Muon g-2 Theory Initiative Spring 2024 meeting



### Pion pole's contribution to HLbL

# Xu Feng (Peking U.)

#### 2024.04.16

#### On behalf of RBC-UKQCD Collaboration

# **Starting point**



Question: How to calculate TFF for arbitrary momentum  $Q_1^2, Q_2^2$ 

# Methodology

 $\succ$  In the continuum theory, TFF is defined in Euclidean space as

$$\varepsilon_{\mu
ulphaeta}Q^{lpha}Q'^{eta}\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q^{2},Q'^{2}) = i\int d^{4}x \, e^{-i(Q-P/2)\cdot x}\mathcal{H}_{\mu
u}(x)$$

 $Q = (iE, \vec{Q})$  is arbitrary 4-momentum for one off-shell photon  $\mathcal{H}_{\mu\nu}(x) = \langle 0|T\{J_{\mu}(\frac{x}{2})J_{\nu}(-\frac{x}{2})\}|\pi(P)\rangle$  is the hadronic function

Step 1: Lorentz decomposition

$$\mathcal{H}_{\mu\nu}(x) = \varepsilon_{\mu\nu\alpha\beta} x^{\alpha} P^{\beta} H(x^{2}, P \cdot x)$$
$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q^{2}, {Q'}^{2}) = i \int d^{4}x \,\omega(Q, P, x) H(x^{2}, P \cdot x)$$



Tian Lin (PKU) 2<sup>nd</sup> year PhD student

- Step 2: Spatial rotation average
  - In pion rest frame  $P = (im_{\pi}, \vec{0})$ ,  $H(x^2, P \cdot x)$  is invariant under spatial rotation
  - Thus, one can perform spatial rotation average for  $\omega$ . It only depends on  $|\vec{Q}|$  and  $|\vec{x}|$ , rather than the angle

$$\omega(Q, P, x) = -e^{(E - \frac{1}{2}m_{\pi})t} \frac{|\vec{x}|}{|\vec{Q}|} j_1(|\vec{Q}||\vec{x}|)$$

### Problem

➢ Results for TFF



- Very noisy for  $(Q_1^2, Q_2^2) = (0, Q^2)$  at large  $Q^2$ ,  $Q^2 = 2|\vec{Q}|m_{\pi} m_{\pi}^2$
- When  $|E| = |\vec{Q}|$  becomes large

## Make things simple

- ▶ In the chiral limit,  $P = (im_{\pi}, \vec{0}) = (0, \vec{0})$ 
  - $H(x^2, P \cdot x)$  is independent of  $P \cdot x$

$$H(x^2, P \cdot x) \Rightarrow H(x^2, 0)$$

• One can perform SO(4) average

$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2}) = i \int d^{4}x \frac{2}{Q^{2}} \left( -\frac{J_{1}(Qx)}{Qx} + J_{0}(Qx) - J_{2}(Qx) \right) H(x^{2},0) \qquad Q = Q_{1} - \frac{1}{2}P$$

No exponential growth for large x

The simple case inspires the solution!

# Physical world

➤ Hadronic function can be written in terms of pion structure function

SO(4) symmetric  

$$H(x^{2}, P \cdot x) = \int_{0}^{1} du \, e^{i(u - \frac{1}{2})P \cdot x} \phi_{\pi}(x^{2}, u) H(x^{2}, 0)$$
Finst structure function  
Pion structure function  
Normalization  $\int_{0}^{1} du \, \phi_{\pi}(x^{2}, u) = 1$ 

• At small  $x^2$  and up to higher-twisted correction,  $\phi_{\pi}(x^2, u)$  is equivalent to pion distribution amplitude

Bali et. al., PRD 98 (2018) 094507

• TFF can be written as

$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}} = -2i \int_{0}^{1} du \int d^{4}x \frac{J_{2}(Qx)}{Q^{2}} \phi_{\pi}(x^{2}, u) H(x^{2}, 0) \longrightarrow \text{Lattice input}$$
No S/N problem Introduce unknown structure function?



