Preliminary results of the $e^+e^- \rightarrow \pi^+\pi^-$ analysis with SND at VEPP-2000

Kupich A. on behalf of SND collaboration

Muon g-2 Theory Initiative workshop April 15 – 23, 2024

Kupich A

VEPP-2000 e^+e^- collider

VEPP-2000 parameters

- c.m. energy E=0.3-2.0 GeV
- Luminosity at E=1.8 GeV $10^{32}cm^{-2}sec^{-1}$ (project) $6\times10^{31}cm^{-2}sec^{-1}$ (achieved)
- Beam energy spread 0.6 MeV at E=1.8 GeV

- 10 times more intense positron source
- Experiments at upgraded VEPP-2000 were continued in the late 2016

1-beam pipe, 2-tracking system, 3-aerogel Cherenkov counter, 4 - Nal(TI) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids.

Main physics task of SND is study of all possible processes of $e^+e^$ annihilation into hadrons below 2 GeV

- The total hadronic cross section, which is calculated as a sum of exclusive cross sections
- Study of hadronization (dynamics of exclusive processes)
- Study of the light vector mesons
- Production of the C-even resonances

SND data

Timeline MHAD2010-MHAD2012 - 48 pb^{-1} RHO2013 – 32 *pb*⁻¹ MHAD2017 - 50 pb^{-1} RHO2018 – 90 pb⁻¹ MHAD2019 - 65 pb⁻¹ RHO2019 – 1 pb⁻¹ MHAD2020 - 45 pb⁻¹ MHAD2021 - 57 pb^{-1} MHAD2022 - 360 pb⁻¹ MHAD2023 – 223 pb⁻¹

Current $e^+e^- \rightarrow \pi^+\pi^-$ analysis is based on the statistics, collected in 2017 – 2018 in 100 energy points $\sqrt{s} < 1$ GeV via two energy scans, that corresponds to the **5.6** × **10**⁷ collinear events, with **2.7** × **10**⁷ $e^+e^- \rightarrow \pi^+\pi^-, \mu^+\mu^-$ and **2.9** × **10**⁷ $e^+e^- \rightarrow e^+e^-$ events. Much higher statistics, comparing to 2013 data (used in 2021 analysis)

But there are some issues with stability

DC gains were adjusted to make MC match Data

• $N_{ch} \ge 2 - \text{two or more charged particles are allowed}$

2
$$|\Delta heta| = |180^\circ - (heta_1 + heta_2)| < 14^\circ$$
 и $|\Delta arphi| = |180^\circ - |arphi_1 - arphi_2|| < 6^\circ$

• $E_{1,2} > 40$ MeV, here E_i – energy deposition for the *i*-th particle

$${igodot}$$
 60° $< heta_0=(heta_1- heta_2+180^\circ) imes 0.5 < 120^\circ$

- |r₁| < 1 cm , |r₂| < 1 cm, here r_i distance between a track of *i*-th particle and the beam axis
- $\textcircled{O}||z0_1|<8\ \text{cm}$, $|z0_2|<8\ \text{cm},$ here z_i longitudinal coordinate of the vertex
- Cosmic veto: veto = 0

Additional $e^+e^- \rightarrow e^+e^-e^+e^-$ background was estimated from MC (its contribution to $e^+e^- \rightarrow \pi^+\pi^-$ is 0.1 – 2 %)

- $N_{ch} \ge 2$ two or more charged particles are allowed
- ${\small @ } |\Delta \theta| = |180^{\circ} (\theta_1 + \theta_2)| < 14^{\circ} \text{ in } |\Delta \varphi| = |180^{\circ} |\varphi_1 \varphi_2|| < 6^{\circ}$
- $E_{1,2} > 40$ MeV, here E_i energy deposition for the *i*-th particle
- |r₁| < 0.5 cm, |r₂| < 0.5 cm, here r_i distance between a track of i-th particle and the beam axis
- $\textcircled{0}||z0_1|<10$ cm , $|z0_2|<10$ cm, $|z0_1+z0_2|/2<8$ cm, here z_i -longitudinal coordinate of the vertex

Selecting comsic events

- $N_{ch} \ge 2 \text{two or more charged particles are allowed}$
- ${\small \textcircled{0}} \ \ |\Delta\theta|=|180^{\circ}-(\theta_1+\theta_2)|<14^{\circ} \ \text{ii} \ \ |\Delta\varphi|=|180^{\circ}-|\varphi_1-\varphi_2||<6^{\circ}$
- $E_{1,2} > 40$ MeV, here E_i energy deposition for the *i*-th particle
- $60^{\circ} < \theta_0 = (\theta_1 \theta_2 + 180^{\circ}) \times 0.5 < 120^{\circ}$
- § $0.5 < |r_1| < 1$ cm , $0.5 < |r_2| < 1$ cm, here r_i distance between a track of *i*-th particle and the beam axis
- 0 4 $<|z0_1|<$ 10 cm , 4 $<|z0_2|<$ 10 cm, here z_i longitudinal coordinate of the vertex

Using these events one can determine muon veto efficiency (0.92 - 0.98). Latter being used to calculate residual cosmic background.

