Dispersive Determination of $\eta^{(\prime)}$ Transition Form Factors

in collaboration with M. Hoferichter, B.-L. Hoid and B. Kubis

Simon Holz

AEC, Institute for Theoretical Physics Universität Bern, Switzerland

Muon g - 2 Theory Initiative Virtual Spring Meeting April 17, 2024

 ONIVERSITÄT BERN
 Swiss National Science Foundation

 ALEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS
 April 17, 2024

η and η' transition form factors

• Pseudoscalar ($P = \pi^0, \, \eta, \, \eta'$) transition form factors defined by

$$i \int d^4x \, e^{iq_1 \cdot x} \langle 0 | T \{ j_\mu(x) j_\nu(0) \} | P(q_1 + q_2) \rangle$$

$$= \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$$

Normalization related to di-photon decays governed by chiral anomaly:

$$\Gamma(P \to \gamma \gamma) = \frac{\pi \alpha_{\rm em}^2 M_P^3}{4} \left| F_{P\gamma^*\gamma^*}(0,0) \right|^2$$

For pion: low-energy theorem predicts its value

Bell, Jackiw 1969; Adler 1969; Bardeen 1969

 For η and η': complicated by η-η' mixing Feldmann, Kroll, Stech 1998–2000; Escribano, Gonzàlez-Solís, Masjuan, Sánchez-Puertas 2016

S. Holz (ITP): Dispersive $\eta^{(\prime)}$ TFFs April 17, 2024

 α

 q_2

Factorization breaking in the η and η' TFFs

Past approaches: Application of VMD form factor in the low-energy regime

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2, q_2^2) \propto \frac{1}{q_1^2 - M_V^2} \times \frac{1}{q_2^2 - M_V^2}$$

• For high energies $(|q_1^2|,|q_2^2|
ightarrow\infty)$ pQCD predicts Walsh, Zerwas 1972

$$F_{\eta^{(\prime)}\gamma^*\gamma^*}(q_1^2, q_2^2) \propto \frac{1}{q_1^2 + q_2^2}$$

- No factorization in the singly-virtual TFFs present
- Model-independent description of intermediate energy regime with factorization breaking of paramount importance for control over uncertainties
- Exp. study (BaBar 2018) showed for $|q_1^2| = |q_2^2| \in [6.5, 45]$ GeV² VMD factorization is breaking down

Formalism for doubly-virtual representations

- Start from $\eta'
 ightarrow 2(\pi^+\pi^-)$ amplitude
 - describe decay via two rho resonances by hidden local symmetry (HLS) model Guo, Kubis, Wirzba 2012
 - left-hand-cut contribution due to a₂ exchange by phenomenological Lagrangian models

Final-state interaction

- in HLS amplitude: introduce pair-wise pion rescattering by replacing ρ propagators by Omnès functions
- in a_2 exchange amplitude \Rightarrow inhomogenous Omnès problem

A Solution strategy for inhom. Omnès problem Coupled integral equation(s):

• $1 \rightarrow 3$ decay amplitude:

$$A(s) = \Omega(s) \left[P_n(s) + \frac{s^n}{\pi} \int d\mu(x) \frac{\hat{A}(x)}{x - s - i\epsilon} \right]$$

• with 'hat'-function given by angular averages:

$$\hat{A}(x) = \frac{1}{2\kappa} \sum_{\ell} C_{\ell}(x,\kappa) \int_{-1}^{1} \mathrm{d}z \, z^{\ell} A(h(x,z))$$

- Approach by Gasser and Rusetsky, 2018
 - deform path of dispersion integral

$$\blacktriangleright$$
 applied by them to $\eta
ightarrow 3\pi \Rightarrow$

Inhomogeneous Omnès problem in $\eta'
ightarrow 2(\pi^+\pi^-)$

• Solution (*P*-wave) expressed in twice subtracted dispersion integral

$$f_1(t,k^2) = \left[P(t) + \frac{t^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\mathrm{d}\tau}{\tau^2} \frac{\hat{G}(\tau,k^2)\sin\delta_1^1(\tau)}{(\tau-t-i\epsilon)|\Omega(\tau)|} \right] \Omega(t) + \hat{G}(t,k^2)$$

• Inhomogeneity \hat{G} known for phenomenological model, but challenges direct evaluation due to singularity structure

 deform path of integration into complex plane (inspired by ideas of Gasser, Rusetsky 2018)

Inhomogeneity function

Left-hand cut contribution from phenomenological model:

$$\pi^+$$
, π^- , π^+
 η' , π^- , π^+
 η' , π^-

- ρ propagators replaced by Omnès functions
- projected onto $\pi^+\pi^--P$ -wave
- coupling pinned down from exp. widths for:

Towards a TFF representation

1^{st} step

• unitarity condition:

 $\operatorname{Im} M(\eta^{(\prime)} \to \pi^+ \pi^- \gamma^*) \\
\sim \int \mathrm{d}\Phi_2 \, M(\eta^{(\prime)} \to 2(\pi^+ \pi^-)) M(\pi^+ \pi^- \to \gamma^*) \,_{\eta^{(\prime)}}$

- fix subtraction constants from fit to pion spectra in real photon decays
- a_2 induced LHC leads to curvature effect

2nd step

- apply another (unsubtracted) dispersion relation
- ⇒ double-spectral representation of isovector doubly-virtual TFF

Putting the pieces together

Construct TFF from four ingredients:

$$F_{\eta^{(\prime)}\gamma^*\gamma^*} = F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=1)} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{(I=0)} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{eff}} + F_{\eta^{(\prime)}\gamma^*\gamma^*}^{\text{asym}}$$

Isospin 1

- Dispersive piece: offers low-energy description
- reproduces low-energy cuts and singularities
 - additionally, left-hand cut contribution

Isospin 0

• Small; Description of narrow low-energy resonances

Effective Pole Term

- Parameterize higher intermediate states
- Full saturation of normalization sum rule
- Describe high-energy singly-virtual data

pQCD piece

• Induces leading-twist behavior of TFF ($\mathcal{O}(1/Q^2)$ asymptotics)

Analytic HLbL: η/η' poles in WP and beyond

	$a_{\mu}^{\eta-\mathrm{pole}} imes 10^{11}$	$a_{\mu}^{\eta'-\mathrm{pole}} \times 10^{11}$
CA [Masjuan, Sánchez-Puertas 2017]	16.3(1.4)	14.5(1.9)
DS [Eichmann et al. 2019]	15.8(1.2)	13.3(0.9)
DS [Raya et al. 2020]	14.7(1.9)	13.6(0.8)

- CA result in WP $a_{\mu}^{\rm PS-poles}=93.8^{+4.0}_{-3.6}\times 10^{-11}$
- Dispersive analysis: reconstruction of η/η' TFFs by incorporating all the lowest-lying singularities
- Aim: TFFs with fully-controlled uncertainty estimates
 - Dispersive input, normalization, singly/doubly virtual asymptotics
- Propagation to g-2 pole contributions

Status of calculation

- Starting point $\eta' \to 2(\pi^+\pi^-)$. Subsequent application of dispersion relations.
 - Factorization-breaking effects due to $a_2(1320)$ exchange included
 - Fix subtraction constant in intermediate step by fitting to $\eta^{(\prime)} \to \pi^+ \pi^- \gamma$ data
 - Finalizing curvature parameters due to a₂-exchange in the underlying representation
- \rightarrow Evaluation of TFFs and uncertainty propagation to $a_{\mu}^{\eta \text{pole}} / a_{\mu}^{\eta' \text{pole}}$ ([still] in progress)
 - Final results (finally/hopefully) before plenary meeting this fall

