Axial-vector and tensor contributions in four- and three-point dispersive approaches

Peter Stoffer

Physik-Institut, University of Zurich, and Paul Scherrer Institut

in collaboration with M. Hoferichter and **M. Zillinger**

[2402.14060 \[hep-ph\],](https://arxiv.org/abs/2402.14060) to appear in JHEP,

with **J. Lüdtke** and M. Procura

JHEP **04** [\(2023\) 125](https://arxiv.org/abs/2302.12264) and work in progress

and with **N. Geralis**, **E. Kaziukenas ˙** , and **J.-N. Toelstede**

work in progress

Muon $q - 2$ Theory Initiative Spring 2024 meeting

April 17, 2024

…………
ce Foundation

1

[Introduction](#page-2-0)

- [Optimized HLbL basis for resonance contributions](#page-7-0)
- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)

[Summary](#page-29-0)

[Introduction](#page-2-0)

- [Optimized HLbL basis for resonance contributions](#page-7-0)
- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)
- [Summary](#page-29-0)

Analytic HLbL: main issues

- uncertainties dominated by parts that are not (yet) incorporated in dispersive framework
- required input for axial-vector & tensor **transition form factors** (TFFs)
- kinematic singularities & ambiguities for narrow resonances
- matching to short-distance constraints (SDCs)
	- cover everything that is not explicitly included as hadronic intermediate state
	- avoid double counting

J.

[Introduction](#page-2-0)

White Paper estimate

→ T. Aoyama *et al.*, Phys. Rept. **887** (2020) 1-166

White Paper estimate

→ T. Aoyama *et al.*, Phys. Rept. **887** (2020) 1-166

Some of the progress after White Paper

[Introduction](#page-2-0)

- scalar contributions in dispersive framework
	- → Danilkin, Hoferichter, Stoffer, PLB **820** (2021) 136502
- first steps towards including axials in dispersive framework → Zanke, Hoferichter, Kubis, JHEP **07** (2021) 106; JHEP **08** (2023) 209, Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC **81** (2021) 702
- holographic-QCD models point to rather large axial contribution → **talk by A. Rebhan**
- beyond spin 1: new dispersive framework in soft-photon kinematic limit
	- → Lüdtke, Procura, Stoffer, JHEP **04** (2023) 125

Overview

[Introduction](#page-2-0)

[Optimized HLbL basis for resonance contributions](#page-7-0)

- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)
- [Summary](#page-29-0)

Kinematic singularities

- HLbL coefficient functions $\tilde{\Pi}_i$ free from kinematic singularities in Mandelstam variables \Rightarrow enables dispersive treatment [→] Colangelo, Hoferichter, Procura, Stoffer, JHEP **⁰⁴** (2017) 161
- not free from kinematic singularities in q_i^2 , but **residues vanish** due to sum rules
- kinematic singularities can be subtracted, but introduce **ambiguities** if sum rules are violated
- narrow resonances (apart from pseudoscalars) do not fulfill sum rules individually

Optimized basis for resonances

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- **new basis** constructed **without singularities** for pseudoscalars, scalars, S-wave rescattering, axial-vectors
- remaining singularities **much simplified**: only $1/q_i^2$ poles appear (and $1/(q_i^2+q_j^2)$, outside $g-2$ integration region)

Optimized basis for resonances

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- convergence of **partial-wave expansion** checked in new basis for pion box: found even slight improvement

[Introduction](#page-2-0)

- [Optimized HLbL basis for resonance contributions](#page-7-0)
- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)
- [Summary](#page-29-0)

Axial vectors in optimized basis

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- → Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC **81** (2021) 702
- **axial-vector poles** in **transverse part** of HLbL

