Status of the isosymmetric-HVP section

R. Frezzotti, G. Gagliardi, J.T. Tsang

Muon g-2 Theory Initiative Spring 2024 meeting April 15th 2024.

The aim of this section is to review and combine lattice QCD results for the isosymmetric $a_{\mu}^{\rm HVP}$ and related observables.

This section, which is expected to be about 2 pages long, will cover:

- Single-flavour/disconnected contributions to isosymmetric a^W_µ.
- Short-distance window a_{μ}^{SD} .
- One-sided windows.
- Isosymmetric HVP a_{μ}^{HVP} .

Averages of lattice results to be performed using the prescription adopted by the TI, which is briefly discussed in current version of the WP:

To combine results from different lattice calculations, we adopt a version of the procedure used by the FLAG group for averaging [86]. We assume that statistical errors from different calculations are uncorrelated, except in cases where the two calculations share the same gauge configurations, in which case we conservatively assume 100% correlation. Systematic errors that are shared between calculations, for example scale-setting uncertainty arising from dependence on the same physical scale, is also taken to be 100% correlated.

Single-flavour/disconnected contributions to isosymmetric a_{μ}^{W}

We assume +100% correlation in the stat. errors between groups which fully/partially share gauge configurations, and +100% correlation in the syst. errors if groups used same discretization in both sea and valence sectors.

Quality criterion: average includes results from simulations with at least three β 's (or two β 's and more than one regularization), $M_{\pi}L \geq 3$, and at least one p.p. ensemble.

Assumed 100% correlation between stat. and syst. errors of FHM-LM-ABGP, and between stat. errors of χ QCD and both RBC/UKQCD and FHM-LM-ABGP, this leads to a $\sim 40\%$ increase in final error for $a_{\mu}^{W}(\ell)$ w.r.t. the case of uncorr. errors.

Short-distance window $a_{\mu}^{\rm SD}$

We employed for $a_{\mu}^{\rm SD}$ the same average criterion used for $a_{\mu}^{\rm W}.$ Since last TI-meeting CLS/MAINZ-24 results appeared.

SD term	ETMC-22	CLS/MAINZ-24	χ QCD-22	RBC/UKQCD-23
l	48.24(3)(20)(20)	47.84(4)(24)(24)	48.6(0.1)(1.2)(1.2)	48.51(43)(53)(68)
8	9.074(14)(62)(64)	9.072(10)(58)(60)	9.18(1)(25)(25)	
с	11.61(9)(25)(27)	11.53(13)(26)(30)		
disc	-0.006(5)(2)(5)	0.0013(2)(5)(5)		
total	69.27(16)(30)(34)	68.85(14)(42)(45)		

Errors are stat., syst. and total, respectively.

One-sided windows

- Plot shows evolution of the relative difference between latt. and disp. results (baseline) as a function of t_1 , from $a_\mu(0.4 \text{ fm}) = a_\mu^{\text{SD}}$ to $a_\mu(\infty) = a_\mu^{\text{HVP}}$.
- For ETMC and CLS/MAINZ, $a_{\mu}(1 \text{ fm}) = a_{\mu}^{SD} + a_{\mu}^{W}$, obtained here assuming +100% correlation between a_{μ}^{SD} and a_{μ}^{W} .

Continuum/mass-extrapolation plots included in the Section

FIG. 6. Left and central panel: Extrapolation to the continuum limit and the physical mass point of the I = 1and (charmless) I = 0 isospin components of a^W_μ from CLS/MAINZ-22: $\tilde{y} = m^2_\pi/(8\pi f^2_\pi)$ and six lattice spacings are used ranging from a = 0.099 fm ($\beta = 3.84$) to a = 0.039 fm ($\beta = 3.85$), see Ref.[109] for details. Right panel: Extrapolation of $a^W_\mu(\ell)$ (connected) to the continuum limit from RBC/UKQCD-23, with eight lattice variants of the observable of interest and three lattice spacings, down to a = 0.073 fm: see Ref.[111] for details.

FIG. 7. Left panel: results for $a_{\mu}^{\rm SD} \cdot 10^{10}$ with $(t_0, t_1) = (0, 0.4)$ fm from ETMC-22[110], χ QCD-22[113], RBC/UKQCD-23[111] and CLS/Mainz-24 [115]. The error in parenthesis are in the order: statistical, systematic and total. Right panel: quality of continuum extrapolation for the ℓ -quark contribution to $a_{\mu}^{\rm SD}$ in ETMC22, with data at three lattice spacings and two different valence quark regularizations. Tree level perturbative cutoff effects on lattice correlators were subtracted from the non-perturbative data, in order to avoid dangerous O($a^2 \log a$) artifacts.

Todo list and points for discussions

- We assumed no correlation between systematics errors when two groups use different discretizations. However, not clear if significant correlations still exist due to common choices of scale-setting parameters (a small effect because of $|\frac{\Delta_a a_\mu^W}{a_\mu^W}| < |\frac{\Delta a}{a}|$?) or to similar treatment of FV uncertainties.
- Slightly different prescriptions often used to define the isospin-symmetric world. How do we cope with this issue? Some groups provide derivatives w.r.t. input parameters. According to RBC/UKQCD-23 effect expected to be small on a_{μ}^{W} :

For the intermediate-distance window a^W_{μ} in the isospin-symmetric limit with $t_0 = 0.4$ fm, $t_1 = 1.0$ fm, and $\Delta = 0.15$ fm, we find the up and down quark-connected contribution to be

$$a_{\mu}^{\mathrm{W},\mathrm{iso},\mathrm{conn},\mathrm{ud}} = 206.36(44)_{\mathrm{S}}(42)_{\mathrm{C}}(01)_{\mathrm{FV}}(00)_{m_{\pi}} {}_{\mathrm{FV}}(08)_{\partial_{m}} {}_{\mathrm{C}}(00)_{\mathrm{WF order}}(03)_{m_{\mathrm{res}}} \times 10^{-10}$$
(42)

in the BMW20 world and

$$a_{\mu}^{W,iso,conn,ud} = 206.46(53)_{S}(43)_{C}(01)_{FV}(01)_{m_{\pi}} FV(09)_{\partial_{m}} C(00)_{WF \text{ order}}(03)_{m_{res}} \times 10^{-10}$$
(43)

- Some content may be moved to other sections: e.g. mention of smeared R?
- Should the result of BMW-20 for isosymm. a_{μ}^{HVP} be discussed in this section?

Thank you for the attention!

Method for averages taken from FLAG

- Estimate $x_i \pm \sigma_i$ from group $i \in [1, M]$ weighted by

$$\omega_i = \frac{\sigma_i^{-2}}{\sum_{j=1}^M \sigma_j^{-2}}$$

• We then build covariance matrix C_{ij}

$$C_{ii} = \sigma_i^2, \qquad C_{ij} = \sigma_{i;j}\sigma_{j;i} \qquad i \neq j$$

σ_{i;j} is defined as

$$\sigma_{i;j} = \sqrt{\sum_{\alpha} [\sigma_i^{(\alpha)}]^2}$$

where α runs over all sources of errors on x_i that are correlated with those on $x_j.$

• Final central value and error obtained using:

$$\bar{x} = \sum_{i} \omega_i x_i, \qquad \quad \bar{\sigma}^2 = \sum_{i} \sum_{j} \omega_i \omega_j C_{ij}$$