

Status and Plans for Experimental Inputs to HVP at BESIII

Riccardo Aliberti

Muon g-2 Theory Initiative Spring 2024 meeting

Online, 22.04.2024

The BESIII Experiment

Located at the BEPCII collider (Beijing, China)

Symmetric e⁺e⁻ beams

ECM between 2-5 GeV

Maximum luminosity: 1 nb⁻¹/s

93% coverage of the solid angle

Published measurements:

R measurement – 1.8 to 2 GeV (future)

Published measurements:

- Time-like Pion Form Factor 600 to 900 MeV Phys.Lett.B753 (2016) 629
- R Measurement 2 to 3.7 GeV Phys. Rev. Lett. 128 (2022) 062004
- Several exclusive channels between 2 and 3 GeV (<u>π⁺π⁻π⁰</u>, <u>K_sK₁π⁰</u>, <u>Φππ</u>, <u>η'ππ</u>, ...)

- ISR R measurement 0.3 to 2 GeV
- R measurement 1.8 to 2 GeV (future)

World largest τ -charm dataset in e⁺e⁻ annihilation ...

... and still growing

HVP AT BESIII

Published measurements:

- Time-like Pion Form Factor 600 to 900 MeV Phys.Lett.B753 (2016) 629
- R Measurement 2 to 3.7 GeV Phys. Rev. Lett. 128 (2022) 062004
- Several exclusive channels between 2 and 3 GeV (<u>π⁺π⁻π⁰</u>, <u>K_sK₁π⁰</u>, <u>Φππ</u>, <u>η'ππ</u>, ...)

Preliminary results:

- ISR $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 0.7$ to 3 GeV arXiv:1912.11208
- ISR $e^+e^- \rightarrow \pi^+ \pi^- \pi^0 \pi^0 0.9$ to 3.3 GeV

On going and future measurements:

- ISR $e^+e^- \rightarrow \pi^+ \pi^- 0.3$ to 1 GeV (tagged) and > 1 GeV (untagged)
- ISR e⁺e⁻ -> K K − 1 to 3.3 GeV (tagged and untagged)
- ISR R measurement 0.3 to 2 GeV
- R measurement 1.8 to 2 GeV (future)

E > 1.8 GeV: 7%

B€SI

π⁺π⁻: 65%

₿€SШ

 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

 $\pi^{0}\gamma$, K_SK_L,...

 $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$: 10

π.π.

6%

[Phys.Lett.B753 (2016) 629]

Tagged ISR analysis

4C Kinematic Fit ($\pi\pi\gamma$ hypothesis)

Background only from $\mu\mu(\gamma)$ events

 π/μ separation based on neural network (ANN)

• Form factor evaluation for $0.6 \le m_{\pi\pi} \le 0.9 \text{ GeV}$

- 70% of total 2π contribution
- 50% of $a_{\mu}{}^{HVP}$ contribution
- Fit with Gounaris-Sakurai parameterization

- Cross check with muons:
 - Selecting muons using ANN
 - Perfect agreement with QED prediction
 - Measurement of J/ψ electronic width

• **Precision competitive** with current best results:

- BESIII: 1.0%
- BaBar: 0.7%
- KLOE: 0.6%
- Evaluation of covariance matrix corrected [Phys.Lett.B812 (2021) 135982]
 - Lower statistical uncertainty
- Work on going to reach O(0.5%) accuracy

- Do Phokhara shortcomings in (N)NLO ISR affect the analysis significantly?
- Check Data-MC kinematic fit χ^2 to spot eventual (large) systematic effects!

• Excellent agreement for $\chi^2 > 40$ (cut < 60):

No sign of overlooked systematics in kinematic fit

New analysis on going!

Staged approach:

First result with O(0.7%) accuracy (beg. 2025):

- Data sets at $\sqrt{s} = 3.77$ and 4.18 GeV
- Integrated luminosity ~6 fb⁻¹
- Different selection strategies (1C and 4C Kinematic Fits)
- Investigation of NLO effects (?)
- Partial blinding
- Normalization to luminosity

Cross check of:

- Previous measurement (same data set)
- Different CM energies (3.77 vs 4.18 GeV)
- Radiative effect (1C vs 4C kinematic fits)

Source	Uncertainty (%)
Photon-efficiency	0.2 ·
Tracking efficiency	0.3
Pion ANN efficiency	0.2
Pion e-PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
Vacuum polarization correction δ_{vac}	0.2
Radiator function	0.5
Luminosity $\mathcal L$	0.5 0.3
Sum	0.9 0.7

New analysis on going!

