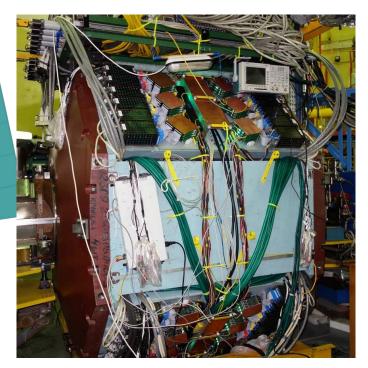

Muon g-2 Theory Initiative Spring 2024 meeting


April 15-23, 2024

CMD2/3 report (on $\pi^+\pi^-$)

Ivan Logashenko (BINP)

CMD-3 Detector

- Magnetic field 1.0-1.3 T
- Drift chamber
 - $\succ \sigma_{R\varphi} \sim 100 \,\mu, \sigma_z \sim 2 3 \,\mathrm{mm}$
- EM calorimeter (LXE, Csl, BGO), 13.5 X₀
 - $\succ \sigma_E/E \sim 3\% 10\%$
 - $\succ \sigma_{\Theta} \sim 5 \text{ mrad}$
- TOF
- Muon counters

CMD-3 final states under analysis

Signature	Final states (preliminary, published)
2 charged	$\pi^+\pi^-$, K^+K^- , K_SK_L , $p\overline{p}$
2 charged + γ 's	$\pi^{+}\pi^{-}\gamma, \pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, K^{+}K^{-}\pi^{0}, K^{+}K^{-}\eta, K_{S}K_{L}\pi^{0}, K_{S}K_{L}\eta, \pi^{+}\pi^{-}\pi^{0}\eta, \pi^{+}\pi^{-}2\pi^{0}, \pi^{+}\pi^{-}3\pi^{0}, \pi^{+}\pi^{-}4\pi^{0}$
4 charged	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}, K^{+}K^{-}\pi^{+}\pi^{-}, K_{S}K^{\pm}\pi^{\mp}$
4 charged + γ 's	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}, \pi^{+}\pi^{-}\eta, \pi^{+}\pi^{-}\omega, \pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}, K^{+}K^{-}\eta, K^{+}K^{-}\omega$
6 charged	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}, K_{S}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}, K_{S}K_{S}\pi^{+}\pi^{-}$
6 charged + γ 's	$3(\pi^+\pi^-)\pi^0$
Neutral	$\pi^{0}\gamma, \eta\gamma, \pi^{0}\pi^{0}\gamma, \pi^{0}\eta\gamma, \pi^{0}\pi^{0}\pi^{0}\gamma, \pi^{0}\pi^{0}\eta\gamma$
Other	$n\overline{n},\pi^{0}e^{+}e^{-},\eta e^{+}e^{-}$
Rare decays	$\eta', D^*(2007)^0$

2023 result

arXiv:2309.12910

Measurement of the pion formfactor with CMD-3 detector and its implication to the hadronic contribution to muon (g-2)

F.V. Ignatov,^{1,2} R.R. Akhmetshin,^{1,2} A.N. Amirkhanov,^{1,2} A.V. Anisenkov,^{1,2} V.M. Aulchenko,^{1,2}
N.S. Bashtovoy,¹ D.E. Berkaev,^{1,2} A.E. Bondar,^{1,2} A.V. Bragin,¹ S.I. Eidelman,^{1,2} D.A. Epifanov,^{1,2}
L.B. Epshteyn,^{1,2,3} A.L. Erofeev,^{1,2} G.V. Fedotovich,^{1,2} A.O. Gorkovenko,^{1,3} F.J. Grancagnolo,⁴
A.A. Grebenuk,^{1,2} S.S. Gribanov,^{1,2} D.N. Grigoriev,^{1,2,3} V.L. Ivanov,^{1,2} S.V. Karpov,¹ A.S. Kasaev,¹
V.F. Kazanin,^{1,2} B.I. Khazin,¹ A.N. Kirpotin,¹ I.A. Koop,^{1,2} A.A. Korobov,^{1,2} A.N. Kozyrev,^{1,2,3}
E.A. Kozyrev,^{1,2} P.P. Krokovny,^{1,2} A.E. Kuzmenko,¹ A.S. Kuzmin,^{1,2} I.B. Logashenko,^{1,2}
P.A. Lukin,^{1,2} A.P. Lysenko,¹ K.Yu. Mikhailov,^{1,2} I.V. Obraztsov,^{1,2} N. Okhapkin,¹ A.V. Otboev,¹

