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Testbeams

€ Why testbeams?
€ The key underlying issues of a testbeam

« Efficiency & Purity
 Error on the predicted position

€ Different facilities and their good and bad points
€ Experimental issues

® Lecture block after this is on hit and track reconstruction, so will not
go in detail into algorithms here.
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Let’s start at the end...

CMS Experiment at the LHC, CERN| ("NAS
Tue 2010--Mar--30 13:23:00 CET|—.._ >
Run 132440 Event 4285681 , >
COM Energy 7 00TeVET——" |
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What did you see?

€ You see dots lighting up.
 Sometimes due to noise

« Sometimes due to
traversing particles
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What did you see?

€ You see dots lighting up.
« Sometimes due to noise
* Sometimes due to
traversing particles

€ Then you connect the
dots and you are doing
particle physics....

€ Key question to ask

* Did the dot light up due to
a particle or noise?

€ Secondary question

* How certain are you of
the hit position?
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Hit or noise?

€ Need to understand signal and noise
€ Many ways to test this

* Laser
» Radio-active sources
 Cosmics

 Test charges/pulses
€ All come with issues

» Was there actually a particle or input pulse?
* Where on the sensor?
 Are the input charges representative of actual particles?

@ Itis all about efficiency and purity.
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Efficiency & Purity

€ Efficiency

* If a particle traverses your detector, do you see it?
@ Purity

* If you see a hit, was it a particle?

@ Getting efficiency & purity right is VITAL for experiments.
* The job of a tracker is to reconstruct tracks.

* Only few layers available (~<10). Track has 3 parameters.
* Many tracks close to each other; large scope for confusion.
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Tracking

€ Good efficiency and high
purity means easy tracking.

€ Good efficiency and bad
purity make tracking
difficult.

€ Bad efficiency and good
purity make tracking
difficult.

€ Bad efficiency and bad
purity make it impossible.

€ Do you notice that | can live
with bad purity? This allows
to use a low threshold and
thus improve the efficiency.
The track fit will clean things
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Why a testbeam program?

€ Measure efficiency & purity

€ Fire particles at the sensor
under test

€ Reconstruct the incoming
particle position with other
detectors (a telescope).

& Ultimate test of a sensor
system

* Puts down a clear marker that
the system works!

* Know where particle hits the
sensor

* “Only” way to measure
efficiency & purity
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Main aims of a testbeam

€ Measure key parameters of sensors
» Efficiency & Purity
- Signal to noise ratio
* Position resolution
» Optimize position reconstruction algorithms
* Cluster sizes
» Charge sharing
* In-pixel variations

€ And debug DAQ systems

* Some groups even built their entire detector by testing all modules
In the beam test
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Efficiency and purity

particle?

@ Efficiency and purity are the MOST N

Important parameters for a detector.
- Efficiency: if a particle goes through a S'Q_”a'
detector, does the detector record it?

* Purity: if a detector records a particle, |
was it actually a particle? /\
N _pa

€ Which arrow points at a particle? A4
« How can you tell? S

€ You cannot! It is a statistical thing:
you can evaluate the probability.
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An example: FORTIS

€ We fire particles and
measure where they

go.
* pion beam
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An example: FORTIS

-l
(]
o

€ Here you see an
event

@ Do you think we
see hits?

€ And what about
those?

Row number
—
o

0 20 40 60 80 100 120
Column number
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Raw data reconstruction

event i

channel k
raw(i, k) ﬂ@+- N (i.k)#q(i,k)

® Every channel has own offset (pddestal) g 175 e cheanel wolie 23}
and gain. S ;0 B
€ Due to fluctuations in ground vgltage, all Q a5
channels show common benaviour in eacti Eﬁ: 00
event (common mode) =
® Each channel own random noise 5 7
® Some channels carry signal < ;’j
= 2If
o

475 480 485 490 495 500
Strip number
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A/x (MeV g!lem?)

