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1 Introduction

Analytic HLbL: main issues

• uncertainties dominated by parts that are not (yet)

incorporated in dispersive framework

• required input for axial-vector & tensor transition form
factors (TFFs)

• kinematic singularities & ambiguities for narrow

resonances
• matching to short-distance constraints (SDCs)

• cover everything that is not explicitly included as hadronic
intermediate state

• avoid double counting
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1 Introduction

White Paper estimate
→ T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

1011 × aµ 1011 ×∆aµ

π0, η, η′-poles 93.8 4.0

pion/kaon box −16.4 0.2

S-wave ππ rescattering −8 1

scalars, tensors −1 3

axials 6 6

light quarks, short distance 15 10

c-loop 3 1

HLbL total (LO) 92 19
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1 Introduction

Some of the progress after White Paper
• scalar contributions in dispersive framework

→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

• first steps towards including axials in dispersive framework
→ Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106; JHEP 08 (2023) 209,
Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC 81 (2021) 702

• holographic-QCD models point to rather large axial contribution
→ talk by A. Rebhan

• beyond spin 1: new dispersive framework in soft-photon
kinematic limit
→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125
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2 Optimized HLbL basis for resonance contributions

Kinematic singularities

• HLbL coefficient functions Π̌i free from kinematic

singularities in Mandelstam variables ⇒ enables dispersive

treatment → Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161

• not free from kinematic singularities in q2i , but residues
vanish due to sum rules

• kinematic singularities can be subtracted, but introduce

ambiguities if sum rules are violated

• narrow resonances (apart from pseudoscalars) do not fulfill

sum rules individually

8



2 Optimized HLbL basis for resonance contributions

Optimized basis for resonances
→ Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)

• new basis constructed without singularities for

pseudoscalars, scalars, S-wave rescattering, axial-vectors

• remaining singularities much simplified: only 1/q2i poles

appear (and 1/(q2i + q2j ), outside g − 2 integration region)
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2 Optimized HLbL basis for resonance contributions

Optimized basis for resonances
→ Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)

• convergence of partial-wave expansion checked in new

basis for pion box: found even slight improvement
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3 Axial-vector contributions in dispersive framework

Axial vectors in optimized basis
→ Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)
→ Colangelo, Hagelstein, Hoferichter, Laub, Stoffer, EPJC 81 (2021) 702

• axial-vector poles in transverse part of HLbL

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

• longitudinal part: axial-vector pole in Mandelstam

variable s cancels with numerator in g − 2 limit s → q23, but

leaves non-pole contribution
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3 Axial-vector contributions in dispersive framework

Axial vectors: TFF input

• asymptotic constraints on TFFs from light-cone

expansion → Hoferichter, Stoffer, JHEP 05 (2020) 159

• f1 TFFs: experimental constraints analyzed in a VMD

representation

→ Zanke, Hoferichter, Kubis, JHEP 07 (2021) 106; JHEP 08 (2023) 209

• f ′
1 and a1 TFFs could be related via U(3) symmetry

• holographic-QCD models can provide useful input

→ talk by A. Rebhan
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3 Axial-vector contributions in dispersive framework

Axial vectors: TFF input

• with a given input for the axial-vector TFFs, we are now in

a position to compute aaxials
µ in the established four-point

dispersive approach

• numerical analysis in progress: interplay with SDCs is

essential
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4 Tensor contributions in dispersive framework

Tensor mesons in optimized basis
→ Hoferichter, Stoffer, Zillinger, arXiv:2402.14060 [hep-ph] (to appear in JHEP)

• kinematic singularities much simplified: e.g., no

singularities if only FT
1,3 or only FT

2,3 are present

• enables simple benchmark evaluation, e.g., with FT
1 from

quark-model (FT
2,3,4,5 = 0)

• even then: sum-rule violations lead to basis dependence
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4 Tensor contributions in dispersive framework

