Advanced UK Instrumentation Training 2024

Lab Techniques - 2

Bart Hommels - Cavendish Laboratory <u>hommels@hep.phy.cam.ac.uk</u>

Inter-channel properties

Inter-channel Resistance Inter-channel Capacitance

Inter-channel Resistance

- Channel separation essential for tracking performance: R_{ic} >> R_{bias} throughout detector lifetime
 - · See lectures by Muñoz, Gonella
- R_{ic} measurement requires DC contact to channel implants
- + $R_{ic} >> R_{bias}$, too high for LCR
- + V_{test} to impose voltage across channels, introducing current through R_{ic}
 - R_{ic} in V divider with R_{bias}, limiting sensitivity
 - DMM Z_{in} >> R_{bias}, might require electrometer for small structures
 - Limit V_{test} not to burn out R_{bias}!

R_{is}: typical results

- Can't just set DMM to Ohms and be done!
- Very low currents, and R_{is} measured across R_{bias} as shunt
- V_{test} sweeps from -5 to +5V and back to eliminate hysteresis
- Measured V in mV range
- Linear fit through data points gives slope = ratio of R_{is} and R_{bias}
- Note: the shorter the strip, the HIGHER the resistance. Keep this in mind when measuring test structures!

Inter-channel capacitance

- · Semiconductor detector (& amplifier) noise sources: see lecture by Muñoz Sanchez
 - 2 contributing factors feature input capacitance C^2
- + 2 main sources of capacitance: C_{bulk} and $C_{\text{is}}/C_{\text{ip}}$
 - $C_{is}/C_{ip} = C_{implant} + C_{metal}$, implant normally dominates
 - Cbulk and Cis/Cip ratio depends on sensor thickness
- Backplane capacitance depends on depletion:
 - Can be used to probe detector noise slope: e- (eq) / Input
- · Balance collecting volume vs capacitance
 - Monolithic Si (drift) detectors: very important
 - · CMOS detectors: different trade-off since diffusion more important than drift (IF)

Cis/Cip measurement

- Usually, the implant capacitance dominates. Typical values:
 - $C_{is}/C_{ip} < 0.8 \text{ pF/cm},$
 - C_{bulk} < 0.2 pF/cm, estimated from full sensor CV result
- · Contact 3 channels: use LCR

10⁶

- Next-neighbours contribute 10-20%
- Contacts can be AC or DC coupled •
- Note that the LCR working parameters are (very) different than for CV
 - · Irradiated sensors: different yet again
 - Measure dependence on *f* for every use case

Cis/Cip measurement: typical results & considerations

- Grounding: could run setup floating
 - Depending on environment noise, central GND point close to DUT should be introduced
 - Delicate measurement O(pF) using long cables
 - Shielding very important
 - Contact quality to sensor very (very!) important
- Sub V_{FD} behaviour determined by inter-channel structures
- Settling behaviour over time...

Inter-channel capacitance: time evolution

- Gives information about inter-channel structure properties
- Dependent on many things:
 - p-stop, p-spray details and concentrations
 - Insulation layers & interface with Silicon top surface
 - · Layout & lay-up of top metal layers
 - Environment: T, RH and interaction with top passivation / insulation layers
- DLTS-like analysis of time series behaviour

Influence on detector operation

- Inter-channel structures determine tracking performance
 - · Channel-channel isolation is crucial!
- C does not change much when detector at steady operating conditions
- When Vbias changes under operating conditions (<10% RH, -20°C):
 - Cluster size not as predicted
 - Higher noise
 - Could take hours/days to settle!

DESY testbeam data on ATLAS ITk strip modules

Test Structure Measurements

Flat-band Voltage Punch-Through Protection

Flat-band voltage

- Silicon detector top surface: Si meets SiO₂
- Discontinuity in lattice structure: dangling bonds and/or surface states
- Band structures deviating from ideal
 - A. Ideal case
 - B. Negative oxide charge / 'gate voltage'
 - C. Positive oxide charge / 'gate voltage'
 - D. Stronger E field, as C) leading to inversion layer
- · Study this using a MOS test structure

Measuring V_{FB}: MOS structures

• Gate capacitance:

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} A$$

• At the flat band Voltage at the gate, the ideal band structure is restored:

$$V_{FB} = \Phi_M + \Phi_S$$

Flatband Capacitance:

$$\frac{1}{C_{FB}} = \frac{1}{C_{ox}} + \frac{\lambda_d}{A\epsilon_{Si}}; \lambda_d = \sqrt{\frac{\epsilon_{Si}kT}{q^2N_A}}$$

With λ_d the Debye length, and $N_{\!A}$ the doping concentration (!)