E.A. Perevedentsev,^{1,2} Yu.N. Pestov,¹ A.S. Popov,^{1,2} G.P. Razuvaev),^{1,2} Yu.A. Rogovsky,^{1,2} A.A. Ruban,¹
 N.M. Ryskulov),¹ A.E. Ryzhenenkov,^{1,2} A.V. Semenov,^{1,2} A.I. Senchenko,¹ P.Yu. Shatunov,¹
 Yu.M. Shatunov,¹ V.E. Shebalin,^{1,2} D.N. Shemyakin,^{1,2} B.A. Shwartz,^{1,2} D.B. Shwartz,^{1,2}
 A.L. Sibidanov,⁵ E.P. Solodov,^{1,2} A.A. Talyshev,^{1,2} M.V. Timoshenko,¹ V.M. Titov,¹ S.S. Tolmachev,^{1,2}
 A.I. Vorobiov,¹ Yu.V. Yudin,^{1,2} I.M. Zemlyansky,¹ D.S. Zhadan,¹ Yu.M. Zharinov,¹ and A.S. Zubakin¹

(CMD-3 Collaboration)

 ¹Budker Institute of Nuclear Physics, SB RAS, Nonosibirsk, 650090, Russia
 ²Novosibirsk State University, Novosibirsk, 650090, Russia
 ³Novosibirsk State Technical University, Novosibirsk, 650092, Russia
 ⁴Instituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy
 ⁵University of Victoria, Victoria, BC, Canada VSW 3P6 (Dated: September 25, 2023)

The cross section of the process $e^+e^- \rightarrow \pi^+\pi^-$ has been measured in the center of mass energy range from 0.32 to 1.2 GeV with the CMD-3 detector at the electron-positron collider VEPP-2000. The measurement is based on an integrated luminosity of about 88 pb⁻¹ out of which 62 pb⁻¹ constitutes a full dataset collected by CMD-3 at center-of-mass energies below 1 GeV. In the dominant region near ρ -resonance a systematic uncertainty of 0.7% has been reached. The impact of presented results on the evaluation of the hadronic contribution to the anomalous magnetic moment of muon is discussed.

> Submitted to PRL Waiting for responses of referees after the first round of review/responses

arXiv:2302.08834

Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section from threshold to 1.2 GeV with the CMD-3 detector

F.V. Ignatov^{a,b,1}, R.R. Akhmetshin^{a,b}, A.N. Amirkhanov^{a,b}, A.V. Anisenkov^{a,b},
V.M. Aulchenko^{a,b}, N.S. Bashtovoy^a, D.E. Berkaev^{a,b}, A.E. Bondar^{a,b}, A.V. Bragin^a,
S.I. Eidelman^{a,b}, D.A. Epifanov^{a,b}, L.B. Epshteyn^{a,b,c}, A.L. Erofeev^{a,b}, G.V. Fedotovich^{a,b},
A.O. Gorkovenko^{a,c}, F.J. Grancagnolo^e, A.A. Grebenuk^{a,b}, S.S. Gribanov^{a,b},
D.N. Grigoriev^{a,b,c}, V.L. Ivanov^{a,b}, S.V. Karpov^a, A.S. Kasaev^a, V.F. Kazanin^{a,b},
B.I. Khazin^a, A.N. Kirpotin^a, I.A. Koop^{a,b}, A.A. Korobov^{a,b}, A.N. Kozyrev^{a,c},
E.A. Kozyrev^{a,b}, P.P. Krokovny^{a,b}, A.E. Kuzmenko^a, A.S. Kuzmin^{a,b}, I.B. Logashenko^{a,b},
P.A. Lukin^{a,b}, A.P. Lysenko^a, K.Yu. Mikhailov^{a,b}, I.V. Obraztsov^{a,b}, V.S. Okhapkin^a,
A.V. Otboev^a, E.A. Perevedentsev^{a,b}, Yu.N. Pestov^a, A.S. Popov^{a,b}, G.P. Razuvaev^{b,b},
Yu.A. Rogovsky^{a,b}, A.A. Ruban^a, N.M. Ryskulov^a, A.E. Ryzhenenkov^{a,b},
D.N. Shemyakin^{a,b}, B.A. Shwartz^{a,b}, D.B. Shwartz^{a,b}, A.L. Sibidanov^{a,d}, E.P. Solodov^{a,b},
A.A. Talyshev^{a,b}, M.V. Timoshenko^a, V.M. Titov^a, S.S. Tolmachev^{a,b}, A.I. Vorobiov^a,
I.M. Zemlyansky^a, D.S. Zhadan^a, Yu.M. Zharinov^a, A.S. Zubakin^a, Yu.V. Yudin^{a,b}