- $N_{ch} \ge 2 \text{two or more charged particles are allowed}$
- (a) $14^\circ < |180^\circ (heta_1 + heta_2)| < 24^\circ$ in $6^\circ < |180^\circ |arphi_1 arphi_2|| < 14^\circ$
- $E_{1,2} > 40$ MeV, here E_i energy deposition for the *i*-th particle

•
$$60^{\circ} < heta_0 = (heta_1 - heta_2 + 180^{\circ}) imes 0.5 < 120^{\circ}$$

- $|r_1| < 1 \text{ cm}$, $|r_2| < 1 \text{ cm}$, here r_i distance between a track of *i*-th particle and the beam axis
- $\textcircled{O}||z0_1|<8\ \text{cm}$, $|z0_2|<8\ \text{cm},$ here z_i longitudinal coordinate of the vertex
- (a) Cosmic veto: veto = 0

Used to estimate number of $\omega \rightarrow 3\pi$ events in $\pi^+\pi^-$ sample, their contribution ≈ 0.5 % at $\sqrt{s} = m_{\omega}$.

e/π separation

In order to separate events with e^+e^- and $\pi^+\pi^-$ in the final state machine learning methods (based on BDTG) were developed, with input parameters:

- ${}^{0}\mathbf{e_{j}}$ energy deposition for the j-th layer in the central tower
- ¹e_j energy deposition for the *j*-th layer in the towers, next to the central one
- ${}^{2}\mathbf{e_{j}}$ energy deposition for the j-th layer outside
- E_j full energy deposition for j-th layer
- E total energy deposition
- $\bullet\,< dEdx > -\,dE/dx$ of a particle in the DC, averaged over layers

Overall $(4 \times 3 + 2) \times 2 = 28$ parameters for the main discriminator. There is a vertion of discriminator for separate particles. And one for μ/π separation In MC ID inefficiency is 0.1-0.15 %. With pseudo-events ee and 2π being used to estimate correction for ID efficiency

Similar corrections were calculated for $e^+e^-\to \mu^+\mu^-$ events in the first 6 energy points

- $\bullet\,$ Bug in the code (affecting $\Delta\theta$ distribution) was fixed
- Suppression of the wire hits with drift times outside specific range
- There was a bug in parts of code, related to calculation of the drift distance error (changed number of the collinear events)
- It was discovered, that erros for the cuthode strips were overestimated in the reconstruction algorithm, fixing this problem significantly improved θ -resolution
- By altering χ^2 of the tracks we found a way to reduce number of $e^+e^- \rightarrow \pi^+\pi^-$ events with one poorly reconstructed track, removing big 'tails' in the $\Delta\theta$ distribution for energy points with a low gain in the DC

Using ee $\mu 2\pi$ events (with some additional cuts* and cosmic background subtraction via fit of the vertex z-coordinate distribution) to calculate efficiency correction

Average deviation from 1 is 0.17%

* ACC (not)firing, muon suppression, $|\Delta \varphi| < 12^{\circ}$, $\omega \rightarrow 3\pi$ suppression

* ACC (not)firing, muon suppression, $|\Delta heta|{<}24^\circ$, $\omega {\rightarrow} 3\pi$ suppression

Average ratio of $e^+e^- \rightarrow e^+e^-$ and $e^+e^- \rightarrow \pi^+\pi^$ deviates from 1 by 0.08% (for energy points outside ω range)

* ACC (not)firing, muon suppression, $e^+e^- o \gamma\gamma$ background suppression

Kupich A

Efficiency for $e^+e^-
ightarrow \mu^+\mu^-$ events

Using pion suppression one can calculate similar corrections for the $e^+e^- \to \mu^+\mu^-$ events

18/25

Ratios of CS with different θ_0 cuts

Ratios of CS with different θ_0 cuts

20/25

Ratios of CS with different θ_0 cuts

Averaged correction plateaued at 1.002 for low θ_x and 0.995 for high θ_x

Kupich A

Comparing two methods for $\sqrt{s} < 950 \,\, { m MeV}$

* not exactly

Subtraction of the cosmic background:

- Muon system veto efficiency being calculated
- Selecting events with veto > 0
- From (z01 + z02)/2 distribution fit extracting number of cosmic events with veto > 0
- Using this number and veto efficiency to determine overall contribution of the cosmic background (for both types of events)

Source	$\sqrt{s} <$ 700 MeV, %	$\sqrt{s} >$ 700 MeV, %
e/π	0.3	0.1
$E_i >$ 40 MeV	0.2	0.1
rad	0.2	
nc2	0.1	
col	0.2	
θ_0	0.5	
nucl	0.2	
total	0.7	0.6

Kupich A.

- \bullet First internally consistent measurents of the $e^+e^- \to \pi^+\pi^-$ cross section with 2018 Data
- First estimates of systematic uncertainties
- To calculate $e^+e^- \rightarrow \pi^+\pi^-$ cross section at $\sqrt{s} \leq 600$ MeV using 2019 Data with n=1.13 ACC (it allows to suppress $e^+e^- \rightarrow \mu^+\mu^-$)
- To reduce a number of tracks, that are poorly reconstructed due to the shifted wire hits in DC
- To construct ππ pseudo-events from ω →3π events, in order to calculate efficiency corrections for the ID and E >40 MeV cuts at √s< 650 MeV
- To produce more or less final result, and compare it with previous measurements

Thank you for attention !

Kupich A