

Status and plans regarding g-2 at Belle II ---Measurement of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section with the Belle II detector---

> Hisaki Hayashii, Nara Women's University, for Yuki Sue and on behalf of Belle II collaboration

Belle II detector

4 GeV e⁺ beam

7 GeV e- beam

2024.4.22 g-2 Theory Initiative mini-Workshop

g-2 Theory Initiative Mini-workshop

Introduction(1)

- □ We present our new results on a measurement of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section in the energy range 0.62- 3.50 GeV with the Belle II detector at the SuperKEKB collider
- □ We measure the cross section using ISR technique for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$ events, taken at the fixed c.m.s \sqrt{s} =10.58 GeV.
- $\square \pi^+\pi^-\pi^0$ is the second largest source on the uncertainty in the theoretical evaluation of muon g-2.

 $a_{\mu}^{\text{SM}} = \frac{g_{\mu} - 2}{2} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{HVP}} + a_{\mu}^{\text{HLbL}}$

Introduction(2)

- **D**We measure the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section with 2.2 % accuracy at the ω mass region.
- **□** The accuracy of $a_{\mu}^{3\pi}$ is $\delta a_{\mu}^{3\pi}/a_{\mu}^{3\pi} \sim 2\%$

My task is to explain how this accuracy is achieved.
 Detailed description is available at <u>arXiv:2404.04915</u>. The same draft is just submitted to PRD.

Key items

- SuperKEKB/Belle II
- **Trigger**, ISR technique
- **D** Event selection to extract $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$ process
- Background estimation
- Signal extraction and Unfolding
- Efficiency corrections
- **D** Cross section and $a_{\mu}^{3\pi}$ calculation

--Blind analysis--

■ Study/optimization of analysis methods and corrections have been fixed using MC/control data, before examining the signal.

SuperKEKB

□ Asymmetric e⁺e⁻ collider at KEK

- √s = M(Y(4S)) = 10.58 GeV
- World record instantaneous luminosity : 4.7 × 10³⁴ /cm²/s
- ~90% data taking efficiency : 1-2 fb⁻¹/day

Used dataset in this analysis

- 2019 2021 Summer dataset
- Integrated luminosity: 191 fb⁻¹

Belle II detector

6

3m

Upper half cross sectional view of the Belle II detector.

- Belle II consists of vertex and central drift chamber for tracking, Cherenkov for Particle ID, calorimeter for photon and electron detection, and K-long and muon detectors.
- All detector components, except calorimeter, magnet, outer KLM, are newly built in Belle II.

Trigger for ISR events

θ

- \Box Special trigger lines are prepared, in Belle II, to detect low-multiplicity events such as ISR, $\tau's$
- This analysis uses

e

CDC

Dark matter.

- **\square** Single (≥ 1) high energy clusters in calorimeter with ≥ 2.0 GeV.
- □ (This trigger line is scaled down by factor of 2 in high luminosity runs.)
- Independence between energy triggers and track triggers (Single track trigger etc.) allows us to measure each trigger efficiency in data.
 - \Box We $\mu\mu\gamma$ events to measure the enery trigger efficiency in data.

Efficiency for energetic ISR in

barrel region: 99.9%.

Uncertainty is 0.1%.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$ selection

8

Background suppression (1)

Dominant background is from $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$, since we A) allow any number of photons in an event.

- Reconstruct $\pi^+\pi^-\pi^0\pi^0\gamma$ (with additional π^0)
- Reconstruct $\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$ (With additional it) 4C kinematic fit under $\pi^{+}\pi^{-}\pi^{-}\pi^{-}\gamma$ (2 $\pi^{5}\gamma$) hypothesis, $\chi^{2.5}$ and $\chi^{2}_{4C}(2\pi^{5}\gamma) > 30$, can reduce this background effectively. χ^{0}

Background suppression (2)

These kinematic selections are quite effective. Remaining background is already quite small,

~1 % in the ω , ϕ resonance regions, and ~10 % at $M_{3\pi} \ge 1.05$ GeV.

B) Background not containing true π^0 : e⁺e⁻ \rightarrow e⁺e⁻ γ , $\pi^+\pi^-\gamma$, $\mu^+\mu^-\gamma$

- $-\pi/e ID L(\pi/e) > 0.1$
- $M^{2}_{recoil}(\pi^{+}\pi^{-}) > 4 \text{ GeV}^{2}/c^{4}$

Note that these background processes do not create any π^0 peak in $M_{\gamma\gamma}$

C) Charged kaon : $e^+e^- \rightarrow K^+K^-\pi^0\gamma$

 $- \pi/K \text{ ID L}(\pi/K) > 0.1$

D) Remove events in which high momentum π^0 mis-identified as a ISR photon.