^aBudker Institute of Nuclear Physics, SB RAS, Novosibirsk, 630090, Russia ^bNovosibirsk State University, Novosibirsk, 630090, Russia ^cNovosibirsk State Technical University, Novosibirsk, 630092, Russia ^dUniversity of Victoria, Victoria, BC, Canada V8W 3P6 ^eInstituto Nazionale di Fisica Nucleare, Sezione di Lecce, Lecce, Italy

Submitted to PRD Two rounds of reviews finished Accepted

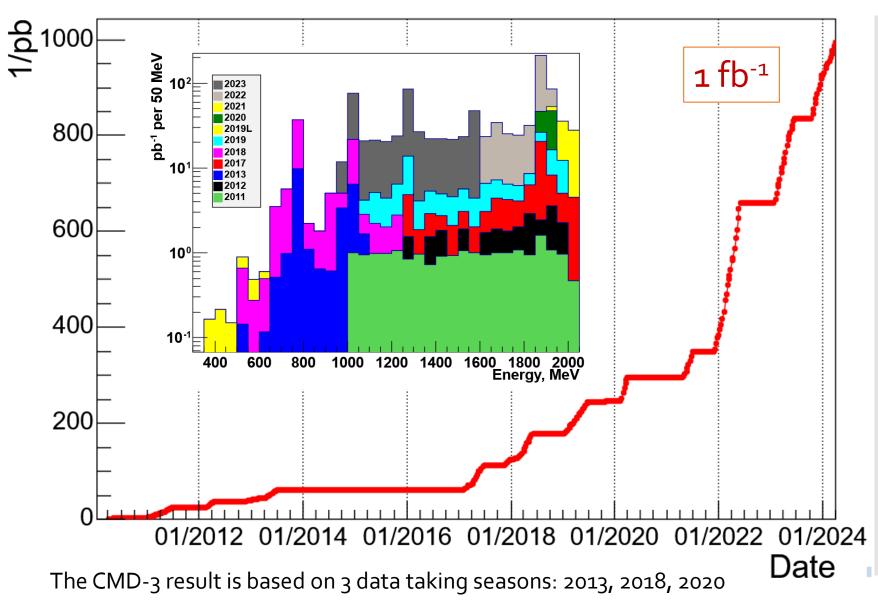
CMD-2

Status of CMD-2 reanalysis

- We are not doing CMD-2 reanalysis
- We don't have means to do a full scale CMD-2 analysis
- We are focused in further development of CMD-3 analysis. As a byproduct, we'll get insights about some possible CMD-2 issues.
 - Subtraction of cosmic background

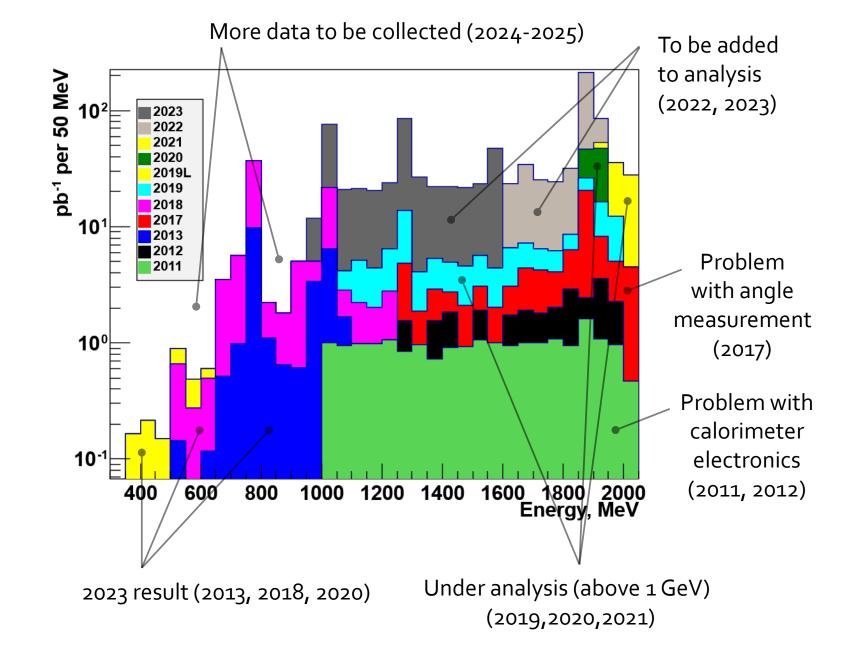
The methods used to count cosmic background events in CMD-2 and CMD-3 are different. The cosmic background in CMD-2 was much larger. We'll get the estimation of systematic bias between CMD-2/CMD-3 methods for CMD-3 environment.