0.55) I ‘1.|00| . I1.|50I ‘2.|00| . .2'|50
CIUSter Ianguage 1-0:_ ’ ‘. 500 MeV pion in silicon :
| B Y4 — e |
€ The signal from a minimum 2| e ]
lonizing particle follows a Landau 2000 :
distribution. 0.4f LN :
: N lesrates
 Gaussian with a tail to the right. E ( foso et ]
€ The signal is shared between by T ]
neighboring strips (or pixels) and o W evm ™
some gets lost. =200
* Seed strip (pixel) is the signal with girsp e chemnel noise (x3)
the highest signal. 3 150 _
* Neighbors are all other pixels that H 125
are part of the cluster. = 100
e
P
=
; 50
= 25
t
§ 0
o

475 480 485 490 495 500
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Signal or noise”?

® Hits are selected based on either signal or signal/noise.
@ Need to set a threshold. E.g. S/N_..4 > 5noise.
® Defines how many real hits and how many fakes are

found.
SN =27.5x0.2 S/N . =7.50+0.07
iy L - EAREE
20° . 20° .
= ﬂl —— All strips = —— All strips
ﬁ in? ——  Buckground strips ﬁ in? ——  Buckground strips
p Seed strips 4 Seed strips
10 ~———  Cluster rest strips 10 ———— Cluster rest strips
107 107
10° 10°
10 10
! | ]1 I b ! | . . |
a 25 30 73 100 -20 0 20 40
S/N strip S/N strip
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Signal or noise”?

€ Hit selection cut defines how
many real hits and how
many fakes are found.

& For dotted line

* hardly any fake hits left, so
excellent purity, but missing
lots of real seeds, so bad
efficiency.

€ For solid line

 Lots of fake hits left, so bad
purity, but found almost all
real seeds so excellent
efficiency.

University of

S/N,, %7.50+0.07

—:— All strivs
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Signal or noise?

SfN‘hﬂ:T’tjﬂiU.ﬁ? E 4 t_'.'..:‘ i E'E'EI ‘.‘.I"IIIIIIIIIIII
E Jﬂﬁ —— Allstrip E 2 + E .
h SIS \ n_‘
= s : . 0.8
5] 1o ——  Buckgroumd strips % . =
. Seed strips w10 . é ® Purity
10 Cluster rest strips 8 . :Eﬂ-ﬁ ; O Effictency
107 sf o ° E::j_.; )
107 J
10 0.2 .
2 DD
! 1l l | f ™. Dnﬂnhnm nnnnnnnn
20 0 20 40 05 G 0 13 0 3 0 15 20 23
S/N strip Seed cut (G) Seed cut (G)
€ Seed cut is compromise between -
g : Cut=10c | 9o} I Cut=4c
efficiency and purity. 100 SIN=10 | = i S/N=6
@ |t also affects measured properties @ ﬁ
like S/N and position resolution! & 500
- Can fabricate excellent w0 .
performance by selecting a bad 2 0
seed cut. oy S 206"
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Binary or ToT sensors

€ Binary or ToT sensors
* have a similar frontend

* sighal components the same but only read out if a hit is registered
- every pixel has a discriminator that needs to be tuned

per pixel per pixel per submatrix
Pixel Periphery . State Machine
baseline ”
sensor CSA % E VCO
| | | | | }— 5 —>| readout &
| | comparator 1&2 £ : state PLL
T L 5| acine
o D) readout -
T L [
T _{ 80/10b | | serializer |-
test-pulse encoder
injection tune
threshold  DACs
amplification

integrate /\ line driver Jlé);r Pi;elld digital output
charge ‘ resho
g adjustment L
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Binary or ToT sensors

€ The threshold is fixed but there
IS a channel by channel offset.

* This needs to be tuned, similar
to seed cut.
€ Tuning
* Insert fixed number of test

pulses and change amplitude
of the pulses.

« Count how many over
threshold.
* Repeat for different offset

€ The counting integrates the
noise.
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Binary or ToT sensors

€ Integrated random noise gives
an error function.
* Fit to extract the noise
€ Now decide your operating point
» What efficiency do you want for
what input signal?

« Same principle as the offline
seed cut, you just cannot
directly see it.
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Measuring Efficiency & Purity

@ Key issue: need to define what
IS a good hit
 Track needs to point at it

* Need to define what a good Eft
track is and how close the
match needs to be. Pur —

- Will get back to that. All registered hits

B Registered hits
~ All incoming particles

All real registered hits

@ Efficiency without Purity is
useless
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Track reconstruction

€ Telescope consists of reference detectors.

