

Muon g-2 Theory Initiative Spring 2024 meeting

Monte Carlo generator comparison studies

Yannick Ulrich

for the Community Effort on low-energy $e^{+}e^{-}\ \mbox{collisions}$

AEC, University of Bern

22 April 2024

a community effort for theory improvement for $e^+e^- \to \text{stuff}$ for $\sqrt{s} \lesssim \text{few GeV}$

- started in spring 2022, largely independently of $(g-2)_{\mu}$
- goal: state-of-the-art predictions (ie. NNLO+ for leptonic processes) for

$$e^{+}e^{-} \to \mu^{+}\mu^{-} + \gamma\{+\gamma\}$$

$$e^{+}e^{-} \to e^{+}e^{-} + \gamma\{+\gamma\}$$

$$e^{+}e^{-} \to \pi^{+}\pi^{-} + \gamma\{+\gamma\}$$

other processes to remember

$$\begin{array}{l} e^{+}e^{-} \to \gamma \gamma \{+\gamma \gamma\} \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0} \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}\pi^{0} \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{+}\pi^{-} \end{array}$$

... not (just) because of $(g-2)_{\mu}$

• inspired by [0912.0749]

Eur. Phys. J. C (2010) 66: 585-686 DOI 10.1140/epic/s10052-010-1251-4 THE EUROPEAN PHYSICAL JOURNAL C

Review

Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies

- improve SM precision tests at low energy
- ... but of course also provide input for (q-2)
- a lot has happened since 2009, $2 \rightarrow 2$ NNLO & NLL is standard @ LHC
- apply this to low-energy physics

WP1: QED for leptons at NNLO

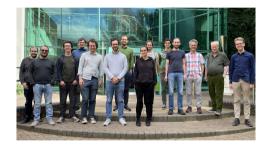
WP2: Form factor contributions at N³LO

WP3: Processes with hadrons

WP4: Parton showers / YFS

WP5: Experimental input

 $ee o \pi\pi$


- 2009: previous report
- 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich

- 2009: previous report
- 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich
- spring 2022: initial discussion
- summer 2022: WP2 workstop in Durham
- autumn 2022: teams formed & work begins

- 2009: previous report
- 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich
- spring 2022: initial discussion
- summer 2022: WP2 workstop in Durham
- autumn 2022: teams formed & work begins
- summer 2023: workstop on WP1-5

- 2009: previous report
- 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich
- spring 2022: initial discussion
- summer 2022: WP2 workstop in Durham
- autumn 2022: teams formed & work begins
- summer 2023: workstop on WP1-5
- winter 2023/4: Monte Carlo comparison begins
- spring 2024: writing begins
- summer 2024: report on arXiv
- work continues

which corrections are known? which matter?

- many different codes exist, all implement different corrections structure functions, YFS, Parton Shower, full radiative NLO, full NNLO, partial NNLO, ...
- a priori unclear how important each of these are
- ... will also depend on the kinematics
- what to focus on in the future? full radiative NNLO, ISR N³LO ($ee \rightarrow \gamma^*$), FsQED-ish NNLO ($ee \rightarrow \gamma^* \gamma^*$), sNLL / cLL resummation. ...

our goal

- living: new results can be added at any point (though the paper cut-off has passed)
- reproducible & Open Science: all codes should be accessible and the runs documented
- collection of standard candles: future codes can be benchmarked against this

do not try to do an experimental analysis, do try to mimic what's relevant

• CMD
$$ee \rightarrow ee, \mu\mu, \pi\pi, \sqrt{s} = 0.7 \,\text{GeV}$$

• KLOE
$$ee \rightarrow \{ee, \mu\mu, \pi\pi\} + \gamma, \sqrt{s} = 1.02 \,\text{GeV}$$
:

large angle (tagged photon)

🔰 link 🦊 link

small angle (untagged photon)

• BESIII $ee \rightarrow \{ee, \mu\mu, \pi\pi\} + \gamma, \sqrt{s} = 4 \text{ GeV}$

link 🤟

• generic B factory $ee \rightarrow \{ee, \mu\mu, \pi\pi\} + \gamma, \sqrt{s} = 10 \,\text{GeV}$

see GitLab for details & reference implementations

7 different codes to be included for the paper

- AfkQED: ISR coll. + NLO photon in the boosted system + FSR with Photos
- Babavaga: NLO+QED PS
- KKMC: YFS
- MCGP.J: NLO + collinear structures
- McMule: full NNLO for leptonic $2 \rightarrow 2$, ISR for $ee \rightarrow \pi\pi$
- Phokhara: full NLO for $2 \rightarrow 3$
- Sherpa: LO + YFS

more codes / effects can be included later

- this is meant to be a living review
- contact yannick.ulrich@cern.ch if you want your code in the database (but not the paper, sorry)

what to expect in the next few years

- improved Monte Carlo codes for $ee \rightarrow \ell\ell\gamma$ (approximate NNLO + resummation)
- improved Monte Carlo codes for $ee \rightarrow \gamma^* \rightarrow \pi\pi$ (ISR NNNLO + resummation)

what to hope for in the next few years

- further dispersive input for building blocks
- better understanding when FsQED is (how) ok and when it fails completely

what we will habe by summer

- an updated report Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e^+e^- collisions
- a living review of Monte Carlo codes

... for Radiative Corrections & Monte Carlo tools for low energy e^+e^- experiments

Paolo Beltrame³. Ettore Budassi^{1,2,4}. Carlo M. Carloni Calame⁴. Gilberto Colangelo³, Lorenzo Cotrozzi⁴, Anna Driutti⁵, Tim Engel^{1,2}, Lois Flower⁴. Andrea Gurgone^{1,2,4}. Martin Hoferichter^{1,2,3}. Fedor Ignatov^{1,2,3,4,5}. Sophie Kollatzsch^{1,2}. Bastian Kubis³. Andrzej Kupsc⁵, Fabian Lange^{1,2}, Alberto Lusiani⁵, Guido Montagna^{1,2,4}, Stefan E. Müller⁵. Oreste Nicrosini^{1,2,4}. Jérémy Paltrinieri^{1,2}. Fulvio Piccinini^{1,2,4}. Alan Price⁴. Lorenzo Punzi⁵. Marco Rocco^{1,2}. Pau Petit Rosàs^{1,2}, Kay Schönwald^{1,2}, Olga Shekhovtsova⁵, Adrian Signer^{1,2}. Andrzei Siódmok^{1,2,4} Giovanni Stagnitto^{1,2,4}. Peter Stoffer^{1,2,3}. Thomas Teubner³. William J. Torres Bobadilla^{1,2}. Francesco P. Ucci^{1,2,4}, Yannick Ulrich^{1,2,3}, Graziano Venanzoni⁵