- Event separation based on energy deposition in CsI calorimeter $(8 \rm X_{o})$


CMD-3: LXe only $(5X_0)$ and full calo $(13X_0)$, observed very different behavior/systematics; working on simulation of CsI only $(8X_0)$, might be able to take CsI only data

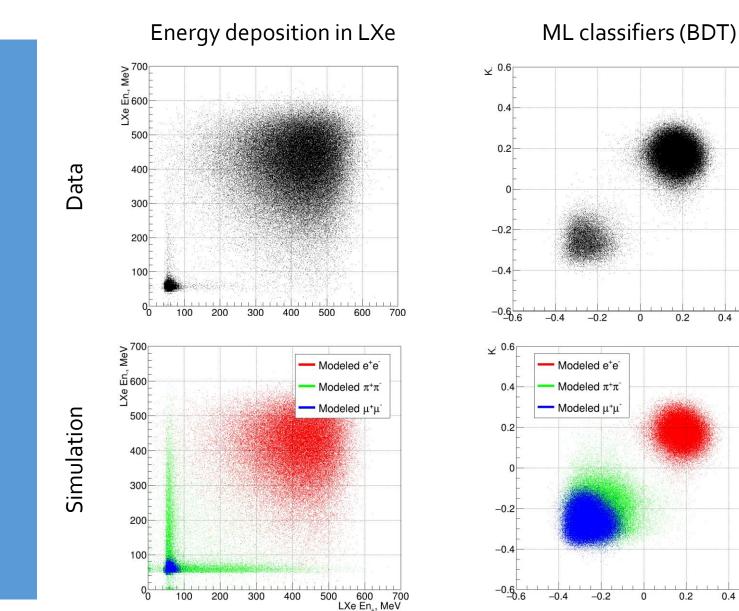
CMD-2: Csl only (8X_o), systematics were estimated

- We think we understand differences in radiative corrections (and they are small)
- Results of these studies cannot be used to update CMD-2 data!


Ongoing analysis

Collected data

CMD₂/₃ report



Features of 2019-2021 analysis

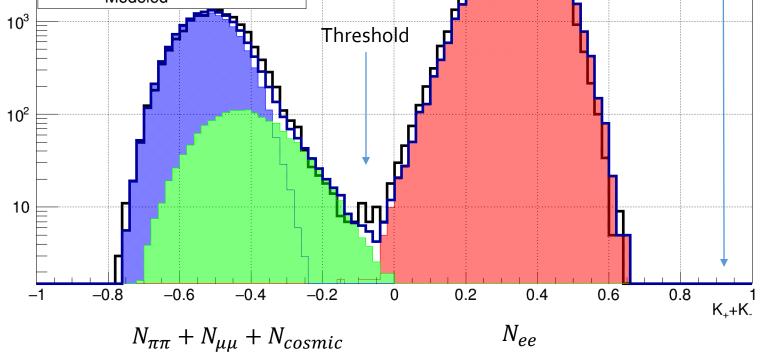
- Energy range above 1 GeV
- Event separation:
 - energy deposition, using full calorimeter and machine learning
 - will try: energy deposition, LXe only
 - will try: angle distribution (not enough statistics?)
- Number of $\mu^+\mu^-$ pairs is not measured subtracted based on number of detected e^+e^- pairs
- Angle measurement:
 - drift chamber charge division, calibrated by coordinate from LXe calorimeter
- Aim for 1-2% systematics below 1.4 GeV, several % above 1.4 GeV