Those events are from non-ISR $q\bar{q}$ (dominated by $\pi^+\pi^-\pi^0\pi^0$) and $\tau^+\tau^-(\tau^\pm \to \pi^\pm\pi^0\nu_\tau)$.

¹¹ Extracted signal: $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR}$

- We obtain the number of evens in each M(3π) bin by fitting M(γγ) with signal and background.
 Dotted points show the data.
- □ Histograms show the background expectation after applying data-MC correction factors.

Validation of the background predictions

12

• The contamination from other processes is negligible..

A slight data-MC difference is assigned as correction factors for the background $N_{\text{Signal}}^{\text{data}} = N_{\text{Signal}}^{\text{MC}} \cdot \frac{N_{\text{Control}}^{\text{data}}}{N_{\text{Control}}^{\text{MC}}}$

Unfolding

□ The signal spectrum is unfolded to remove the effect of finite detector resolution

- Typical mass resolution is around 7-10 MeV/c²
- To check how well this detector resolution is simulated by MC, we use the narrow peaks at ω,
 Φ, and J/ψ in data.
 - In particular, J/ψ is useful since it's resolution is determined only by the detector effect.
 - We found about 1 MeV/c² difference on the resolution, and 0.5-1.5 MeV/c²

mass shift between data and the MC and correct these differences in the MC.

Mass resolution

Cross section calculation

14

Systematic uncertainty for $e^+e^-{\rightarrow}\pi^+\pi^-\pi^0$ cross section

 \square Major systematic uncertainty comes from π^0 efficiency and MC generator.

15

Source -	Systematic uncertainty (%)	
	√s < 1.05 GeV²	√s > 1.05 GeV
Trigger efficiency	0.1	0.2
ISR photon efficiency	0.7	0.7
Tracking efficiency	0.8	0.8
π ⁰ efficiency	1.0	1.0
χ^2 criteria efficiency	0.6	0.3
Background suppression efficiency	0.2	1.9
MC generator	1.2	1.2
Radiative correction	0.5	0.5
Integrated luminosity	0.6	0.6
Total systematics	2.2 itiative Mini-workshop	2.8

ISR photon &tracking efficiency

 \blacksquare We measure ISR photon efficiency using $e^+e^-{\rightarrow}\mu^+\mu^-\gamma$

16

- \Box We measure charged track efficiency using $e^+e^- \rightarrow \tau^+\tau^-$ (0.3%/track).
- □ We check track loss due to shared hits in the drift chamber using $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ events.

□ The Inefficiency, f, due to track loss is found to be 5.0% in data and 4.0% in MC f = $\frac{N(\Delta \varphi < 0) - N(\Delta \varphi > 0)}{f}$

\square Total correction factor for tracking is (-1.4 ± 0.8) %.

 $2N(\Delta \varphi < 0)$

π^0 efficiency correction

Δ Measure π^0 efficiency using events in exclusive process $e^+e^- \rightarrow \omega \gamma \rightarrow \pi^+\pi^-\pi^0 \gamma$

 $\varepsilon_{\pi^{0}} = \frac{N(\text{Full reconstruction} : \gamma_{\text{ISR}} \pi^{+} \pi^{-} \pi^{0})}{N(\text{Partial reconstruction} : \gamma_{\text{ISR}} \pi^{+} \pi^{-})}$

- Reconstruct the process using only $\pi^+\pi^-\gamma_{ISR,}$ without using π^0 information.
 - Count $\omega \rightarrow \pi^+ \pi^- \pi^0$ signal in M($\pi^+ \pi^- \pi^0_{rec}$)

- Where π^0_{rec} momentum p_{recoil} is determined by 1-C fit to $\pi^+\pi^-\gamma_{ISR}$ with a hypothesis that recoil mass equals π^0 mass
- $\Box \varepsilon_{\pi^0}$ are independently evaluated by the data and MC $\Box Data/MC ratio = 0.986 \pm 0.006_{stat}$

□ Systematic uncertainty related to π^0 is 1.0%, dominated by the uncertainty of the background in ω signal.

Higher-order ISR effects in MC

□ Recently BaBar reports issues on the small-angle additional photon emission in PHOKHARA MC, (PRD 108 (2023)11, arxiv:2308.05233.

- □ We also confirm that, although the total radiative correction r_{rad} is small (1% level), 15-20% events contain additional ISR photons in the generator. This additional photon emission affects the efficiency of kinematic selection of events using χ^2 .
- By taking into account additional NNLO effects, we assign 1.2% uncertainty on this issue as the uncertainty of the generator. (We need complete NNLO MCs.)