Tensor mesons in optimized basis

• tensor-meson contribution including all TFFs (and ππ

D-wave contribution) affected by kinematic singularities

• for spin > 1, problem cannot be solved by basis change

as for axials

• requires new dispersive framework in tree-point

kinematics

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125
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4 Tensor contributions in dispersive framework

Input for tensor mesons

• asymptotic constraints on TFFs from light-cone

expansion → Hoferichter, Stoffer, JHEP 05 (2020) 159

• similarity to f0(980) and S-waves: f2(1270) contribution

should be compared in NWA and via ππ rescattering

• γ∗γ∗ → ππ helicity partial waves solved with Omnès

methods including D-waves

→ Hoferichter, Stoffer, JHEP 07 (2019) 073

→ Danilkin, Deineka, Vanderhaeghen, PRD 101 (5) (2020) 054008

• future γ∗γ → ππ single-tag measurements at BESIII will be

useful to constrain q2 dependence
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4 Tensor contributions in dispersive framework

Input for tensor mesons
T. Aoyama, N. Asmussen, M. Benayoun et al. Physics Reports 887 (2020) 1–166

Fig. 65. Predictions for the cross section for � ⇤� ⇤ ! ⇡+⇡� (left) and � ⇤� ⇤ ! ⇡0⇡0 (right) for Q 2
1 = Q 2

2 = 0.5GeV2 from HS19 [670] and
DDV19 [677] compared to the Born results (dotted curves).

101

→ T. Aoyama et al., Phys. Rept. 887 (2020) 1-166
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5 Dispersion relations in three-point kinematics

Master formula: HLbL contribution to (g − 2)µ

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) 074, JHEP 04 (2017) 161

aHLbL
µ =

2α3

3π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ

√
1− τ2Q3

1Q
3
2

×
12∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

• Ti: known integration kernels

• Π̄i: hadronic scalar functions

• Euclidean momenta: Q2
i = −q2i

• Q2
3 = Q2

1 +Q2
2 + 2Q1Q2τ
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5 Dispersion relations in three-point kinematics

DR in four-point kinematics
→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) 074, JHEP 04 (2017) 161

= + + + . . .

• first write DR in four-point kinematics

• take q4 → 0 limit in the very end
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5 Dispersion relations in three-point kinematics

DR in triangle kinematics
→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

= +

• external photon at q4 → 0

• imaginary parts reconstructed for g − 2 kinematics
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5 Dispersion relations in three-point kinematics

DR in triangle kinematics
→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

= + + + . . .

= + + + . . .

• more complicated unitarity relation, more sub-processes

• redundancies and kinematic singularities manifestly
absent

• combination of two dispersive approaches: assess

truncation errors

• potentially simplified matching to SDCs
24
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5 Dispersion relations in three-point kinematics

More sub-processes

• cancellation of soft divergences: solved for ππ → ππγ

→ Lüdtke, Procura, Stoffer, in preparation

• test case: understand reshuffling and truncation effects in

γ∗γ → ππ

→ Geralis, Kaziukėnas, Stoffer, Toelstede, work in progress

• apply same methods to γ∗γ∗γ → ππ

→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

→ Geralis, Kaziukėnas, Stoffer, Toelstede, work in progress
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5 Dispersion relations in three-point kinematics

Reshuffling between two dispersive approaches
→ Lüdtke, Procura, Stoffer, JHEP 04 (2023) 125

DR in four-point kinematics

triangle-DR ⇡0, ⌘, ⌘0 2⇡ S A T . . .

⇡0, ⌘, ⌘0 ⇥ ⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥ ⇥

2⇡

V

S ⇥ ⇥ ⇥ ⇥ ⇥

A ⇥ ⇥ ⇥ ⇥ ⇥

T ⇥ ⇥ ⇥ ⇥ ⇥

. . . . . .

