Axial-vector and tensor contributions in four- and three-point dispersive approaches

Peter Stoffer

Physik-Institut, University of Zurich, and Paul Scherrer Institut

in collaboration with M. Hoferichter and M. Zillinger

2402.14060 [hep-ph], to appear in JHEP,

with J. Lüdtke and M. Procura

JHEP 04 (2023) 125 and work in progress

and with N. Geralis, E. Kaziukenas, and J.-N. Toelstede

work in progress

Muon g-2 Theory Initiative Spring 2024 meeting

April 17, 2024

1 Introduction

- 2 Optimized HLbL basis for resonance contributions
- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics

6 Summary

Introduction

- 2 Optimized HLbL basis for resonance contributions
- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics
- 6 Summary

Analytic HLbL: main issues

- uncertainties dominated by parts that are not (yet) incorporated in dispersive framework
- required input for axial-vector & tensor transition form factors (TFFs)
- kinematic singularities & ambiguities for narrow resonances
- matching to short-distance constraints (SDCs)
 - cover everything that is not explicitly included as hadronic intermediate state
 - avoid double counting

White Paper estimate

Introduction

→ T. Aoyama *et al.*, Phys. Rept. **887** (2020) 1-166

	$10^{11} \times a_{\mu}$	$10^{11} \times \Delta a_{\mu}$
π^0 , η , η' -poles	93.8	4.0
pion/kaon box	-16.4	0.2
S -wave $\pi\pi$ rescattering	$^{-8}$	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

White Paper estimate

Introduction

→ T. Aoyama *et al.*, Phys. Rept. **887** (2020) 1-166

	$10^{11} \times a_{\mu}$	$10^{11} \times \Delta a_{\mu}$
π^0 , η , η' -poles	93.8	4.0
pion/kaon box	-16.4	0.2
S-wave $\pi\pi$ rescattering	-8	1
scalars, tensors	-1	3
axials	6	6
light quarks, short distance	15	10
c-loop	3	1
HLbL total (LO)	92	19

Some of the progress after White Paper

Introduction

- scalar contributions in dispersive framework
 - \rightarrow Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- first steps towards including axials in dispersive framework
 → Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106; JHEP 08 (2023) 209, Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC 81 (2021) 702
- holographic-QCD models point to rather large axial contribution \rightarrow talk by A. Rebhan
- beyond spin 1: new dispersive framework in soft-photon kinematic limit
 - \rightarrow Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

2 Optimized HLbL basis for resonance contributions

- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics
- 6 Summary

Kinematic singularities

- HLbL coefficient functions ĬI_i free from kinematic singularities in Mandelstam variables ⇒ enables dispersive treatment → Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161
- not free from kinematic singularities in q_i², but residues vanish due to sum rules
- kinematic singularities can be subtracted, but introduce **ambiguities** if sum rules are violated
- narrow resonances (apart from pseudoscalars) do not fulfill sum rules individually

Optimized basis for resonances

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- new basis constructed without singularities for pseudoscalars, scalars, S-wave rescattering, axial-vectors
- remaining singularities much simplified: only $1/q_i^2$ poles appear (and $1/(q_i^2 + q_j^2)$, outside g 2 integration region)

Optimized basis for resonances

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- convergence of partial-wave expansion checked in new basis for pion box: found even slight improvement

- 2 Optimized HLbL basis for resonance contributio
- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics
- 6 Summary

Axial vectors in optimized basis

- → Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- \rightarrow Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC **81** (2021) 702

axial-vector poles in transverse part of HLbL

 \rightarrow Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

 longitudinal part: axial-vector pole in Mandelstam variable *s* cancels with numerator in *g* − 2 limit *s* → *q*²₃, but leaves non-pole contribution

$$\begin{split} \bar{\Pi}_1^{\text{axial}} &= \frac{G_2(q_1^2, q_2^2)G_1(q_3^2)}{M_A^6} \,, \\ G_1(q_3^2) &= \mathcal{F}_1(q_3^2, 0) + \mathcal{F}_2(q_3^2, 0) \,, \\ G_2(q_1^2, q_2^2) &= (q_1^2 - q_2^2)\mathcal{F}_1(q_1^2, q_2^2) + q_1^2\mathcal{F}_2(q_1^2, q_2^2) + q_2^2\mathcal{F}_2(q_2^2, q_1^2) \end{split}$$

Axial vectors: TFF input

- asymptotic constraints on TFFs from light-cone expansion → Hoferichter, Stoffer, JHEP 05 (2020) 159
- *f*₁ TFFs: experimental constraints analyzed in a VMD representation

 \rightarrow Zanke, Hoferichter, Kubis, JHEP $\mathbf{07}$ (2021) 106; JHEP $\mathbf{08}$ (2023) 209

- f'_1 and a_1 TFFs could be related via U(3) symmetry
- holographic-QCD models can provide useful input
 → talk by A. Rebhan

3

Axial vectors: TFF input

- with a given input for the axial-vector TFFs, we are now in a position to compute a_{μ}^{axials} in the established four-point dispersive approach
- numerical analysis in progress: interplay with SDCs is essential