Result: cross section at ω

ω(782)

Belle II cross section at ω resonance is 5-10% higher than that from BABAR and SND.

Result: cross section above 1.0 GeV

□ Good agreement with BABAR results

Φ(1020)

800 **Belle II** Preliminary **Belle II** Preliminary 12 700 $\int L dt = 191 \text{ fb}^{-1}$ ∫*L*dt = 191 fb⁻¹ Cross section (nb) Cross section (nb) This exp. 600 10 This exp. ¢ **BABAR (21) BABAR** (21) 500 8 SND (02,03,20) SND (02,03,20) 400 CMD-2 (04,07) CMD-2 (04,07) 6 * 300 200 2 100 0 0 1.2 .02 1.025 1.035 1.1 1.3 .8 .005 .01 .015 1.03 1.04 .4 .5 .6 1.9 2 $\sqrt{s'}$ (GeV) $\sqrt{s'}$ (GeV)

1.05 GeV < $M(3\pi)$ < 2.0 Gev

Results: 3π contribution to a_{μ} HVP

 $a_{\mu}^{\text{LO,HVP,3}\pi}(0.62-1.8 \text{ GeV}) = (48.91 \pm 0.25_{\text{stat}} \pm 1.07_{\text{syst}}) \times 10^{-10}$

	a _μ (3π)×10 ¹⁰	Difference×10 ¹⁰
BABAR alone [PRD104 11 (2021)]	45.86 ± 0.14 ± 0.58	- <mark>2.5</mark> σ (6.9%)
Global fit [<u>JHEP08 208 (2023)]</u>	45.91 ± 0.37 ± 0.38	- <mark>2.5</mark> σ (6.5%)

Gamma 6.5% higher than the global fit result with 2.5 σ significance This difference $3x10^{-10}$ corresponds 10% of $\Delta a_{\mu} = a_{\mu}(Exp) - a_{\mu}(SM) = 25x10^{-10}$

$$a_{\mu}^{\text{HVP,LO}} = \frac{\alpha}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \frac{K(s)}{s} R_{\text{had}}(s) ds,$$

$$R_{\text{had}}(s) = \frac{\sigma_0(e^+e^- \to \text{hadrons})}{\sigma_{\text{pt}}(e^+e^- \to \mu^+\mu^-)},$$

$$\sigma_0 = \sigma^{\text{dressed}} |1 - \Pi(s')|^2.$$

measured

Systematic uncertainty for a_u

Source	Systematic uncertainty (%)
Efficiency corrections	1.63
Monte Carlo generator	1.20
Integrated luminosity	0.64
Simulated sample size	0.15
Background subtraction	0.02
Unfolding	0.12
Radiative corrections	0.50
Vacuum polarization corrections	0.04
Total	2.19

Summary and Prospects

- \Box We report a measurement of the e⁺e- $\rightarrow \pi^+\pi^-\pi^0$ cross section using ISR events with 2.2 % (1.6%(exp.)+1.2%(MC)) accuracy at ω . This is the first ISR results from Belle II. See arXiv:2404.04915 for details.
- \Box Our results are about 2.5 σ greater than BABAR and a global fit.
 - $\blacksquare a_{\mu}^{\text{LO,HVP,}}(3\pi) = (48.91 \pm 0.25_{\text{stat}} \pm 1.07_{\text{svst}}) \times 10^{-10}$
- \Box Statistical errors are still dominated except ω and ϕ peaks. Systematic errors can also be improved by adding more data.
- For further improvement, QED NNLO MC generators are crucial.
- We are planning to make precise measurements on the cross sections in other ISR processes, $e^+e^- \rightarrow \pi^+\pi^-$, as well as 4π , \bar{p} p, KK π ...
- \Box In addition, We are planning π^0, η, η' production in single-tag processes $e^+e^- \rightarrow e(e)\pi^0, \eta, \eta'$, which are important for HLbL terms.

Backup

Background suppression (3)

D)

- i. $M(\pi^{\pm}\gamma_{ISR}) > 2 \text{ GeV/c}^2$ to reduce high momentum $\rho^{\pm} \rightarrow \pi^{+}\pi^{0}$
- ii. $M(\gamma_{ISR}\gamma)$ cut to reduce ISR candidate from π^0 -decay photon
- iii. Cluster shape cut to reduce ISR-like photon in which two photons from of π^0 are merged