Table 1: Comparison of di↵erent unitarity contributions in the established dispersive approach and the
proposed dispersion relations in triangle kinematics. The soft external photon is denoted by a crossed circle.
The longer dashed line is the primary cut in triangle-kinematics dispersion relations. Cuts through gray
blobs denote even higher intermediate states that need to be covered via the implementation of asymptotic
constraints. Some scalar and tensor resonances correspond to a NWA of two-pion contributions. Depending
on the dispersion relation for the sub-processes, the diagrams in the first row of the V intermediate state
only contribute to normalizations. The light-gray diagrams are already taken into account by implementing
crossing symmetry (which is not shown explicitly), hence these topologies should be excluded in order to
avoid a double counting.

5 Single-particle intermediate states

As shown in Fig. 2 and Tab. 1, the s-channel cut receives single-particle contributions from pseu-

doscalar poles, as well as from resonances in the NWA. The q2
3-channel discontinuity receives

single-particle contributions only in the NWA due to vector-meson resonances.

In Sect. 5.1, we work out the explicit expression for the pion-pole contribution in triangle

kinematics and compare the result to the pion pole in the established dispersion relations in four-

point kinematics. Similar results follow immediately for the other pseudoscalars ⌘ and ⌘0. In Sect. 5.2,

we derive analogous expressions for resonance contributions in the NWA. In Sect. 5.3, we discuss

vector-meson resonances in the q2
3-channel.

– 12 –
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5 Dispersion relations in three-point kinematics

Proof of concept: VVA
→ Lüdtke, Procura, Stoffer, to appear

DR for fixed photon virtualities

g � 2 DR ⇡0, ⌘, ⌘0 A . . .

⇡0, ⌘, ⌘0 ⇥ ⇥

2⇡

V

A ⇥ ⇥

. . . . . .

– 19 –

• reshuffling much easier

to understand in VVA

• side-product: improved prediction for EW contribution to aµ
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6 Summary

Conclusions

• conceptual obstacles for inclusion of axial vectors in NWA

in dispersive framework resolved

• given data situation and asymptotic constraints, prospects

best for a phenomenologically driven determination of

f1(1285) contribution

• tensor mesons: compare NWA with ππ rescattering:

γ∗γ∗ → ππ D-waves solved with Omnès methods

• full tensor contributions, assessment of overall

uncertainties due to truncation and matching to SDCs: use

combination with new dispersive framework
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7 Backup Narrow resonances and sum rules

Narrow resonances

• in the NW limit, imaginary part from unitarity relation

reduces to δ-function:

ImsΠ
µνλσ = πδ(s−M2)Mµν(p → q1, q2)

∗Mλσ(p → −q3, q4) ,

Mµν(p → q1, q2) = i

∫
d4xeiq1·x⟨0|T{jµem(x)jνem(0)}|p⟩

• project onto tensor decomposition for HLbL and plug into

dispersion relation for scalar functions:

Π̌i(s) =
1

π

∫
ds′

ImΠ̌i(s
′)

s′ − s

• δ-function, Cauchy kernel, and polarization sum combine

to propagator-like structure

• dispersive result may differ from propagator models by

non-pole terms
31



7 Backup Narrow resonances and sum rules

Narrow resonances

• decompose Mµν into Lorentz structures × transition
form factors (TFFs)

• in the NWA, dispersive definition only involves on-shell

meson ⇒ only physical TFFs enter
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7 Backup Narrow resonances and sum rules

Sum rules and basis (in)dependence

• HLbL tensor basis involves structures of different mass
dimension

• scalar coefficient functions of higher-dimension structures

asymptotically fall off faster
• implies sum rules for those coefficient functions:

0 =
1

π

∫
ds′ ImΠ̌i(s

′)

• guarantees basis independence of entire HLbL

33



7 Backup Narrow resonances and sum rules

Sum rules and basis (in)dependence

• sum-rule contribution of single-particle state (resonance):

ImΠ̌i(s
′) ∼ πδ(s′ −M2)F(q21, q

2
2)F(q23, 0)