1 Introduction

- 2 Optimized HLbL basis for resonance contributions
- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics

6 Summary

Tensor mesons in optimized basis

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- kinematic singularities **much simplified**: e.g., no singularities if only $\mathcal{F}_{1,3}^T$ or only $\mathcal{F}_{2,3}^T$ are present
- enables simple benchmark evaluation, e.g., with \mathcal{F}_1^T from quark-model ($\mathcal{F}_{2,3,4,5}^T = 0$)
- even then: sum-rule violations lead to basis dependence

Tensor mesons in optimized basis

- tensor-meson contribution including all TFFs (and ππ D-wave contribution) affected by kinematic singularities
- for spin > 1, problem cannot be solved by basis change as for axials
- requires new dispersive framework in tree-point kinematics

 \rightarrow Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

Input for tensor mesons

- asymptotic constraints on TFFs from light-cone expansion → Hoferichter, Stoffer, JHEP 05 (2020) 159
- similarity to $f_0(980)$ and *S*-waves: $f_2(1270)$ contribution should be compared in NWA and via $\pi\pi$ rescattering
- $\gamma^* \gamma^* \to \pi \pi$ helicity partial waves solved with Omnès methods including *D*-waves
 - \rightarrow Hoferichter, Stoffer, JHEP **07** (2019) 073
 - \rightarrow Danilkin, Deineka, Vanderhaeghen, PRD **101** (5) (2020) 054008
- future $\gamma^* \gamma \to \pi \pi$ single-tag measurements at BESIII will be useful to constrain q^2 dependence

Input for tensor mesons

→ T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

1 Introduction

- 2 Optimized HLbL basis for resonance contributions
- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics

6 Summary

Master formula: HLbL contribution to $(g-2)_{\mu}$

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) 074, JHEP 04 (2017) 161

$$\begin{aligned} a_{\mu}^{\text{HLbL}} &= \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \\ &\times \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau) \end{aligned}$$

- *T_i*: known integration kernels
- $\overline{\Pi}_i$: hadronic scalar functions
- Euclidean momenta: $Q_i^2 = -q_i^2$
- $Q_3^2 = Q_1^2 + Q_2^2 + 2Q_1Q_2\tau$

DR in four-point kinematics

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) 074, JHEP 04 (2017) 161

- first write DR in four-point kinematics
- take $q_4 \rightarrow 0$ limit in the very end

DR in triangle kinematics

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

- external photon at $q_4 \rightarrow 0$
- imaginary parts reconstructed for g-2 kinematics

DR in triangle kinematics

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

- more complicated unitarity relation, more sub-processes
- redundancies and kinematic singularities manifestly absent
- combination of two dispersive approaches: assess truncation errors
- potentially simplified matching to SDCs

5

DR in triangle kinematics

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

- more complicated unitarity relation, more sub-processes
- redundancies and kinematic singularities manifestly absent
- combination of two dispersive approaches: assess truncation errors
- potentially simplified matching to SDCs

5

More sub-processes

• cancellation of soft divergences: solved for $\pi\pi \to \pi\pi\gamma$

 \rightarrow Lüdtke, Procura, Stoffer, in preparation

- test case: understand reshuffling and truncation effects in $\gamma^*\gamma \to \pi\pi$

 \rightarrow Geralis, Kaziukėnas, Stoffer, Toelstede, work in progress

• apply same methods to $\gamma^*\gamma^*\gamma \to \pi\pi$

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

 \rightarrow Geralis, Kaziukėnas, Stoffer, Toelstede, work in progress

Reshuffling between two dispersive approaches

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

	DR in four-point kinematics						
triangle-DR	π^0, η, η'	2π	S	A	T		
π^0,η,η'	~~o~o~	×	×	×	×	×	
2π	×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×	×	×	×	
	20-0-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wo o o	no to d'a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	" Som	
	, 0 + 0 + 0 + 0 - 0 - 0 - 0 - 0 - 0 - 0 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		,*D+0+0+0+	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~O~O~O~	" "	
	mont	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
S	×	×	mo q ^r	×	×	×	
Α	×	×	×	~~o~o~	×	×	
Т	×	×	×	×	² D-Ôm	×	

Proof of concept: VVA

 \rightarrow Lüdtke, Procura, Stoffer, to appear

 reshuffling much easier to understand in VVA

side-product: improved prediction for EW contribution to a_µ

1 Introduction

- 2 Optimized HLbL basis for resonance contributions
- 3 Axial-vector contributions in dispersive framework
- 4 Tensor contributions in dispersive framework
- 5 Dispersion relations in three-point kinematics

6 Summary

Conclusions

Summary

- conceptual obstacles for inclusion of axial vectors in NWA in dispersive framework resolved
- given data situation and asymptotic constraints, prospects best for a phenomenologically driven determination of f₁(1285) contribution
- tensor mesons: compare NWA with $\pi\pi$ rescattering: $\gamma^*\gamma^* \rightarrow \pi\pi$ *D*-waves solved with Omnès methods
- full tensor contributions, assessment of overall uncertainties due to truncation and matching to SDCs: use combination with new dispersive framework