MOS measurement & typical results

- Use LCR to measure capacitance while sweeping V_{gate}
- · Resulting plot: easy to analyse
- Gives access to:
 - · Details of the oxide growing process
 - Accumulated charges in the oxide layer
 - Pre-irradiation
 - Post-irradiation
 - Assess effectiveness of inter-channel isolation structures after irradiation

Punch-Through Protection

- Why? Beam splashes suddenly releasing large amounts of charge: substantial potential difference between strip and GND could burn out bias resistor and/or implant
- PTP structures: evolution from simple extension to fully gated design.
 - Reliable and repeatable breakthrough potential
 - · Sufficient current draining capability
- Practical measurements:
 - DC equivalent
 - Dynamic measurement using external stimulation (laser)
- Recovery behaviour

Study of surface properties of ATLAS12 strip sensors and their radiation resistance M. Mikestikova, for the ATLAS ITk collaboration

R_{is}: typical results for DC measurement

- Before PTP gap acts: measurement sees R_{bias}
 - PTP breakdown changes R to O(10k Ω)
 - Implant resistance $O(1k\Omega)$
- Surface structure: altered by charged particle flux
 - Need to make sure PTP performs well towards end of detector lifetime

Multi-channel characterisation

Coupling Capacitance Strip test protocols

AC coupled channels

- · Coupling capacitance between implant and top metal
- $C_{coupling} >> C_{is}$
- Resistive implant and coupling capacitance form lossy transmission line: high *f* drop-off
- · Bond pads and other structures add capacitance
- LCR: measure R_{bias} C_{coupling} network in one go
 - Determine suitable f
- · Gives access to
 - · insulation thickness,
 - · uniformity across wafer
 - R_{bias} / Poly-Si process monitoring

Coupling capacitance: V step function

- LCR meter really convenient here, measures
 R, C in a single shot at high rate
 - Non R-C like behaviour detected by R, C values deviating from expectations
- V Step function is tricky to implement and data analysis is more complicated
 - Needs device to record V(t): oscilloscope
 - Data compression by measuring at discrete time intervals
 - Can provide more information in case of 'bad' channels

Biased AC coupled structures

Access to more failure modes

Strip test protocols

- Different contact mode: AC & DC pad, or AC only
 - Either method can:
 - Measure R_{bias} (direct vs LCR)
 - Measure C_{coupling} (V_{step} or LCR)
 - Assess failure modes
- Option to contact multiple strips simultaneously:
 - + Allows for C_{is} / R_{is} measurement
- If DC pad sits at "far end" of the strip, implant continuity/resistance can be measured

Strip test protocols

- · Failure mode detection
 - Short: high current at low V between top metal and implant
 - **Pinhole**: high current at higher V between metal and implant
 - R_{bias} out of specification: short, open, short to neighbour
 - C_{coupling} out of specification: metal break / Implant break, isolation layer thickness
- Single/dual needle vs multichannel operation

 7	

Probecard

- Off-the-shelf PCB with precision placed needle in a low-leakage epoxy insert
- Quick multichannel sequencing of tests
- Probestation: platen mounted vs chuck mounted
- Touchdown needles
- Parasitic capacitance
- Switching equipment
- · Controls
- · Cleaning

Advanced Imaging

Pinpointing breakdown in Silicon sensors

Advanced Imaging: pinpointing sensor breakdown

- SW-IR to image Si bandgap emissions
- · Using Si to detect Si photons really?
 - 1.12eV ~ 1107nm
- Back-thinned EM-CCD at -50°C helps!
- · Low QE, also very low noise
- More elaborate semiconductor analysis kit has this built-in (HPK PHEMOS)
- Alternative methods exist:
 - Lock-in thermography (destructive)

We want to be measuring here: 1.12eV Si bandgap

The beloved EM-CCD sensor

provides over 90 % peak QE.

Breakdown imaging

- Test structure: simple square diode
- Take image in low light conditions
- Push into breakdown
 - No current limiting resistor
 - Rely on HV source current compliance
 instead
- Overlay both images

Imaging: features

- Bias current has to go to high levels
 - Potentially damaging the device
- Imaging of scratches, breakdown points
 - Reveal high E-field concentrations
- Metal-implant E-field concentrations
- SW-IR cameras used for many other semiconductor debugging tasks
 - MAPS/CMOS....

Source measurements

- Different emitters to establish detector performance:
 - 55Fe: 5.6 keV X-rays
 - 137Cs: 0.51 MeV &-
 - 90Sr: 0.9336 MeV *B* (avg)
 - 241Am: 5.486 MeV α
 - 22Na: 0.543 MeV *B*+

X-ray tubes

•

- X-rays: spot ionisations
- Rate capability / detector current
- Resolve muons (comics) whilst being irradiated with X-rays

Measurement Equipment

A few examples

Semiconductor Analyzers

- · All-in-one unit. Pros:
 - DC, AC and pulsed measurement
 - Automated parameter extraction
 - Very fast & efficient
- · Cons:
 - Might not have all desired tests on board
 - High-Voltage capabilities
 - · Channel by channel tests
 - Test integration

Discrete instruments

- Source Measure Units (SMU)
 - Full floating V or I sources with V, I, R measurement built in
- Current Meters
 - More sensitive than SMUs. I measurement only
 - Built-in voltage source, entirely stand-alone.
- Switch equipment
 - Matrix, multiplexers, switch banks
- Multimeters
 - Input impedance, accuracy
- Many connectors -> potential points of failure
- Software control: lots needed to compete with Semi Analyzers

Electrical measurements: instruments & controls

- Computer control:
 - GPIB/IEEE 488.2: slow, expensive, clunky cables, limited cable length, bombproof
 - USB: up to 128 devices on single bus. Very versatile, difficult to debug
 - Ethernet: very fast, very versatile, well supported. High reliability, cheap-ish
 - RS-232: point-to-point, slow

59

Thank you !

Bart Hommels: hommels@hep.phy.cam.ac.uk