2E = 1400 MeV

2019-2021 analysis

Event separation

CMD₂/₃ report

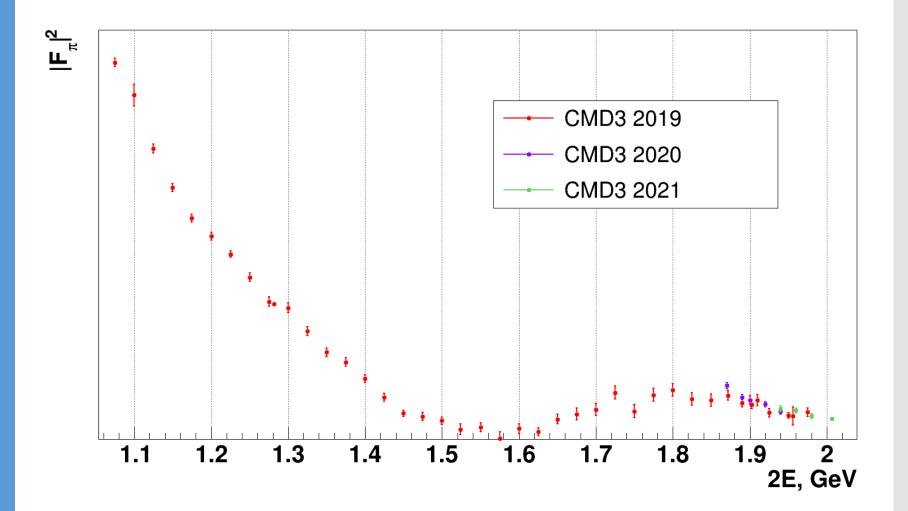

0.6 K₊

> 0.6 K₊

2019-2021 analysis

Event separation

ML inputs: energy deposition in CsI and LXe, longitudinal and transverse profiles, angle ¥ 0.6 Modeled e⁺e Modeled n+n 0.4 Modeled µ⁺µ[⁺] 0.2 Distribution of classifier K++K-, used to separate $e/\mu/\pi$ Number of events Experiment -0.4 10⁴ Modeled e⁺e⁻ -0.6 -0.4 -0.2 0 0.2 Modeled $\mu^+\mu^-$ Modeled $\pi^+\pi^-$ Modeled 10³ Threshold 10²


Ivan Logashenko (BINP)

CMD₂/₃ report

0.4 0.6

2019-2021 analysis

Intermediate result

Plans

Ultimate goal for accuracy of hadronic cross sections $a_{\mu}(BSM) \pm \Delta a_{\mu}(BSM) = [a_{\mu}(exp) - a_{\mu}(SM)] \pm \sqrt{\Delta a_{\mu}(exp)^{2} + \Delta a_{\mu}(SM)^{2}}$ $\Delta a_{\mu}(BSM) \text{ determines the power of } a_{\mu} \text{ as test of theoretical models}$ Reduction of $\Delta a_{\mu}(BSM)$ is of great importance for flavor physics FNAL expected precision of 140 ppb corresponds to ~0.25% of $a_{\mu}^{had,LO}$ Hadronic contribution: $a_{\mu}(had) = \int \sigma_{e^{+}e^{-} \rightarrow H}(s) K(s) ds$

Need to measure $\sigma(e^+e^- \rightarrow H)$ to ~0.2% in order to match FNAL precision.

To be sure in $a_{\mu}(SM)$ the community needs:

- >1 measurement of hadronic cross section ($\pi^+\pi^-$) to ~0.2%
- lattice calculations to ~0.2%
- they agree
- independent input (MuONe) is very desirable

CMD-3 2023
systematics

× Radiative corrections	$0.2\% (2\pi) \oplus 0.2\% (F\pi) \oplus 0.1\% (e+e-) \qquad 0.1\% (0.$
× e/μ/π separation × Fiducial volume	0.5 (low) - 0.2 (ρ) - 0.6 (φ) % 0.2% 0.5% / 0.8% (RHO2013) 0.2%
* Correlated inefficiency	0.1 (ρ) - 0.15%(>1 ΓэΒ) 0.1%
× Trigger	0.05 (ρ) - 0.3% (>1 ΓэΒ)
x Beam Energy (by Compton σ_{e} 50 keV)	0.1% (out of resonances), 0.5% (at w, φ -peaks) 0.2%
× Bremsstrahlung loss	0.05 %
* Pion specific loss	0.2% nuclear interaction
	0.2%(low) - 0.1% (p) pion decay
	$CMD-3 e^{+} e^{\pi^{+} \pi^{-} ana}$ $0.8\% (low) - 0.7\% (\rho) - 1.6\% (\phi)$
	1.1% (low) - 0.9% (ρ) - 2.0% (ϕ) (RHO2013)

CMD-3 systematics (2023)

Key required detector improvements to reduce systematics

- polar angle measurement (Z-chamber broke in 2017)
- momentum resolution

Impossible to improve without detector upgrade.