→ Lüdtke, Procura, Stoffer, JHEP **04** (2023) 125

• **longitudinal part**: axial-vector pole in Mandelstam variable s cancels with numerator in $g-2$ limit $s \rightarrow q_3^2$, but leaves **non-pole contribution**

$$
\bar{\Pi}_{1}^{\text{axial}} = \frac{G_{2}(q_{1}^{2}, q_{2}^{2})G_{1}(q_{3}^{2})}{M_{A}^{6}},
$$
\n
$$
G_{1}(q_{3}^{2}) = \mathcal{F}_{1}(q_{3}^{2}, 0) + \mathcal{F}_{2}(q_{3}^{2}, 0),
$$
\n
$$
G_{2}(q_{1}^{2}, q_{2}^{2}) = (q_{1}^{2} - q_{2}^{2})\mathcal{F}_{1}(q_{1}^{2}, q_{2}^{2}) + q_{1}^{2}\mathcal{F}_{2}(q_{1}^{2}, q_{2}^{2}) + q_{2}^{2}\mathcal{F}_{2}(q_{2}^{2}, q_{1}^{2})
$$

Axial vectors: TFF input

- **asymptotic constraints** on TFFs from light-cone expansion [→] Hoferichter, Stoffer, JHEP **⁰⁵** (2020) 159
- f_1 TFFs: experimental constraints analyzed in a VMD representation

→ Zanke, Hoferichter, Kubis, JHEP **07** (2021) 106; JHEP **08** (2023) 209

- f'_1 and a_1 TFFs could be related via $U(3)$ symmetry
- holographic-QCD models can provide useful input

→ **talk by A. Rebhan**

Axial vectors: TFF input

- with a given input for the axial-vector TFFs, we are now in a position to compute $a_{\mu}^{\mathrm{axials}}$ in the established four-point **dispersive approach**
- numerical analysis in progress: **interplay with SDCs** is essential

[Introduction](#page-2-0)

- [Optimized HLbL basis for resonance contributions](#page-7-0)
- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)
- [Summary](#page-29-0)

Tensor mesons in optimized basis

- \rightarrow Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
- kinematic singularities **much simplified**: e.g., no singularities if only $\mathcal{F}_{1,3}^T$ or only $\mathcal{F}_{2,3}^T$ are present
- enables simple benchmark evaluation, e.g., with \mathcal{F}^T_1 from quark-model ($\mathcal{F}_{2,3,4,5}^T=0$)
- even then: sum-rule violations lead to **basis dependence**

Tensor mesons in optimized basis

- tensor-meson contribution including all TFFs (and $\pi\pi$ D-wave contribution) affected by **kinematic singularities**
- for spin > 1 , problem **cannot be solved** by basis change as for axials
- requires **new dispersive framework** in tree-point kinematics

Input for tensor mesons

- **asymptotic constraints** on TFFs from light-cone expansion [→] Hoferichter, Stoffer, JHEP **⁰⁵** (2020) 159
- similarity to $f_0(980)$ and S-waves: $f_2(1270)$ contribution should be compared in NWA and via $\pi\pi$ **rescattering**
- $\bullet \ \gamma^{*} \gamma^{*} \to \pi \pi$ helicity partial waves solved with Omnès methods including D -waves
	- → Hoferichter, Stoffer, JHEP **07** (2019) 073
	- → Danilkin, Deineka, Vanderhaeghen, PRD **101** (5) (2020) 054008
- future $\gamma^*\gamma\to\pi\pi$ single-tag measurements at BESIII will be useful to constrain q^2 dependence

Input for tensor mesons

→ T. Aoyama *et al.*, Phys. Rept. **887** (2020) 1-166

Overview

- [Optimized HLbL basis for resonance contributions](#page-7-0)
- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)
- [Summary](#page-29-0)

Master formula: HLbL contribution to $(g-2)_u$

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP **09** (2015) 074, JHEP **04** (2017) 161

$$
a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3
$$

$$
\times \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)
$$

- T_i : known integration kernels
- $\bar{\Pi}_i$: hadronic scalar functions
- Euclidean momenta: $Q_i^2 = -q_i^2$
- $Q_3^2 = Q_1^2 + Q_2^2 + 2Q_1Q_2\tau$

DR in four-point kinematics

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP **09** (2015) 074, JHEP **04** (2017) 161