# **Gegenbauer expansion**

- Short summary  $a_{\mu}^{\pi^{0}-\text{pole}} = \int d^{4}x_{1} \int d^{4}x_{2} \int du_{1} \int du_{2} H(x_{1}^{2}, 0) H(x_{2}^{2}, 0) \phi_{\pi}(x_{1}^{2}, u_{1}) \phi_{\pi}(x_{2}^{2}, u_{2}) \rho(x_{1}, x_{2}, u_{1}, u_{2})$
- > Introduce Gegenbauer polynomials  $C_{2n}(2u-1)$ 
  - It forms a complete polynomial basis and satisfies the orthogonal condition

$$\int_0^1 du \, u(1-u) \, C_{2n}(2u-1) \, C_{2m}(2u-1) = \delta_{nm} \frac{(n+1)(n+2)}{4(2n+3)}$$

> Perform Gegenbauer expansion for  $\phi_{\pi}(x^2, u)$ 

$$\phi_{\pi}(x^2, u) = 6u(1-u) \sum_{n} \frac{a_{2n}(x^2)}{\downarrow} C_{2n}(2u-1)$$
  
Gegenbauer moment

> Consequently

$$a_{\mu}^{\pi^{0}-\text{pole}} \propto \sum_{n,m} \int d^{4}x_{1} \int d^{4}x_{2} H(x_{1}^{2},0) H(x_{2}^{2},0) a_{2n}(x_{1}^{2}) a_{2m}(x_{2}^{2}) \rho_{2n,2m}(x_{1},x_{2})$$

structure information

suppress quickly as n,m increases

### **Gegenbauer expansion**

Short summary

$$a_{\mu}^{\pi^{0}-\text{pole}} \propto \sum_{n,m} \int d^{4}x_{1} \int d^{4}x_{2} H(x_{1}^{2},0) H(x_{2}^{2},0) a_{2n}(x_{1}^{2}) a_{2m}(x_{2}^{2}) \rho_{2n,2m}(x_{1},x_{2})$$

structure information

suppress quickly as n,m increases

Recall
$$\phi_{\pi}(x^2, u) = 6u(1-u) \sum_{n} a_{2n}(x^2) C_{2n}(2u-1)$$
Normalization condition
$$\int_{0}^{1} du \, \phi_{\pi}(x^2, u) = 1 \text{ yields } a_0(x^2) = 1$$

Dominant contribution is structure independent



### **Structure functions**

Extract structure function from lattice data?

- Boost pion with large momenta (S/N problem)
- Inverse problem
- Similar to the calculation of pion distribution amplitude

A completely new project!

Control the structure function dependence using various models

Delta  $\phi_{\pi}(u) = \delta(u - \frac{1}{2})$ OPE asymptotic  $:\phi_{\pi}(u) = 6u(1-u)$ AdS/QCD: $\phi_{\pi}(u) = \frac{8}{\pi}\sqrt{u(1-u)}$ VMD model: $\phi_{\pi}(u) = 1$ CZ model:  $\phi_{\pi}(u) = 30u(1-u)(1-2u)^2$ 



### **Transition form factor**



### **RBC-UKQCD** ensembles @ physical $m_{\pi}$

| Ensembles | <i>a</i> [GeV <sup>-1</sup> ] | L/a | T/a | L/fm | $m_{\pi}[{ m MeV}]$ | $m_{\pi}L$ | # of confs |
|-----------|-------------------------------|-----|-----|------|---------------------|------------|------------|
| 24D       | 1.015                         | 24  | 64  | 4.7  | 141.56(22)          | 3.3        | 253        |
| 32D       | 1.015                         | 32  | 64  | 6.2  | 141.38(20)          | 4.5        | 63         |
| 32Df      | 1.378                         | 32  | 64  | 4.7  | 142.89(40)          | 4.7        | 69         |
| 481       | 1.730                         | 48  | 96  | 5.5  | 139.60(16)          | 5.5        | 112        |
| 641       | 2.359                         | 64  | 128 | 5.4  | 135.33(20)          | 5.4        | 65         |

10/13

Domain wall fermion + Iwasaki gauge action (+DSDR)

### Systematic effects from structure func.

11 / 13



 $\succ$  Results well described by linear form on  $a_2$ , confirming higher-moment contributions are negligible

#### **Continuum extrapolation**



### Summary



- A new method to calculate pion pole's contribution Statistical: pion at rest,  $H(x^2, 0)$  with SO(4) average  $\implies$  accurate result  $\succ$
- Systematic: model dependence is well-controlled  $\geq$

On going efforts:  $\succ$ 961, disc. diagram, error budget