Other (beyond detector) important required improvements: radiative corrections, nuclear interactions

CMD₂/₃ report

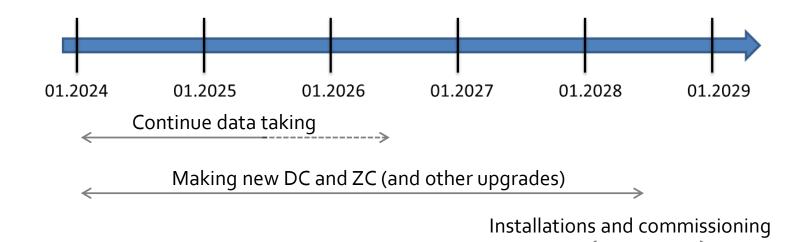
Original

estimates

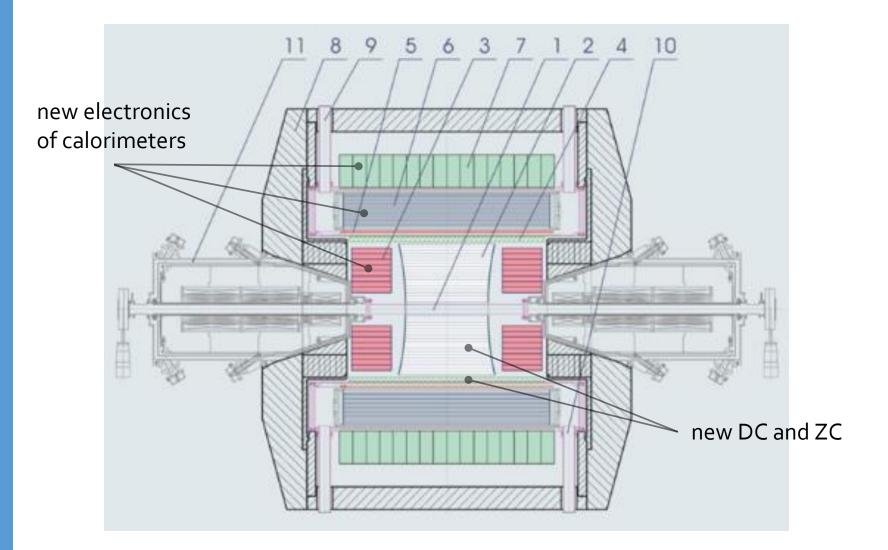
Short-term plans (2024-2025)

- We plan (already started) to collect more data below 1 GeV factor 2-3 more data
- The main goal is to get more data for non-dominant channels (3π , 4π , conversion decays of ω)
- We don't expect to get better precision for 2π, but will get data for more systematics studies – some moderate improvement is possible if systematic error is reduced
- We've developed new more sophisticated trigger electronics. It is under commissioning now, plan to use it as primary option starting from Fall 2024
- We'll try to run with beams directions reversed (starting from Fall 2024) another systematics test
- We are checking the possibility to collect data with CsI calorimeter only (by not filling up the LXe calorimeter). Problem: no means to calibrate Z in the drift chamber without LXe.

Long-term plans (<2030)


VEPP-2000 luminosity is high enough: it allows to perform new scan of ρ energy region within ~1 year

The goal is to reach ~0.2-0.3% in $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$


We plan the following detector upgrades:

- new drift chamber with cathode strips at inner radius
- new Z-chamber at outer radius
- upgrade of electronics

Many options are discussed: longer DC, larger DC, larger magnetic field,...

CMD-3 upgrades

Summary

- The 2023 CMD-3 measurement of $\pi^+\pi^-$ cross section is fixed, no news there
- We are working on measurement of $\pi^+\pi^-$ cross section above 1 GeV. At the moment it is based on 2019-2021 data, need to incorporate 2022-2023 data.
- We are taking more data below 1 GeV. It will allow to do additional systematics studies for $\pi^+\pi^-$ analysis.
- There is a program under development for CMD-3 upgrade over next 4-5 years, aimed at measurement of $\pi^+\pi^-$ cross section at the next level of precision