Status of the isosymmetric-HVP section

R. Frezzotti, G. Gagliardi, J.T. Tsang

Muon g-2 Theory Initiative Spring 2024 meeting April 15th 2024.

The aim of this section is to review and combine lattice QCD results for the isosymmetric $a_{\mu}^{\rm HVP}$ and related observables.

This section, which is expected to be about 2 pages long, will cover:

- Single-flavour/disconnected contributions to isosymmetric $a_{\mu}^{\rm W}$.
- Short-distance window a^{SD}_{μ} .
- One-sided windows.
- Isosymmetric HVP a_{μ}^{HVP} .

Averages of lattice results to be performed using the prescription adopted by the TI, which is briefly discussed in current version of the WP:

To combine results from different lattice calculations, we adopt a version of the procedure used by the FLAG group for averaging [86]. We assume that statistical errors from different calculations are uncorrelated, except in cases where the two calculations share the same gauge configurations, in which case we conservatively assume 100% correlation. Systematic errors that are shared between calculations, for example scale-setting uncertainty arising from dependence on the same physical scale, is also taken to be 100% correlated.

${\sf Single-flavour/disconnected~ contributions~to~isosymmetric~}a_\mu^{\rm W}$

We assume $+100\%$ correlation in the stat. errors between groups which fully/partially share gauge configurations, and $+100\%$ correlation in the syst. errors if groups used same discretization in both sea and valence sectors.

Quality criterion: average includes results from simulations with at least three *β*'s (or two *β*'s and more than one regularization), $M_{\pi}L \geq 3$, and at least one p.p. ensemble.

Assumed 100% correlation between stat. and syst. errors of FHM-LM-ABGP, and between stat. errors of *χ*QCD and both RBC/UKQCD and FHM-LM-ABGP, this leads to a $\sim 40\%$ increase in final error for $a_{\mu}^{W}(\ell)$ w.r.t. the case of uncorr. errors. ² Short-distance window $a_{\mu}^{\rm SD}$

We employed for $a_{\mu}^{\rm SD}$ the same average criterion used for $a_{\mu}^{\rm W}$. Since last TI-meeting CLS/MAINZ-24 results appeared.

Errors are stat., syst. and total, respectively. ³

One-sided windows

- Plot shows evolution of the relative difference between latt. and disp. results (baseline) as a function of t_1 , from $a_\mu(0.4 \text{ fm}) = a_\mu^{\text{SD}}$ to $a_\mu(\infty) = a_\mu^{\text{HVP}}$.
- For ETMC and CLS/MAINZ, $a_{\mu}(1 \text{ fm}) = a_{\mu}^{\text{SD}} + a_{\mu}^{\text{W}}$, obtained here assuming $+100\%$ correlation between $a_{\mu}^{\rm SD}$ and $a_{\mu}^{\rm W}$. 4

Continuum/mass-extrapolation plots included in the Section

FIG. 6. Left and central panel: Extrapolation to the continuum limit and the physical mass point of the $I=1$ and (charmless) $I = 0$ isospin components of a_u^W from CLS/MAINZ-22: $\tilde{y} = m_{\pi}^2/(8\pi f_{\pi}^2)$ and six lattice spacings are used ranging from $a = 0.099$ fm $(\beta = 3.84)$ to $a = 0.039$ fm $(\beta = 3.85)$, see Ref. [109] for details. Right panel: Extrapolation of $a_{\mu}^{W}(\ell)$ (connected) to the continuum limit from RBC/UKQCD-23, with eight lattice variants of the observable of interest and three lattice spacings, down to $a = 0.073$ fm; see Ref. [111] for details.

Left panel: results for $a_{\mu}^{SD} \cdot 10^{10}$ with $(t_0, t_1) = (0, 0.4)$ fm from ETMC-22[110], χ QCD-22[113], FIG. 7. RBC/UKQCD-23[111] and CLS/Mainz-24 [115]. The error in parenthesis are in the order: statistical, systematic and total. Right panel: quality of continuum extrapolation for the ℓ -quark contribution to a^{SD} in ETMC22, with data at three lattice spacings and two different valence quark regularizations. Tree level perturbative cutoff effects on lattice correlators were subtracted from the non-perturbative data, in order to avoid dangerous $O(a^2 \log a)$ artifacts.

Todo list and points for discussions

- We assumed no correlation between systematics errors when two groups use different discretizations. However, not clear if significant correlations still exist due to common choices of scale-setting parameters (a small effect because of $\frac{\Delta_a a_\mu^{\rm W}}{W}$ $\left|\frac{a}{a\mu}u^{\mu}_{\mu}\right| < \left|\frac{\Delta a}{a}\right|$?) or to similar treatment of FV uncertainties.
- Slightly different prescriptions often used to define the isospin-symmetric world. How do we cope with this issue? Some groups provide derivatives w.r.t. input parameters. According to RBC/UKQCD-23 effect expected to be small on $a_{\mu}^{\rm W}$:

For the intermediate-distance window a_u^W in the isospin-symmetric limit with $t_0 = 0.4$ fm, $t_1 = 1.0$ fm, and $\Delta = 0.15$ fm, we find the up and down quark-connected contribution to be

$$
a_{\mu}^{\rm W, iso, conn, ud} = 206.36(44)_{\rm S}(42)_{\rm C}(01)_{\rm FV}(00)_{m_{\pi}} \; {\rm FV}(08)_{\partial_m} \; {\rm C}(00)_{\rm WF \; order}(03)_{m_{\rm res}} \times 10^{-10} \eqno(42)
$$

in the BMW20 world and

$$
a_{\mu}^{\rm W,iso,conn,ud} = 206.46(53)_{\rm S}(43)_{\rm C}(01)_{\rm FV}(01)_{m_{\pi}} {\rm FV}(09)_{\partial_m} {\rm C}(00)_{\rm WF\ order}(03)_{m_{\rm res}} \times 10^{-10}
$$
 (43)

- Some content may be moved to other sections: e.g. mention of smeared *R*?
- Should the result of BMW-20 for isosymm. $a_{\mu}^{\rm HVP}$ be discussed in this section?

Thank you for the attention!

Method for averages taken from FLAG

• Estimate $x_i \pm \sigma_i$ from group $i \in [1, M]$ weighted by

$$
\omega_i = \frac{\sigma_i^{-2}}{\sum_{j=1}^M \sigma_j^{-2}}
$$

• We then build covariance matrix C_{ij}

$$
C_{ii} = \sigma_i^2, \qquad C_{ij} = \sigma_{i;j} \sigma_{j;i} \qquad i \neq j
$$

 $\sigma_{i:j}$ is defined as

$$
\sigma_{i;j} = \sqrt{\sum_\alpha [\sigma_i^{(\alpha)}]^2}
$$

where α runs over all sources of errors on x_i that are correlated with those on *x^j* .

• Final central value and error obtained using:

$$
\bar{x} = \sum_{i} \omega_i x_i, \qquad \qquad \bar{\sigma}^2 = \sum_{i} \sum_{j} \omega_i \omega_j C_{ij}
$$