Narrow resonances

 in the NW limit, imaginary part from unitarity relation reduces to δ-function:

$$\mathrm{Im}_{s}\Pi^{\mu\nu\lambda\sigma} = \pi\delta(s-M^{2})\mathcal{M}^{\mu\nu}(p\to q_{1},q_{2})^{*}\mathcal{M}^{\lambda\sigma}(p\to -q_{3},q_{4}),$$
$$\mathcal{M}^{\mu\nu}(p\to q_{1},q_{2}) = i\int d^{4}x e^{iq_{1}\cdot x} \langle 0|T\{j_{\mathrm{em}}^{\mu}(x)j_{\mathrm{em}}^{\nu}(0)\}|p\rangle$$

 project onto tensor decomposition for HLbL and plug into dispersion relation for scalar functions:

$$\check{\Pi}_i(s) = \frac{1}{\pi} \int ds' \frac{\mathrm{Im}\check{\Pi}_i(s')}{s'-s}$$

- δ -function, Cauchy kernel, and polarization sum combine to propagator-like structure
- dispersive result may differ from propagator models by non-pole terms

Narrow resonances

- decompose *M^{μν}* into Lorentz structures × transition form factors (TFFs)
- in the NWA, dispersive definition only involves on-shell meson ⇒ only physical TFFs enter

Sum rules and basis (in)dependence

- HLbL tensor basis involves structures of different mass dimension
- scalar coefficient functions of higher-dimension structures asymptotically fall off faster
- implies sum rules for those coefficient functions:

$$0 = \frac{1}{\pi} \int ds' \, \mathrm{Im}\check{\Pi}_i(s')$$

guarantees basis independence of entire HLbL

Sum rules and basis (in)dependence

• sum-rule contribution of single-particle state (resonance):

$$\operatorname{Im}\check{\Pi}_{i}(s') \sim \pi \delta(s' - M^{2}) \mathcal{F}(q_{1}^{2}, q_{2}^{2}) \mathcal{F}(q_{3}^{2}, 0)$$
$$\Rightarrow \frac{1}{\pi} \int ds' \operatorname{Im}\check{\Pi}_{i}(s') \sim \mathcal{F}(q_{1}^{2}, q_{2}^{2}) \mathcal{F}(q_{3}^{2}, 0) \neq 0$$

- sum rules not fulfilled by resonances
 - \Rightarrow NW contribution to HLbL is **basis dependent**
- basis dependence only needs to cancel in sum over intermediate states
- only pseudoscalars do not contribute to sum rules
 ⇒ unambiguous

- → Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- $\pi\pi$ rescattering previously limited to $f_0(500)$ \rightarrow Colangelo, Hoferichter, Procura, Stoffer, JHEP **04** (2017) 161,

PRL 118 (2017) 232001

Backup

• extension up to ~ 1.3 GeV by using coupled-channel $\gamma^*\gamma^* \to \pi\pi/\bar{K}K$ *S*-waves for I=0

 \rightarrow Danilkin, Deineka, Vanderhaeghen, PRD **101** (2020) 054008

• covers $f_0(980)$, dispersive description of resonance in terms of $\pi\pi/\bar{K}K$ rescattering

- \rightarrow Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- sum-rule violations in S-wave rescattering are very small
- result largely basis independent
- together with I = 2 leads to

 $a_{\mu}^{\mathrm{HLbL}}[S$ -wave rescattering] = $-8.7(1.0) \times 10^{-11}$

- \rightarrow Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- dispersive $f_0(980)$ contribution estimated from deficit in shape of integrand:

 $a_{\mu}^{\text{HLbL}}[f_0(980)]_{\text{rescattering}} = -0.2(1) \times 10^{-11}$

- → Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- dispersive *f*₀(980) contribution can be compared to NWA in the same basis for HLbL
- using TFFs from quark model \rightarrow Schuler et al. (1998)

$$a_{\mu}^{\mathrm{HLbL}}[f_0(980)]_{\mathrm{NWA}} = -0.37(6) \times 10^{-11}$$

with $M_{f_0(980)} = 0.99~{\rm GeV},$ $\Gamma_{\gamma\gamma}[f_0(980)] = 0.31(5)~{\rm keV}$

- differences to NW estimates of → Knecht et al., PLB 787 (2018) 111 mainly due to propagator model, corresponding to a different HLbL basis
- comparison to \rightarrow Pauk, Vanderhaeghen, EPJC 74 (2014) 3008 difficult due to kinematic singularities

- → Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502
- NWA for $a_0(980)$:

$$a_{\mu}^{\text{HLbL}}[a_0(980)]_{\text{NWA}} = -\left([0.4, 0.6]^{+0.2}_{-0.1}\right) \times 10^{-11} \,,$$

where TFF scale is given by $[M_{\rho}, M_S]$

leads to

$$a_{\mu}^{\mathrm{HLbL}}[\mathrm{scalars}] = -9(1) \times 10^{-11}$$

- even heavier scalars: small contribution around -1 × 10⁻¹¹, but very uncertain two-photon coupling (not seen prominently in γγ reactions)
 - \Rightarrow better treat in some form in asymptotic matching