ISR photon detection efficiency

Higher-order ISR effects

- 20% excess in the small angle additional photon events in the PHOKHARA MC is reported by <u>BABAR</u>
 - □ We verify the BABAR observation in PHOKHARA in the Belle II data.
 - Signal efficiency can change because most NLO additional photon events are rejected by χ2 criteria in kinematical fit.
 - \square Due to this effect, we confirm that the $\chi 2$ efficiency by PHOHARA is underestimated by (2.4 \pm 0.7)%.
- Using KKMC, we estimate that efficiency will also change due to NNLO effects by 1.9% in the opposite direction.
- As a result of these consideration, we conclude
 - No correction is assigned to our results but,
 - 1.2% systematic uncertainty is accounted for as MC generator-derived error
 0.7%(NLO excess error) ⊕ 0.95% (half of NNLO effect) = 1.2%

Recent situation in muon g-2 anomaly

- **5**σ significance through new direct measurements from Fermilab
- Non-negligible uncertainty in theoretical predictions
 - □ Major uncertainty is derived from Hadronic Vacuum Polarization (HVP) term
 - HVP predictions are different depending on methods: e⁺e⁻data vs Lattice QCD

27

Recent situation in muon g-2 anomaly

- **5**σ significance through new direct measurements from Fermilab
- Non-negligible uncertainty in theoretical predictions
 - □ Major uncertainty is derived from Hadronic Vacuum Polarization (HVP) term
 - HVP predictions are different depending on methods: e⁺e⁻ data vs Lattice QCD
 - Differences among e⁺e⁻ experiments are also non-negligible
- Validation by independent experiments is important in HVP prediction

Radiative return method

■ Measure the cross section in the energy range 0.4-3.5 GeV at fixed e⁺e⁻ energy collision

□ Use a process associated with energetic ISR emission

Only less than10% of ISR photons are emitted into detector acceptance

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR} \ selection: Background \ suppression$

Final-state radiation background

- Difficult to reject FSR background or extract control sample
- Estimate FSR background using pQCD prediction based on the BABAR previous analysis [PRD112003]

Efficiency correction : Summary

	Efficiency correction (%)		
Source	M < 1.05 GeV/c ²	M > 1.05 GeV/c ²	
Trigger	-0.1±0.1	-0.1±0.1	
ISR photon detection	0.2 ± 0.7	$+0.2 \pm 0.7$	
Tracking	-1.4 ± 0.8	-1.7 ± 0.8	
π^0 detection	-1.4 ± 1.0	-1.4 ± 1.0	
Background suppression	-1.9 ± 0.2	-1.8 ± 1.9	
χ^2 distribution	0.0 ± 0.6	0.3 ± 0.3	
MC generator	0.0 ± 1.2	0.0 ± 1.2	
Total correction	-4.6 ±2.0	-4.6 ±2.0	

Tracking efficiency

 \blacksquare Tracking efficiency for pions is studied with the e⁺e⁻ \rightarrow t⁺t⁻ process.

Data-MC differences are confirmed to be small with 0.3% uncertainty per track.

Uncertainty on background suppression

Estimated by the ratio of signal yield before/after the criteria
 It is evaluated using ω,φ, and J/ψ resonances of good S/N
 In M(3π) < 1.05 GeV/c², efficiency is (89.5 ± 0.2)% for data
 Data-MC difference is ε_{data}/ε_{MC} -1 = (-1.90 ± 0.20)%
 M(3π) > 1.05 GeV/c² : the number of J/ψ was obtained by M(3π) fitting
 Data-MC difference is ε_{data}/ε_{MC} -1 = (-1.78 ± 1.85)%
 Error is due to statistical errors in the sample

34

χ2 kinematic selection efficiency

35

- **Π** ISR and tracks χ^2 -criteria efficiency is confirmed using e⁺e⁻ \rightarrow µ⁺µ⁻γ sample
- □ Confirm effects from differences in position, momentum, and energy of ISR and tracks
 - □ Agreement confirmed within ±0.6% uncertainty
- Dependence on multi-ISR photon calculations is discussed on the next page

³⁶**Result: cross section at high and low masses**

2.0 GeV < $M(3\pi)$ < 3.5 Gev

0.62 GeV < $M(3\pi)$ < 0.75 Gev

Comparison with BABAR 2021 measurement

□ In quite a few respects, this analysis follows the BABAR method

- Systematic uncertainty is still nearly twice as large
 - NNLO generator is needed

37

	Belle II	BABAR (2021)
Dataset	191 fb ⁻¹	469 fb ⁻¹
Combinatorial yy background	M(yy) fit	MC
ISR energy in kinematic fit	Used	Not used
Generator	PHOKHARA	AfkQed
Generator uncertainty	1.2%	-
Detection efficiency uncertainty	1.6%	1.1%
Integrated luminosity	0.6%	0.3%
Total systematic uncertainty for $a_{\mu}(3\pi)$	2.2%	1.3%