Staged approach:

Final accuracy O(0.5%) (≈ 2028):

- New data sets at $\sqrt{s} = 3.77$
- Integrated luminosity ~17 fb⁻¹
- **Different selection strategies** (1C, 4C, full PID, Helicity Angle Fit)
- Investigation of NLO effects
- Blind analysis
- Normalization to muons

Plenty of internal consistency checks:

- 1C vs 4C Kinematic Fit
- PID vs Helicity Angle
- Luminosity vs Muon
- Data taking periods

Source	Uncertainty (%)
 Photon efficiency 	0.2
Tracking efficiency	-0.3- 0.2
Pion ANN efficiency	0.2
Pion e PID efficiency	0.2
Angular acceptance	0.1
Background subtraction	0.1
Unfolding	0.2
FSR correction δ_{FSR}	0.2
···Vacuum polarization correction δ_{vac} ···	0:2
-Radiator function	0.5
	0.5
Sum	0.9 0.5

- Investigation of events with two radiative photons started few years ago
- Observed effect similar to BaBar:
 - > Phokhara works at LO on 2-photon events, thus no surprise!
 - Need to quantify the impact on the selection
 - **KKMC** best candidate (complete LL) ...

- Investigation of events with two radiative photons started few years ago
- Observed effect similar to BaBar:
 - > Phokhara works at LO on 2-photon events, thus no surprise!
 - Need to quantify the impact on the selection
 - KKMC best candidate (complete LL) ... but

- Investigation of events with two radiative photons started few years ago
- Observed effect similar to BaBar:
 - > Phokhara works at LO on 2-photon events, thus no surprise!
 - Need to quantify the impact on the selection
 - KKMC best candidate (complete LL) ... but

- Investigation of events with two radiative photons started few years ago
- Observed effect similar to BaBar:
 - > Phokhara works at LO on 2-photon events, thus no surprise!
 - Need to quantify the impact on the selection
 - **KKMC** best candidate (complete LL) ... but

- Phokhara KKMC comparison in Acta Phys.Polon. B36 (2005) 2387 performed with private version of KKMC
- Public versions of KKMC do implement ISR (FSR) form factors (f_0) in the approximation of $Q^2 >> m_1$
- Mass corrections were evaluated and published in Phys. Rev. D65, 073030
 - ISR: Eq 2.21
 - FSR: Eq 2.39
- Confirmed by S. A. Jost, who was performing the comparison
- Original code seems to have been lost (data corruption)
- Trying to implement the corrections in the new version of KKMC

22/04/2024

New concept: Determine **hadronic mass from ISR** photon **only**

Simple selection criteria:

- 1 high energetic photon (E > 1.2 GeV)
- At (very) large angle (37^o-143^o)

ISR R Measurement below 2 GeV JGU

1.00 0.95

0.90

0.85

ISR method

for hadronic events

2.0

2.5

traditional

energy scan

3.5

3.0

ISR R Measurement below 2 GeV

Large smearing introduced by detector resolution

Apply **unfolding** technique to recover the "true" spectrum

Quantifying (eventual) bias introduced by unfolding

 \checkmark First results suggest **negligible impact** on a_{μ}

Aiming for few percent accuracy

HVP AT BESIII

Summary

- **BESIII** strongly **engaged in** providing experimental inputs to **HVP**
- Published:
 - Pion FF measurement with sub-percent precision
 - Most precise **R measurement** between 2 and 3.7 GeV
- Checks on 2π measurement:
 - No sign of overseen systematics in kinematic fit
 - Found missing corrections in distributed KKMC versions
- The best is still to come:
 - Pion FF with O(0.7%) precision next year
 - R measurement below 2 GeV via ISR next year
 - Kaon FFs via ISR (on going)
 - Pion FF with O(0.5%) already planned (time scale ≈4 years)