* Can be the same or different detectors.

€ Hits are reconstructed in all planes and tracks are reconstructed.
The track is extrapolated on to the device under test.

* It is key to accurately predict the track position.
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Multiple scattering

€ When a charged particle enters P B
a material, it encounters the electric —r=—< ¢ I 1
fields of the electrons and nuclei. "‘“‘“;pTa;gEjﬂane peoe,
® In the Coulomb interactions it ) o -~
loses energy and changes direction. A

€ The particle exits under an angle 6. The spectrum is almost Gaussian

_ 136 Mevzm 1+ 0.0381n (2/Xo)]

Bep
€ Where X, radiation length is the mean distance over which a high-energy
electron loses all but 1/e of its energy by bremsstrahlung.

€ Note that:
* most particles go straight on
- want high momentum beam
* thin detectors

gg
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Multiple scattering

€ We always assume that the
particle went on a straight line.

& That is not true!

- Particle undergoes multiple
scattering.

* The hit positions are also
reconstructed imperfectly.
@ You see that the reconstructed
position is wrong.
€ There is an uncertainty on the ¥
predicted position.
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Error on the predicted position

€ The error on the predicted position is
the difference between the red line
and the purple one.

@ It depends on the

* position of the Device Under Test
(DUT)

* position resolution telescope modules
- energy of the particles
* thickness of the detectors

136M6VV@1+00381H (z/Xo)]
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Error on the predicted position

@ Itis very important to quantify the

error on the predicted position. 2: - :
® Plays a key role in determining 1.5¢ :
what a matching track is. E 16 e
# Determines in what detail you 5 14- aF
can study the sensor. S 12- | A 3
@ Itis a component of the § 1E A =
resolution measurement g e E
2 _ 2 2 x 0.6 r

Oraw = Ointrinsic T Opred.pos - - - * 80 GeV
s + 140 GeV -
€ You get this from a Monte Carlo 02 o~ = 250 GeV |
simulation. 0 g o8 1 i T2 as g

i ) Intrinsic DEPFET resolution (um)
« Or measure it by making a beam

energy scan.
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Error on the predicted position

€ Telescope’s key role is to provide precise tracking.
® |deal spacing depends on beam energy, hit precision, spacing and
detector material.

 Extrapolation relies on the position of multiple detectors and thus
improves further away from one detector plane.

* Multiple scattering gives a random deviation of a straight line,
therefore gets worse in between two telescope planes.

Multiple scattering

Precision

Extrapolation

Distance between sensors
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Error on the predicted position

€ Simple MC for our CEPC testbeam at DESY
« 500 micron thick detectors, 17 micron resolution for telescope planes.
« 2.5cm between planes, DUT not in fit, 5cm DUT spacing.
* 6 GeV electrons give 10.6 micron precision on DUT.
* High energy limit 6.0 micron v e et e i Cr e
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Good tracks and matching hits

€ A good track is defined by a y?-cut. Can
Include a time as well as spatial e -

[
coordinates. 2500 c=1.82 (um)
* Not strictly correct. We do not know the
error on the hit position and residual 2000/~ .
distribution is non-Gaussian .
- Will get back to that. §15m:_ i
€ The y?-cutis arbitrary. You pick it. It 1000 N
mainly affects your spatial resolution :
and efficiency & purity results. 500/ -

« Some of the outliers are due to “weird”
tracks. Can cut them out, but is it fair?

* If you make the y?-cut extremely tight,
you also exclude events where a big
scatter happened in the DUT. These
typically have worse resolution.

_I_ | —— | | I | 1 |
0-0.015 0.01 -0.005 0 0.005 001 0.015

Predicted-reconstructed hit position (mm)
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Problematic cases

€ Here there was a big scatter on the track,
but y2-cut would leave the track in.

* If you cut it, your efficiency drops and
your purity gets worse.

* If you keep it, your position resolution
gets worse.
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Problematic cases

€ Here there was a big scatter in the DUT,

y2-cut would cut it. \\
* If it scatters, the path gets longer so
¥

signal increases.
« If you cut it, your S/N drops
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Good tracks and matching hits

@ For efficiency and purity it matters whether you
accept a track as matching or not.