⇒ 1

π

∫
ds′ ImΠ̌i(s

′) ∼ F(q21, q
2
2)F(q23, 0) ̸= 0

• sum rules not fulfilled by resonances

⇒ NW contribution to HLbL is basis dependent

• basis dependence only needs to cancel in sum over

intermediate states

• only pseudoscalars do not contribute to sum rules

⇒ unambiguous
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7 Backup Scalar contributions

Dispersive evaluation of f0(980) contribution
→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

• ππ rescattering previously limited to f0(500)

→ Colangelo, Hoferichter, Procura, Stoffer, JHEP 04 (2017) 161,

PRL 118 (2017) 232001

• extension up to ∼ 1.3 GeV by using coupled-channel

γ∗γ∗ → ππ/K̄K S-waves for I = 0

→ Danilkin, Deineka, Vanderhaeghen, PRD 101 (2020) 054008

• covers f0(980), dispersive description of resonance in

terms of ππ/K̄K rescattering
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7 Backup Scalar contributions

Dispersive evaluation of f0(980) contribution
→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

• sum-rule violations in S-wave rescattering are very small

• result largely basis independent

• together with I = 2 leads to

aHLbL
µ [S-wave rescattering] = −8.7(1.0)× 10−11

36



7 Backup Scalar contributions

Dispersive evaluation of f0(980) contribution
→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

• dispersive f0(980) contribution estimated from deficit in

shape of integrand:
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Figure 2: Integrand from Eq. (25) for the rescattering contribution, for the f0(500) (left) and the f0(980) (right). Note the di↵erent scales in both cases.

and with Ma0(980) = 0.98 GeV and ���[a0(980)] =

0.3(1) keV [89] a similar range would be expected for the
a0(980). An improved evaluation of the isospin I = 1 chan-
nel could be obtained from a coupled-channel analysis of the
doubly-virtual helicity amplitudes for �⇤�⇤ ! ⇡⌘/K̄K [92–
94], following the same strategy as for the f0(980). In fact,
the coupled-channel analysis from Ref. [94] (based on the data
from Refs. [95–97]) prefers a width ���[a0(980)] = 0.5+0.2

�0.1 keV,
which translates to

aHLbL
µ [a0(980)] = �

⇣
0.6+0.2
�0.1

⌘
⇥ 10�11, (29)

or a slightly lower range, aHLbL
µ [a0(980)] = ��0.4+0.2

�0.1
� ⇥ 10�11,

if instead a VMD scale were used in the TFFs.
We stress that when combining or comparing di↵erent con-

tributions to HLbL, one should work within one unified frame-
work, provided here by the dispersive framework and tensor ba-
sis of Refs. [19, 20]. The basis dependence of the narrow scalar
contribution can be illustrated by either settingF S

2 = 0, or using
the Lagrangian description by the replacement m2

S + q2
1 + q2

2 7!
q2

3 + q2
1 + q2

2 as mentioned after Eq. (16), which with otherwise
unchanged input for the TFFs (in particular, scale mS ) would
result in

aHLbL
µ [ f0(980)]

���F
S

2 =0
NWA = �0.47(8) ⇥ 10�11,

aHLbL
µ [ f0(980)]

���Lagrangian
NWA = �0.25(4) ⇥ 10�11. (30)

In Ref. [40], the f0(980) contribution is estimated in a La-
grangian model, keeping only the transverse helicity ampli-
tude, which is then parameterized using a monopole form fac-
tor with scale varied between (1–2) GeV, leading to a range
�(0.19–0.61) ⇥ 10�11. The representation in terms of a sin-
gle helicity amplitude combined with the Lagrangian defini-
tion resulted in kinematic singularities, which were removed
by hand through angular averages. We emphasize that we can-
not use the same input as Ref. [40] to reproduce these results
using the BTT master formula for HLbL, in which a priori
there are no kinematic singularities. A transverse f0(980) is
obtained for F2 = �2m2

S /(m
2
S � q2

1 � q2
2)F1 [62], which with a

monopole ansatz for F1 gives for the pole contribution a range
�(0.40–0.49) ⇥ 10�11. Multiplying both form factors with an

additional factor of (m2
S � q2

1 � q2
2)/�12(m2

S ) would be closer in
spirit to Ref. [40], leading to a range �(0.55–0.97)⇥10�11. Both
variants are quite di↵erent from the range from Ref. [40] quoted
above.