- first write DR in four-point kinematics
- take $q_4 \rightarrow 0$ limit **in the very end**

DR in triangle kinematics

- external photon at $q_4 \rightarrow 0$
- imaginary parts reconstructed for g − 2 **kinematics**

DR in triangle kinematics

- more complicated unitarity relation, more sub-processes
- redundancies and kinematic singularities **manifestly absent**
- combination of two dispersive approaches: assess **truncation errors**
- potentially **simplified matching to SDCs**

DR in triangle kinematics

- more complicated unitarity relation, more sub-processes
- redundancies and kinematic singularities **manifestly absent**
- combination of two dispersive approaches: assess **truncation errors**
- potentially **simplified matching to SDCs**

More sub-processes

• cancellation of soft divergences: solved for $\pi\pi \to \pi\pi\gamma$

 \rightarrow Lüdtke, Procura, Stoffer, in preparation

• test case: understand reshuffling and truncation effects in $\gamma^*\gamma \to \pi\pi$

 \rightarrow Geralis, Kaziukėnas, Stoffer, Toelstede, work in progress

• apply same methods to $\gamma^* \gamma^* \gamma \to \pi \pi$

→ Lüdtke, Procura, Stoffer, JHEP **04** (2023) 125

 \rightarrow Geralis, Kaziukėnas, Stoffer, Toelstede, work in progress

Reshuffling between two dispersive approaches

Proof of concept: VVA

 \rightarrow Lüdtke, Procura, Stoffer, to appear

• reshuffling much easier to understand in VVA

• side-product: improved prediction for EW contribution to a_{μ}

Overview

[Introduction](#page-2-0)

- [Optimized HLbL basis for resonance contributions](#page-7-0)
- [Axial-vector contributions in dispersive framework](#page-11-0)
- [Tensor contributions in dispersive framework](#page-15-0)
- [Dispersion relations in three-point kinematics](#page-20-0)

[Summary](#page-29-0)

Conclusions

[Summary](#page-29-0)

- conceptual obstacles for inclusion of **axial vectors** in NWA in dispersive framework resolved
- given data situation and asymptotic constraints, prospects best for a phenomenologically driven determination of $f_1(1285)$ contribution
- **tensor mesons:** compare NWA with $\pi\pi$ **rescattering:** $\gamma^*\gamma^*\to\pi\pi$ D -waves solved with Omnès methods
- full tensor contributions, assessment of overall uncertainties due to truncation and matching to SDCs: use combination with **new dispersive framework**

Backup

Narrow resonances

• in the NW limit, imaginary part from unitarity relation reduces to δ**-function**:

$$
\text{Im}_s \Pi^{\mu\nu\lambda\sigma} = \pi \delta(s - M^2) \mathcal{M}^{\mu\nu}(p \to q_1, q_2)^* \mathcal{M}^{\lambda\sigma}(p \to -q_3, q_4),
$$

$$
\mathcal{M}^{\mu\nu}(p \to q_1, q_2) = i \int d^4x e^{iq_1 \cdot x} \langle 0|T\{j_{\text{em}}^{\mu}(x)j_{\text{em}}^{\nu}(0)\}|p\rangle
$$

• project onto tensor decomposition for HLbL and plug into dispersion relation for scalar functions:

$$
\check{\Pi}_i(s) = \frac{1}{\pi} \int ds' \frac{\mathrm{Im} \check{\Pi}_i(s')}{s' - s}
$$

- δ -function, Cauchy kernel, and polarization sum combine to propagator-like structure
- dispersive result may differ from propagator models by non-pole terms

Narrow resonances

- decompose $\mathcal{M}^{\mu\nu}$ into Lorentz structures \times **transition form factors** (TFFs)
- in the NWA, dispersive definition only involves on-shell meson ⇒ **only physical TFFs** enter

