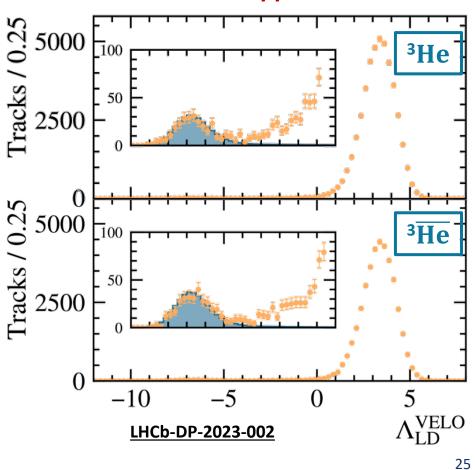
Probability Density Distributions (PDD)



Prompt (anti-)Helium at LHCb

Selection:

Run2 data: *pp* collisions at $\sqrt{s}=13$ TeV, \mathcal{L}_{int} =5.5 fb⁻¹


- All trigger lines
- Prompt tracks (compatible with PV) passing through VELO, TT, and T1->T3
- Good quality tracks ($\chi^2_{\text{track}} < 3$, $N_{\text{clusters X Si station}} > 2$)
- p/|Z| > 2.5 GV and $p_T/|Z| > 0.3$ GV
- $\Lambda_{\rm I.D}^{\rm VELO}$ >0 and $\Lambda_{\rm I.D}^{\rm TT}$ >-1; $\Lambda_{\rm I.D}^{\rm IT}$ >-1 for IT tracks
- Rejection of photon conversions

Performance:

- **MisID** probability: $O(10^{-12})$
 - **Signal efficiency**: $\sim 50\%$

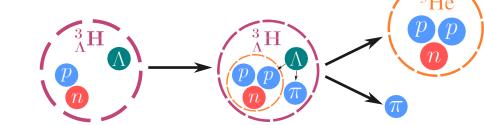
First (anti-)Helium candidates observed in pp in LHCb data!

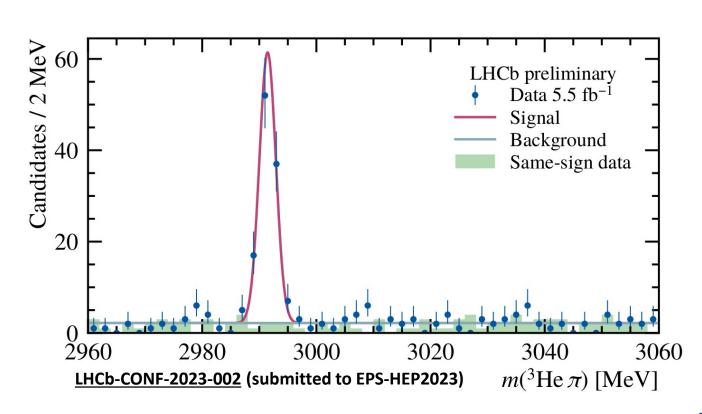
Application: Hypertriton

- Hypertriton life-time and binding energy gives access to hyperon-nucleon interaction
 - → Constrains on maximum mass of neutron stars

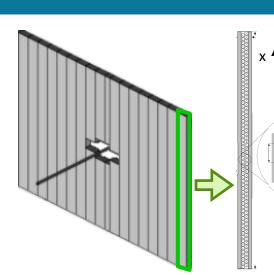
Search for 2-body decay into He:

$$^{3}_{\Lambda}\text{H} \rightarrow ^{3}\text{He }\pi^{-} + cc$$


Results:

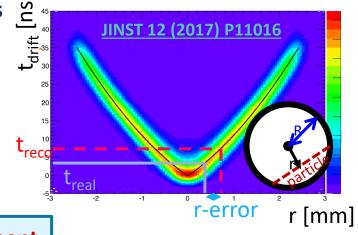

(Run2 pp collisions at $\sqrt{s} = 13$ TeV)

- Yields:
 - 61 ± 8 Hypertriton
 - 46 ± 7 anti-Hypertriton
- Statistical mass precision: 0.16 MeV


Under investigation:

- Systematic corrections on mass scale:
 - Charge-sign dependent energy-loss
 - Tracking corrections for Z=2
- Efficiency and acceptance corrections

Time-of-flight measurement at LHCb

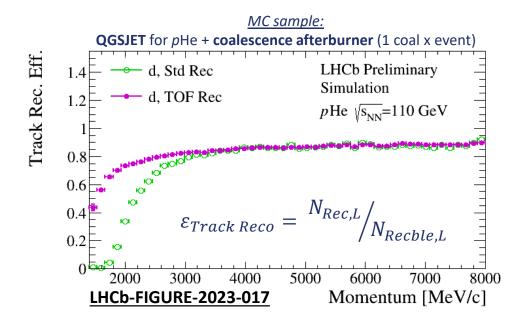

OT (Outer Tracker): largest area, straw-tube drift chambers

Hit position from ionization cluster t_{drift} – r relation

$$t_{drift} = t_{TDC} - t_{TOF} - t_{prop}$$

 t_{TOF} calculated in the β =1 hypothesis. For β <1:

$$t_{\text{TOF,reco}} < t_{\text{TOF,real}} \implies t_{\text{drift,reco}} > t_{\text{drift,real}} \implies r\text{-error}$$