@ Error on the efficiency is

, €1—¢)
Oc =
n -
® Now you can define a criterium whether a hit -E 120
matches the track or not. 2
# Do you accept the white, yellow, red as a 2 100
oo

match?

€ You can evaluate the probability that a hit is
part of the residual distribution or not and
tension that against the uncertainty of the
efficiency.

* Tricky because residual distribution is not
Gaussian
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Position reconstruction

€ The most reported parameter is the position

resolution
€ Many algorithms exist
- Binary o= 7
J12
* Pick largest signal
* Digital

» Use 1 threshold, average positions
 Centre-of-Gravity
* n-algorithm
« HT-algorithm (angled tracks)

€ Will not go in details here. That’s for the next block.
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Centre-of-Gravity

€ CoG is most often used algorithm

_ Z Qi X, 300
CoG Z Qi "

€ Expected resolution

1200 o=172%t0.1 Lm

X

L |
-100 -50 ] 50 100

N° .
2 _ 2 Residual
Ococ = 32 Z(Xi _XCOG) . estiuat (km)

Entries

%
€ Note: coc(S/N)1 &
€ Centre-of-Gravity assumes linear charge ;’z
sharing s

40
30
20
i

fl

* Resolution gets bad due to large clusters
with non-linear charge sharing

» The weight for the strips at the end of the
cluster, who have the lowest S/N, is very R R BT
h'gh Strips/cluster

University of

BRISTOL



Position resolution depends on hit position

€ The non-linear charge sharing
leads to different position Xﬁ% Xﬁ% X&% X0
resolutions at different positions
between strips or in-pixel.

€ If you hit in the middle between
the readout strips, the charge is
evenly shared between the
strips.

* X,=X5 and x, and x, are small

* X,<X5 and x; and x, are small l l 1 1 l
a”f’ X5 cOmes in play | 0-6 24-30 54-60 96-102  114-120

* X5 IS large and x,=x, and x, IS - -
small

€ For the resolution add up all
distributions. Not a proper L
Gaussian. ' - } "‘”'IL" 2\

X5%0

University of

BRISTOL



Position resolution depends on hit position

€ Here you see a scatter plot of
the predicted and the
reconstructed position for a
strip detector.

€ You notice that the charge
sharing is not linear.

@ This yields different resolution
between the strips.

® Therefore, we cannot calculate

- E

J00F

Reconstructed (lim)

- Kol
e il T

the actual y? of the track until 0z 0 77 I
we know where it has hit the Predicted ([im)
Sensors.
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Position resolution depends on hit position

7
# Charge sharing in the 2
TimePix3. =
€ Large pixels wrt charge To g
cloud. E
* Huge area of single pixel :?'_50.6
clusters = -
 Along the edges 2 pixel s
clusters Z0.47
* In the corners 3 and 4 pixel i
clusters 0.2

@ For each area expect a

resolution of the area/v12 O
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In-pixel variations

€ You want to measure the variation
of many properties inside a pixel or
between strips.

€ Scale is set by the error on the
predicted position.

@ It makes no sense to bin smaller
than ~2x20;¢q pos

* Your in-bin purity will be poor and
thus you smooth out the results.
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Charge division

€ Example of an in-pixel study of the collected signal in a diamond

detector coupled to an ATLAS FE-I3 _
= Seed signal () E=1V/um

£ 0.025
S
~— 0.015
>
0.005
-0.005
-0.015

16000

14000

12000

-0.02% 3 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 10000

X (mn?)'2
Sum neighbour signals (e)

0.025 5000

0.015
0.005
-0.005
-0.015

4000

Y (mm)

3000
2000

1000

-0.02% 3 -0.15 0.1 -0.05 -0 0.05 0.1 0.15 0.2
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Charge division

€ Example of an in-pixel study of the collected signal in a diamond
detector coupled to an ATLAS FE-I3
Sseed/ Zscluster

-0 0.05
Cluster size

Y (mm)
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Telescope free testbeam: grazing angle

€ Most testbeams are using

perpendicular beams.
€ Here they use a grazing angle, =SB EREEEEE

T . l beam

l.e. almost parallel to the sensor. AREREEEEE

* gives long tracks in the detector. exit point

€ Now you can use your own _
detector as a telescope and L L

DUT at the same time. -1 ‘ 1

\— .—4—‘{"‘ _ | beam

entry point
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Telescope free testbeam: grazing angle

€ For unirradiated sensors all
depths contribute the same
amount until depletion depths.

