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η and η
′ transition form factors

• Pseudoscalar (P = π0, η, η′) transition form factors defined by
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• Normalization related to di-photon decays governed by chiral anomaly:
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• For pion: low-energy theorem predicts its value
Bell, Jackiw 1969; Adler 1969; Bardeen 1969

• For η and η′: complicated by η–η′ mixing
Feldmann, Kroll, Stech 1998–2000;

Escribano, Gonzàlez-Soĺıs, Masjuan, Sánchez-Puertas 2016
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Factorization breaking in the η and η
′ TFFs

• Past approaches: Application of VMD form factor in the low-energy
regime
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• For high energies (|q21 |, |q22 | → ∞) pQCD predicts Walsh, Zerwas 1972

Fη(′)γ∗γ∗(q21, q
2
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• No factorization in the singly-virtual TFFs present

• Model-independent description of intermediate energy regime with
factorization breaking of paramount importance for control over
uncertainties

• Exp. study (BaBar 2018) showed for |q21| = |q22| ∈ [6.5, 45]GeV2 VMD
factorization is breaking down
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Formalism for doubly-virtual representations
• Start from η′ → 2(π+π−) amplitude

◮ describe decay via two rho resonances by hidden local symmetry (HLS)
model Guo, Kubis, Wirzba 2012

◮ left-hand-cut contribution due to a2 exchange by phenomenological
Lagrangian models
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Final-state interaction

• in HLS amplitude: introduce pair-wise pion rescattering by replacing ρ
propagators by Omnès functions

• in a2 exchange amplitude ⇒ inhomogenous Omnès problem
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A Solution strategy for inhom. Omnès problem

Coupled integral equation(s):

• 1 → 3 decay amplitude:

A(s) = Ω(s)

[

Pn(s) +
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π
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Â(x)

x− s− iǫ

]

• with ‘hat’-function given by angular averages:
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• Approach by
Gasser and Rusetsky, 2018
◮ deform path of dispersion integral
◮ applied by them to η → 3π ⇒ -12 -8 -4 0 4 8 12 16
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Inhomogeneous Omnès problem in η
′
→ 2(π+

π
−)

• Solution (P -wave) expressed in twice subtracted dispersion integral

f1(t, k
2) =
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• Inhomogeneity Ĝ known for phenomenological model, but challenges
direct evaluation due to singularity structure
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• deform path of integration into complex plane (inspired by ideas of
Gasser, Rusetsky 2018)
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Inhomogeneity function
Left-hand cut contribution from phenomenological model:
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π+ π− π+

π−

a−2 ρ
+ 7 permutations

• ρ propagators replaced by Omnès functions

• projected onto π+π−–P -wave

• coupling pinned down from exp. widths for:
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Towards a TFF representation

1st step

• unitarity condition:

ImM(η(′) → π+π−γ∗)

∼
∫

dΦ2M(η(′) → 2(π+π−))M(π+π− → γ∗)

• fix subtraction constants from fit to pion
spectra in real photon decays

• a2 induced LHC leads to curvature effect

2nd step

• apply another (unsubtracted) dispersion
relation

⇒ double-spectral representation of
isovector doubly-virtual TFF
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Putting the pieces together
Construct TFF from four ingredients:

Fη(′)γ∗γ∗ = F
(I=1)

η(′)γ∗γ∗
+ F

(I=0)

η(′)γ∗γ∗
+ F eff

η(′)γ∗γ∗
+ F asym

η(′)γ∗γ∗

Isospin 1

• Dispersive piece: offers low-energy description
• reproduces low-energy cuts and singularities

◮ additionally, left-hand cut contribution

Isospin 0

• Small; Description of narrow low-energy resonances

Effective Pole Term

• Parameterize higher intermediate states
• Full saturation of normalization sum rule
• Describe high-energy singly-virtual data

pQCD piece

• Induces leading-twist behavior of TFF (O(1/Q2) asymptotics)
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Analytic HLbL: η/η′ poles in WP and beyond

aη−pole
µ × 1011 aη

′
−pole

µ × 1011

CA [Masjuan, Sánchez-Puertas 2017] 16.3 (1.4) 14.5 (1.9)

DS [Eichmann et al. 2019] 15.8 (1.2) 13.3 (0.9)

DS [Raya et al. 2020] 14.7 (1.9) 13.6 (0.8)

• CA result in WP aPS−poles
µ = 93.8+4.0

−3.6 × 10−11

• Dispersive analysis: reconstruction of η/η′ TFFs by incorporating all
the lowest-lying singularities

• Aim: TFFs with fully-controlled uncertainty estimates
◮ Dispersive input, normalization, singly/doubly virtual asymptotics

• Propagation to g − 2 pole contributions
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Status of calculation

• Starting point η′ → 2(π+π−). Subsequent application of dispersion
relations.
◮ Factorization-breaking effects due to a2(1320) exchange included
◮ Fix subtraction constant in intermediate step by fitting to

η(′) → π+π−γ data
◮ Finalizing curvature parameters due to a2-exchange in the underlying

representation

→ Evaluation of TFFs and uncertainty propagation to aη−pole
µ /aη

′
−pole

µ

([still] in progress)

• Final results (finally/hopefully) before plenary meeting this fall
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