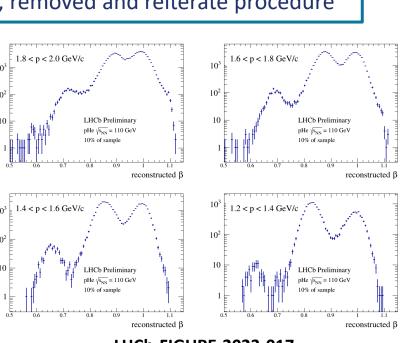


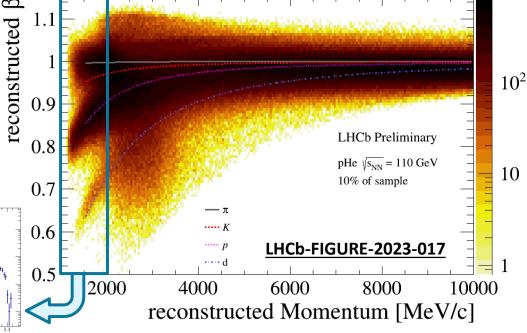
True β minimises the $\chi^2_{\rm fit}$ \rightarrow Particle ID through time measurement

Standard LHCb reconstruction (β =1) inefficient for light nuclei \rightarrow Modified pattern recognition algorithm

Correct hits position to recover reconstruction efficiency

- Loop on $\beta \in \left[1/\sqrt{1+M_{max}^2/p^2},1\right]$
- For each β : hits position for β value and perform fit
- Select candidate with best $\chi^2_{\rm fit}$



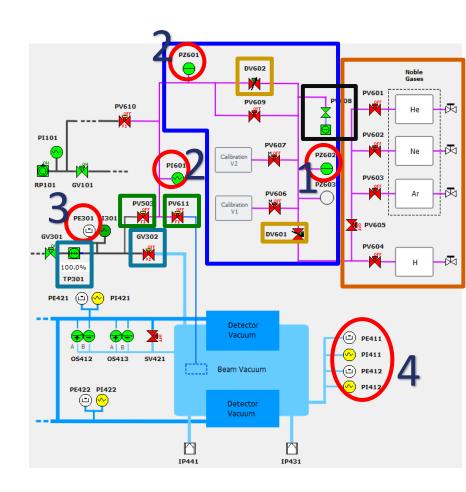

(Anti-)deuteron identification

Reconstructed tracks refitted to determine $\beta \rightarrow$ Iterative procedure rerunning Kalman fit with different β hypotheses

- 1. At least 15 OT hits required on each track
- 2. Change β following $\chi^2_{\rm fit}$ decrease (gradient descent) without outliers removal $\rightarrow \chi^2_{\rm fit} = \chi^2_{\rm track} + [(t_{\rm M1} \langle {\rm M1} \rangle)/\sigma_{\rm M1}]^2$
- 3. Fit around minimum to estimate β_{fit} and its uncertainty
- 4. If fit at minimum has outliers, removed and reiterate procedure
- \sim **10% of SMOG** *p*He ($\sqrt{s_{NN}} = 110$ GeV) dataset
- Background suppression: $\sigma(\beta) < 0.02$, $\chi^2_{OThits}/ndf < 2$

First deuteron candidates observed in pHe data!

Under investigation:


- Some DATA/MC discrepancies in OT response
- Efficiencies and systematics studies
- Improve background suppression to expand momentum range where clean identification achievable

LHCb-FIGURE-2023-017

GFS and injection

Gas injected into cell or VELO tank through the Gas Feed System:

- Four gas reservoirs (3 noble gases + 1 non getterable line), used to fill the calibrated volumes V1 and V2, controlled by dosing valve DV601
- Table with calibrated volumes used during injection, pumping group to clean line and dosing valve DV602 to control injected flux.
- Gas feed line to feed either the VELO tank (PV503) or the cell (PV611)
- Turbo pump TP301 connected to VELO tank through GV302 (open during SMOG2 operations) to provide pumping when ion pumps off.
- Multiple gauges to measure pressure along the line and in the VELO tank:
 - 1. PZ602: pressure at calibration volumes, around 10 mbar when full.
 - 2. PZ601 and PI601: pressure at the beginning and end of GF line, O(0.01) mbar for SMOG2, O(0.001) mbar a-la-SMOG (PI601 under sensibility).
 - 3. PE301: pressure at the turbo pump TP301 (SMOG injection point), O(1e-8) mbar for SMOG2, O(1e-6) mbar a-la-SMOG.
 - 4. PE411 and PE412: pressure in the VELO tank in Ne equivalent, O(1e-8) mbar.