» carrier lifetime >> collection time entry point
€ Can see this using grazing angle exit point
method.
» Expect 3.8ke MPV per pixel at
this angle. <
@ Signal drops really quick at
depletion edge.

* Charge is collected due to
generated charge diffusing into
depleted area.

* (In this analysis will always Coy
measure at least 1500e) column —

beam

[ ]
| |
L]
IIIII
¥ 1
L]

row — — 1
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Telescope free testbeam: grazing angle

€ It also allows to study from how
deep in the sensor your charge
IS collected.

€ Here you see a partially - enry point
depleted detector.

l'_l 5_ LI | I | I | | I I | LI I LI |
L _E ]
« If the bias voltage is not high = 45F E
enough parts of the sensor do T ARsemsesannmrenasinanganensnasssiseny
not contribute to the signal. 833 e
S 3 =0V " , EH _:
w 2.5F |+ 40V - <
Eﬂ = - K 3
= 2F |[*s0V . o
5 150 |+ 120V E
1E|" 160V E
E o250V ]
0.5 =
(- co by e b by T
0 50 100 150 200

depth [um]
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Telescope free testbeam: grazing angle

€ It also allows to study from how
deep in the sensor your charge
IS collected.

€ Here you see a partially
depleted detector.

entry point

exit point

— 4_| 1 1 LI R B B B
* If the bias voltage is not high g3 S 250V |3
enough parts of the sensor do . s00v |
not contribute to the signal. S TE
_ _ o s T e LTI <750V |3
 This gets worse with radiation. S 254
o 2, e, S0, ° 1000V | ]
%‘D E ++++"’i ’wsaﬁ'onoooooo
E LSt =
1 =
05F -
0 T R
0 50 100 150 200

depth [um]
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Test beam facilities

€ There are many places where you can go for a test beam.
« CERN
* SPS
* PS
* Fermilab
 DESY

-% University of 46
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CERN-SPS

€ Best place for testbeams
€ Can get protons and pions
€ Highest energy available

» 20-400 GeV protons/pions

* minimizes multiple
scattering

€ Beam specs

* spill duration approx. 5
seconds

 usually every 14s
« 2 %X 108 per spill
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CERN-PS

€ 15 GeV protons
« 2 X108 per spill
* 1 spill every 33.6 s
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Fermilab

€ 120 GeV protons ; I

@ one 4.2 s spill per minute with 7 ({1 “‘
about 100,000 protons. FTBF"IStAr‘Ip nd P'XGJ’EGjJeSCODe |

€ The beam is bunched at B (G R . =
53MHz, so lots of particles close
together in time.

€ Comes with telescope

« four 100 X 150um? pixel layers
and fourteen strip modules with
60um pitch

€ nominal resolution of 10-15um
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DESY

€ 1-6 GeV electrons

€ comes with telescope

€ low momentum bad for
multiple scattering.

€ can extract the position
resolution from energy scan.

2 _ 2 2
Oraw =  Ointrinsic + Upred. pos
2 _ 2 2
Opred. pos Otracking T Umultiple scat.

= 13'%2\561/2«\ [2/Xo [1+0.0381n (2/Xo)]
€ Plot resolution vs (1/p)2. Gives

straight line.
€ Error on predicted position

~2um for naked telescope.

J9
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The ugly truth...

€ Testbeams are very simple but
there are many issues.

€ Need to reconstruct the track
that goes with your hit

* Need to look at all detectors
at the same time and have
them all lined up.

* Not easy!

€ Most need a trigger.