A NWA for the f0(980) is also considered in Ref. [43], which
uses the tensor decomposition (13) without kinematic singu-
larities, but again is based on a Lagrangian definition of the
scalar contribution. The results are given as a function of a
parameter S , where S = 0 corresponds to switching o↵ F S

2
and reduces F S

1 to a pure VMD form. The result without F S
2 ,

�0.42(9) ⇥ 10�11, is close to Eq. (30), and quantifies the di↵er-
ence in the TFF input, where we believe that the quark model
from Ref. [88] is more reliable because of the better imple-
mentation of the short-distance constraints [62] described in
Sec. 2.3 (see Refs. [62, 98] for the comparison to the singly-
virtual data from Belle [99]). The di↵erence to the results in-
cluding F S

2 , �0.07(2) ⇥ 10�11, is mainly explained by their La-
grangian definition that includes non-pole pieces and to a lesser
degree by the di↵erent TFF parameterizations. We checked that
their spread for S 2 [0, 1] is much reduced when the dispersive
basis of Refs. [19, 20] is used instead.

References [40, 43] also consider even heavier scalars,
based on estimates of their two-photon coupling, e.g.,
���[ f0(1370)] = 3.8(1.5) keV [100]. This estimate, however,
describes a combined e↵ect of f0(500) and f0(1370), which
could not be reliably separated at the time. In more recent
partial-wave analyses the f0(500) couplings can be isolated,
while the e↵ect of the f0(1370) is barely seen in �� reac-
tions. In fact, the number ���[ f0(1370)] = 4.0(1.9) keV given in
Ref. [87] is accompanied by an explicit warning that even with
its large error this number does not have the credibility of the
other two-photon couplings (associating one star with the re-
sult). The situation is slightly better for the a0(1450), for which
Ref. [94] quotes ���[a0(1450)] = 1.05+0.50

�0.30 keV. Using SU(3)
assumptions, the decay widths of the excited scalars are related
by

���[a0(1450)] =
���[ f0(1370)]
3 cos2(✓A � ✓0)

Ma0(1450)

Mf0(1370)

=
���[ f0(1500)]

3 sin2(✓A � ✓0)

Ma0(1450)

Mf0(1500)
, (31)

6

aHLbL
µ [f0(980)]rescattering = −0.2(1)× 10−11
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7 Backup Scalar contributions

Dispersive evaluation of f0(980) contribution
→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

• dispersive f0(980) contribution can be compared to NWA
in the same basis for HLbL

• using TFFs from quark model → Schuler et al. (1998)

aHLbL
µ [f0(980)]NWA = −0.37(6)× 10−11

with Mf0(980) = 0.99 GeV, Γγγ [f0(980)] = 0.31(5) keV

• differences to NW estimates of → Knecht et al., PLB 787 (2018) 111

mainly due to propagator model, corresponding to a

different HLbL basis

• comparison to → Pauk, Vanderhaeghen, EPJC 74 (2014) 3008 difficult

due to kinematic singularities38



7 Backup Scalar contributions

Dispersive evaluation of f0(980) contribution
→ Danilkin, Hoferichter, Stoffer, PLB 820 (2021) 136502

• NWA for a0(980):

aHLbL
µ [a0(980)]NWA = −

(
[0.4, 0.6]+0.2

−0.1

)
× 10−11 ,

where TFF scale is given by [Mρ,MS ]

• leads to

aHLbL
µ [scalars] = −9(1)× 10−11

• even heavier scalars: small contribution around

−1× 10−11, but very uncertain two-photon coupling (not

seen prominently in γγ reactions)

⇒ better treat in some form in asymptotic matching
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