Sum rules and basis (in)dependence

- HLbL tensor basis involves structures of **different mass dimension**
- scalar coefficient functions of higher-dimension structures asymptotically fall off faster
- implies **sum rules** for those coefficient functions:

$$
0 = \frac{1}{\pi} \int ds' \operatorname{Im} \check{\Pi}_i(s')
$$

• guarantees **basis independence** of entire HLbL

Sum rules and basis (in)dependence

• sum-rule contribution of single-particle state (resonance):

$$
\text{Im}\check{\Pi}_i(s') \sim \pi \delta(s'-M^2) \mathcal{F}(q_1^2, q_2^2) \mathcal{F}(q_3^2, 0)
$$

$$
\Rightarrow \frac{1}{\pi} \int ds' \text{Im}\check{\Pi}_i(s') \sim \mathcal{F}(q_1^2, q_2^2) \mathcal{F}(q_3^2, 0) \neq 0
$$

- sum rules **not fulfilled** by resonances
	- ⇒ NW contribution to HLbL is **basis dependent**
- basis dependence only needs to cancel in sum over intermediate states
- only pseudoscalars do not contribute to sum rules ⇒ unambiguous

- → Danilkin, Hoferichter, Stoffer, PLB **820** (2021) 136502
- $\pi\pi$ rescattering previously limited to $f_0(500)$ → Colangelo, Hoferichter, Procura, Stoffer, JHEP **04** (2017) 161, PRL **118** (2017) 232001
- extension up to \sim 1.3 GeV by using coupled-channel $\gamma^*\gamma^* \to \pi\pi/\bar{K}K$ S-waves for $I=0$

→ Danilkin, Deineka, Vanderhaeghen, PRD **101** (2020) 054008

• covers $f_0(980)$, dispersive description of resonance in terms of $\pi \pi / K K$ rescattering

- → Danilkin, Hoferichter, Stoffer, PLB **820** (2021) 136502
- sum-rule violations in S -wave rescattering are very small
- result largely **basis independent**
- together with $I = 2$ leads to

 $a_{\mu}^{\mathrm{HLbL}}[S\text{-wave rescattering}] = -8.7(1.0) \times 10^{-11}$

- → Danilkin, Hoferichter, Stoffer, PLB **820** (2021) 136502
- dispersive $f_0(980)$ contribution estimated from deficit in shape of integrand:

 $a_\mu^{\mathrm{HLbL}}[f_0(980)]$ rescattering $=-0.2(1)\times 10^{-11}$

- → Danilkin, Hoferichter, Stoffer, PLB **820** (2021) 136502
- dispersive $f_0(980)$ contribution can be compared to **NWA in the same basis** for HLbL
- using TFFs from quark model \rightarrow Schuler et al. (1998)

$$
a_{\mu}^{\text{HLbL}}[f_0(980)]_{\text{NWA}} = -0.37(6) \times 10^{-11}
$$

with $M_{f_0(980)} = 0.99$ GeV, $\Gamma_{\gamma\gamma}[f_0(980)] = 0.31(5)$ keV

- differences to NW estimates of [→] Knecht et al., PLB **⁷⁸⁷** (2018) 111 mainly due to propagator model, corresponding to a different HLbL basis
- comparison to [→] Pauk, Vanderhaeghen, EPJC **⁷⁴** (2014) 3008 difficult $_{38}$ due to kinematic singularities

- → Danilkin, Hoferichter, Stoffer, PLB **820** (2021) 136502
- NWA for $a_0(980)$:

$$
a_{\mu}^{\mathrm{HLbL}}[a_0(980)]_{\mathrm{NWA}} = -([0.4, 0.6]_{-0.1}^{+0.2}) \times 10^{-11},
$$

where TFF scale is given by $[M_{\rho}, M_{S}]$

• leads to

$$
a_{\mu}^{\mathrm{HLbL}}[\mathrm{scalars}] = -9(1) \times 10^{-11}
$$

- even heavier scalars: small contribution around -1×10^{-11} , but very uncertain two-photon coupling (not seen prominently in $\gamma\gamma$ reactions)
	- \Rightarrow better treat in some form in asymptotic matching