* usually provided by
coincidence of scintillators
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“Triggered” systems % Detector signal
2
€ Older systems have a preamp, shaper and ]
sample and hold circuit. hé‘“

« Still in common use. < WMJL/M\J
@ Every clock the output of the shaper is stored in _
a pipeline. % | After pream

€ When a trigger occurs, one of the pipeline =

columns is marked for read out. 5

* You need to set the correct delay to sample the <

correct pipeline column. :

» Can do this partly in the lab, but the correct .

delay depends on the DAQ system. Time
E After shaping

€ Data combination is easy as long as the detector Ea;

is not integrating Z
-% University of

B BRISTOL



Rolling shutter readout

€ Many monolithic active pixel sensors are traditionally read out in rolling

shutter mode.

« Row 1 is read out, reset and
starts integrating.

« Row 2 is read out, reset and
starts integrating.

« Row 3 is read out, reset and
starts integrating.

€ For each row the integration
start and stop time are different.

€ The trigger signal is used as

Row 0
Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12

|

u

Row Z-2
Row Z-1
Row Z

Trigger

iq—— Total Image Readout ———3»|

Row Readout—)é B
€———Row is Exposed —————— > |
—

Row Reset —)- ‘(—
€—— Total Reset ————— 3

<

Total Runtime

a tagger. From the trigger time, you know what row is read out. Need to
store 2 frames to be guaranteed to reconstruct the hit.
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Data-driven read out

€ Some chips have a data driven mode _—
(asyn C h rO n O US) . Analog front-end : Digital front-end : Super pixel (SP)

€ Each pixel has its threshold. When
the shaped signal exceeds the
threshold, a hit is registered.

 Qutput contains:
* Pixel address
» Time stamp for passing threshold
» Time over threshold

Sjqed

Amplitude

€ “Simple” to combine data if you have
synchronicity signal.

* In practice, problematic because you : .
f————> T2 Time

need to read a large chunk of data Al T

and try to find same time stamps Time Walk

THL

r

yl... ...,
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Using multiple types of sensors

€ Need to think how to make a failsafe
system to combine the data.

Amplitude

¢ Difficult
« Can block the trigger using BUSY logic THL
for triggered systems. _ . : X
* Integrating devices will still see all the a w0 Time
hits though. | Tirfewanf

* How to match data? Time stamps?
Trigger counting?

bt tirack [0S]
3

* How to keep the clocks synchronous? 40
» Time walk in data driven systems. 30
€ No real solutions 20
* special synchronization signals 10

* short runs 0 L e ——
o 2000 4000 6000 8000 10000
* limit the beam rate Charge [e]
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Alignment

€ Can fix small alignment issues offline.
€ Online you might be firing the beam (partly)

——
next to the DUT.
, : B B B B
* Needs online analysis!
« Can look at hit correlations and shadow plots.
« Can use additional scintillators B B B
2_"'\”'|”'|"'|"'|'"|"'\'*'|"}‘|"'|"':
1.82— .. _: 200
- = 1F-1180
’51.6:— = o
f 1.2F o -
a o " 120
gt . E e R I B
% 0.8:— ﬁ —: 80
g 06 " ~ e
* 04 1,.! 5 40
0.2;—\-’ — —20
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Other things to think about

€ Data quality monitoring essential
Kentromarte WE |
L : T214%‘ DESY Ringgeschoss
&Arz')fnmw
2ag@3 Al S
o Bl g : es20
% ¢ T22 %/jﬁ/
Ty P i o
, : P Py
Bz E M i
8e

University of

BRISTOL



Data quality monitoring

€ Make a quick version of
the analysis.

€ Use simple hit finder.

€ Exploit all hit maps and
correlations

€ This HAS to look okay if
you want to be
successful.
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Other things to think about

€ Data quality monitoring essential
® Pretest detectors and software = R |
. =l T24 DESY Ringgeschoss
€ Data handllng 8 T24.1 Qm__a—_’_—zﬁ___ﬁf’_
» bring enough disks w_Ba) it T
] % ¢ T22 M'/ﬁ*
€ Bring enough computers and cables >
- B #8721
* got a control hut and a beam area e 7, Y
€ Have a good test beam team 2

 good leaders and good followers

 good plan catering for various scenarios
€ Power plugs
€ Transport of people and equipment
€ Safety courses, inspections and health certificates
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Standard telescope or bring your own

¢ At DESY, you get the EUDET telescope.

* 6 MIMOSA26 MAPS with 18.4 um X 18.4
um pitch and total area 21.2 X 10.6 mm?Z.
Each 50 ym thick

* Trigger Logic Unit (TLU) providing trigger
logic, time stamp and a data acquisition
system.

