Muon g-2 Theory Initiative Spring 2024 meeting # Monte Carlo generator comparison studies Yannick Ulrich for the Community Effort on low-energy $e^{+}e^{-}\ \mbox{collisions}$ AEC, University of Bern 22 April 2024 ## a community effort for theory improvement for $e^+e^- \to \text{stuff}$ for $\sqrt{s} \lesssim \text{few GeV}$ - started in spring 2022, largely independently of $(g-2)_{\mu}$ - goal: state-of-the-art predictions (ie. NNLO+ for leptonic processes) for $$e^{+}e^{-} \to \mu^{+}\mu^{-} + \gamma\{+\gamma\}$$ $$e^{+}e^{-} \to e^{+}e^{-} + \gamma\{+\gamma\}$$ $$e^{+}e^{-} \to \pi^{+}\pi^{-} + \gamma\{+\gamma\}$$ other processes to remember $$\begin{array}{l} e^{+}e^{-} \to \gamma \gamma \{+\gamma \gamma\} \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0} \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{0}\pi^{0} \\ e^{+}e^{-} \to \pi^{+}\pi^{-}\pi^{+}\pi^{-} \end{array}$$... not (just) because of $(g-2)_{\mu}$ • inspired by [0912.0749] Eur. Phys. J. C (2010) 66: 585-686 DOI 10.1140/epic/s10052-010-1251-4 THE EUROPEAN PHYSICAL JOURNAL C Review Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies - improve SM precision tests at low energy - ... but of course also provide input for (q-2) - a lot has happened since 2009, $2 \rightarrow 2$ NNLO & NLL is standard @ LHC - apply this to low-energy physics WP1: QED for leptons at NNLO WP2: Form factor contributions at N³LO WP3: Processes with hadrons WP4: Parton showers / YFS WP5: Experimental input $ee o \pi\pi$ - 2009: previous report - 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich - 2009: previous report - 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich - spring 2022: initial discussion - summer 2022: WP2 workstop in Durham - autumn 2022: teams formed & work begins - 2009: previous report - 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich - spring 2022: initial discussion - summer 2022: WP2 workstop in Durham - autumn 2022: teams formed & work begins - summer 2023: workstop on WP1-5 - 2009: previous report - 2019: WP1 workstop on $e\mu \rightarrow e\mu$ in Zurich - spring 2022: initial discussion - summer 2022: WP2 workstop in Durham - autumn 2022: teams formed & work begins - summer 2023: workstop on WP1-5 - winter 2023/4: Monte Carlo comparison begins - spring 2024: writing begins - summer 2024: report on arXiv - work continues #### which corrections are known? which matter? - many different codes exist, all implement different corrections structure functions, YFS, Parton Shower, full radiative NLO, full NNLO, partial NNLO, ... - a priori unclear how important each of these are - ... will also depend on the kinematics - what to focus on in the future? full radiative NNLO, ISR N³LO ($ee \rightarrow \gamma^*$), FsQED-ish NNLO ($ee \rightarrow \gamma^* \gamma^*$), sNLL / cLL resummation. ... ## our goal - living: new results can be added at any point (though the paper cut-off has passed) - reproducible & Open Science: all codes should be accessible and the runs documented - collection of standard candles: future codes can be benchmarked against this ## do not try to do an experimental analysis, do try to mimic what's relevant • CMD $$ee \rightarrow ee, \mu\mu, \pi\pi, \sqrt{s} = 0.7 \,\text{GeV}$$ • KLOE $$ee \rightarrow \{ee, \mu\mu, \pi\pi\} + \gamma, \sqrt{s} = 1.02 \,\text{GeV}$$: large angle (tagged photon) 🔰 link 🦊 link small angle (untagged photon) • BESIII $ee \rightarrow \{ee, \mu\mu, \pi\pi\} + \gamma, \sqrt{s} = 4 \text{ GeV}$ link 🤟 • generic B factory $ee \rightarrow \{ee, \mu\mu, \pi\pi\} + \gamma, \sqrt{s} = 10 \,\text{GeV}$ see GitLab for details & reference implementations ### 7 different codes to be included for the paper - AfkQED: ISR coll. + NLO photon in the boosted system + FSR with Photos - Babavaga: NLO+QED PS - KKMC: YFS - MCGP.J: NLO + collinear structures - McMule: full NNLO for leptonic $2 \rightarrow 2$, ISR for $ee \rightarrow \pi\pi$ - Phokhara: full NLO for $2 \rightarrow 3$ - Sherpa: LO + YFS ### more codes / effects can be included later - this is meant to be a living review - contact yannick.ulrich@cern.ch if you want your code in the database (but not the paper, sorry) ## what to expect in the next few years - improved Monte Carlo codes for $ee \rightarrow \ell\ell\gamma$ (approximate NNLO + resummation) - improved Monte Carlo codes for $ee \rightarrow \gamma^* \rightarrow \pi\pi$ (ISR NNNLO + resummation) ## what to hope for in the next few years - further dispersive input for building blocks - better understanding when FsQED is (how) ok and when it fails completely ## what we will habe by summer - an updated report Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e^+e^- collisions - a living review of Monte Carlo codes ... for Radiative Corrections & Monte Carlo tools for low energy e^+e^- experiments Paolo Beltrame³. Ettore Budassi^{1,2,4}. Carlo M. Carloni Calame⁴. Gilberto Colangelo³, Lorenzo Cotrozzi⁴, Anna Driutti⁵, Tim Engel^{1,2}, Lois Flower⁴. Andrea Gurgone^{1,2,4}. Martin Hoferichter^{1,2,3}. Fedor Ignatov^{1,2,3,4,5}. Sophie Kollatzsch^{1,2}. Bastian Kubis³. Andrzej Kupsc⁵, Fabian Lange^{1,2}, Alberto Lusiani⁵, Guido Montagna^{1,2,4}, Stefan E. Müller⁵. Oreste Nicrosini^{1,2,4}. Jérémy Paltrinieri^{1,2}. Fulvio Piccinini^{1,2,4}. Alan Price⁴. Lorenzo Punzi⁵. Marco Rocco^{1,2}. Pau Petit Rosàs^{1,2}, Kay Schönwald^{1,2}, Olga Shekhovtsova⁵, Adrian Signer^{1,2}. Andrzei Siódmok^{1,2,4} Giovanni Stagnitto^{1,2,4}. Peter Stoffer^{1,2,3}. Thomas Teubner³. William J. Torres Bobadilla^{1,2}. Francesco P. Ucci^{1,2,4}, Yannick Ulrich^{1,2,3}, Graziano Venanzoni⁵