* Opos = (3.24 &= 0.09) pm.

€ Error on predicted position is
(1.83%=0.03)um
€ Disadvantage

* Need to integrate your sensor with DAQ
AND online software.

€ Advantages

* Most of the work done for you
* Only need 1 sensor
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Standard telescope or bring your own

€ Our ATLASPIX3 telescope.
€ Advantages

- Same DAQ system and software
as in our labs when testing with
cosmics.

- Test several sensors at once.
€ Disadvantages

* Need to write own DAQ and online
analysis software.

* Need at least 4 sensors.
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Alternatives to testbeam

€ Cosmics
* You can put a stack of detectors together and measure tracks.
« Works just as well. However, there are issues.
- Rate is low.
« Beam is not parallel. This makes alignment very complicated.

* You do not know the momenta and thus the error on the predicted
position.
€ Laser
» The laser spot is usually much larger than the error on the predicted
position.
» Can be difficult to get signal in the sensor due to the metallization.
€ Radio-active sources
» Can use sources but you do not know where the particles hit and how many
you have.
€ Test charges/pulses

* You essentially test the electronics only.
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Summary

® In this lecture we discussed the basis behind test beams.
€ Key issues

* Need to understand your telescope and most importantly, the error
on the predicted position.

» Can fabricate all kinds of beautiful results if you do not report your
efficiency and purity.
€ Can do testbeams without a telescope using the grazing angle
method.
* There are also other alternatives that are almost just as good.
€ Main places for test beam are: CERN, DESY & Fermilab.
€ We discussed main complications.
* Integration is complicated
* Your telescope or standard one
€ Good luck with your next test beam!
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Back up
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Energy loss — “remaining” electron

@ If the electron gets
enough energy, then it will Electrons
lonize the atom.

® This electron is mobile!
This iIs vital to our
detection challenge.

@ If it gets more energy, it
will travel and ionize more
atoms. e &

€ These are low energy P
electrons so they will not 4
travel far and deposit a lot
of energy.

* Called §-electrons

_Energy levels

Proton with « delta ray »
(electrons)
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Energy loss: Landau distribution

€ The amount of energy lost
by a traversing particle will
vary due to statistical Ak (MeV g em?
fluctuations L A
. . . . . BN 500 MeV pion in silicon i
@ The distribution looks like a ot sa0um 140 g
. . N 0 T - 5 e A Y S S LI 4 mglem”™) |
Gaussian with a tail on the _
right. This is due to the §’s: So6r

~ 160 um (37.4 mg/em?) -
some electrons get enough

2.00 2.50
T | T T T T |

- 80um (18.7 mg/em?)

energy to ionise more ; st
particles. N
'S mostly go alOng the T 300 400 500 600

A/x (eVium)

original particle direction,
but can have big angles
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Energy loss: Landau distribution

€ Landau assumed a thin detector with an -ee - __ eoe .. L
Infinite sea of free electrons. In practise this 'f'.: ]

IS not true.
€ However, in practise the measured signal
distributions look a lot like Landau
distributions and any Gaussian with a tail
signal distribution is called a Landau /‘ """"""""" -
distribution. of ! P
@ If the detectors get very thin, the o8|
distributions look very different. I
@ For thin detectors, thinner than say 10 or
20um thick, there are not enough energy y

transfers to smooth out the distribution and ME' / ) \-—
the §-rays reach the end of the detector AL

material before they would stop.
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« Energy loss: Landau distribution

€ The dependence on the P S v L A oo
' E | fMMNN e 22.4
thickness was measured. 28l T
€ The plot shows that the KEYS I B\ R 112 o
energy loss per micron E0.4f
. . . . A
Increases with increasing 02,
thickness. % 0.2 0.4 0.6 0.8 1
Energy Loss [KeV/um]
R 0
§0.28
L SR NN N SRR pEmeE:
. -
S 022t |
ﬁ-— ? 0.2 N //"" T Y=0()">‘7|’6""(>’()§'¥0 126
* : CINTIND 4 |
Very important when orel 1
0 20 40 60 80 100 120

choosing detector thickness
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