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Two Lectures

Lecture 1: Mechanics of Particle Interactions with Matter
● Define “particle” interactions with “matter”
● Ionizing Radiation
● Non-Ionizing Radiation

Lecture 2: Detecting Particle Interactions with Matter
● Efficiencies and energy resolutions for individual sensors
● Brief overview of silicon sensor technologies
● Gaseous detectors for tracking
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Further Reading

This is a survey lecture to summarize many mechanisms.

The following are references for a more in-depth understanding.

Material based on Phil Allport’s.

Particle Data Group’s Review

https://www.wiley.com/en-fr/Radiation+Detection+and+Measurement,+4th+Edition-p-9780470131480
https://www-nature-com.ezproxy.cern.ch/articles/s42254-019-0081-z
https://www-physics.lbl.gov/~spieler/misc_stuff/text/sent_02jul05/text_pdf/Semiconductor_Detector_Systems.pdf
https://link.springer.com/book/10.1007/978-3-319-64436-3
https://academic.oup.com/book/43645
https://pdg.lbl.gov/2022/reviews/rpp2022-rev-passage-particles-matter.pdf
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ATLAS Inner Most Pixel Layer
 Study of the material of the ATLAS inner detector for Run 2 of the LHC 

Reconstructed hadronic interactions 
and photon conversion vertices.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/PERF-2015-07/
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Sensor Efficiency Definitions

Intrinsic efficiency measures efficiency of detector element.

εint(charged) ≈ 1        εint(neutral) << 1

Absolute efficiency measures efficiency of entire detector.

They are related (for example) coverage of detector:

Point source subtended by Ω 
solid angle of detector.
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Intrinsic Sensor Resolution: Statistics

Energy deposition is a random process.

1)A traversing particle deposits (exactly) E energy.

2)Number of signal carrier created is N = E/w.
● w is the energy to create a single signal carrier

● Creating a carrier is a random and independent event
● Poisson statistics!
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Intrinsic Sensor Resolution: Fano Factor

Signal carrier are not independent events.

● (Fixed) input of energy is absorbed in different ways.
● Total energy absorbed must equal (fixed) input energy.

● Fano Factor (F) is a correction to account for these variations.
● Also a random process, usually with a very small variance.
● F≤1, by definition.
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Example Fano Factor Values

Consider energy deposited as ionizing (Eion) and lattice (Ephonon).

E = Eion Nion + Epho Npho

Correlated statistical variations in Nion and Npho, as E is fixed.
See chapter 2.2.3 in Speiler for derivation.

Feno Factor

Si 0.115

Ge 0.13

GeAs 0.12

Diamond 0.08

Feno Factor

Ar (gas) 0.20 ± 0.01/0.02

Xe (gas) 0.13 ± 0.29

CZT 0.089 ± 0.05

Example Theoretical Values Example Measured Values

https://www-physics.lbl.gov/~spieler/misc_stuff/text/sent_02jul05/text_pdf/Semiconductor_Detector_Systems.pdf
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For large <N>, Poisson distribution ~ Gaussian distribution.

Intrinsic Sensor Resolution: Poisson

Experimentally, we measure 
Full Width at Half Maximum 
(FWHM) of pulse heights, H  N.∝
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Energy resolution, ΔE, is defined as FWHM/H0.

Distinguish two peaks when separated by FWHM.

Intrinsic Sensor Resolution: Poisson

Take k to be proportionality.

H = kN ; H0 = k<N>

Using prev. equations…
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Charged particle trajectory reconstruction (tracking) requires 
precise position information. Semiconductors are great for this!

Semiconductor Tracking Detectors

Example Technologies
● Strip detectors
● Silicon drift detectors
● Hybrid pixel detectors
● Monolithic pixel detectors
● Charged Coupled Devices
● 3D pixels
● 4D detectors (timing)

Most devices discussed today will be based on segmented p-n 
junction diodes.
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Silicon Detectors Throughout The Years

Credit: Applications of silicon strip and pixel-based particle tracking detectors

https://www.nature.com/articles/s42254-019-0081-z
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Silicon Detectors Throughout The Years

Follows Moore’s Law!
“the number of transistors in an integrated circuit (IC) doubles about every two years”

Credit: Applications of silicon strip and pixel-based particle tracking detectors

https://www.nature.com/articles/s42254-019-0081-z
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Fast Recap of p-n Junction: Doping

Two types of doped silicon.

Source: Hyperphysics

n-type p-type

http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/dope.html
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Fast Recap of p-n Junction: Junction
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Note: The entire material is neutral! Nelectrons = Nprotons

+: holes = electrons missing in covalent bonds

- : free electrons = electrons outside of covalent bonds
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Fast Recap of p-n Junction: Equilibrium
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Small depletion region as some electrons flow into holes.

ΔV
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Fast Recap of p-n Junction: Reverse Biased Junct.
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Free electronsHoles

Depletion region:
● Missing holes and free electrons in the middle.
● Develops ΔV opposing Vbias at equilibrium.
● ΔV prevents any current from flowing.

Vbias
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Fast Recap of p-n Junction: IV Curve

Credit: PN Junction DiodeSensors operate in Reverse Bias
Credit: ATLAS ITk Strip Sensor Quality Control and Review ofATLAS18 Pre-Production Sensor Results

https://www.electronics-tutorials.ws/diode/diode_3.html
https://cds.cern.ch/record/2846511/files/ATL-ITK-PROC-2023-002.pdf
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Space Charge Region

Consider a 1D sensor. Following Poisson’s equation

ρ = charge density
 = dielectric constantϵ

Assume all dopands ionized up to a in n-type and b in p-type
n-type p-type

Integrate once to get E-field as linear

E must be continuous at x=0

Integrate again to get voltage

-a

b

Density

-a

b

E-field

-a

b

Potential

V=V0

V=0

n-type

p-type

n-type

p-type

n-type

p-type
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Depletion Depth

Require potential to be continuous at x=0

Solving for applied voltage, V0, and applying E-field continuity

Take Nn >> Np, making b >> a.

-a

b

Density

-a

b

E-field

-a

b

Potential

V=V0

V=0

n-type

p-type

n-type

p-type

n-type

p-type

-a

b

Density

-a

b

E-field

-a

b

Potential

V=V0

V=0

n-type

p-type

n-type

p-type

n-type

p-type

Solving for distances.

Or more generally, take Nmin=min(Np, Nn)
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Depletion Layer

Treat depletion layer as parallel plate capacitor

Measure capacitance to find
● Nmin (doping amount)
● Substrate resistivity

Credit: ATLAS ITk Strip Sensor Quality Control and Review ofATLAS18 Pre-Production Sensor Results

https://cds.cern.ch/record/2846511/files/ATL-ITK-PROC-2023-002.pdf
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How A Sensor Works

n-type Silicon

p-type Silicon p-type Silicon p-type Silicon

Aluminum

Al Al Al

A sensor is just a reverse biased diode.
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How A Sensor Works

n-type Silicon

p-type Silicon p-type Silicon p-type Silicon

Aluminum

Al Al Al

Electric field is formed inside an insulator.

Bias voltage is still here, just not shown.
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How A Sensor Works

Passing particle excites electrons (ionizes) into conducting band.

Bias voltage is still here, just not shown.

-++ -
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How A Sensor Works

Electron/hole pairs travel, creating detectable current.

Bias voltage is still here, just not shown.

-
+
-

+
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Silicon Drift Detectors

Use drift time to determine incidence position.
Like a gas drift chamber, but in solid state.

● Few readout channels.
● Only for low flux of particles.

● Electron mobility, μ, varies
● Inhomogenities
● Radiation damage vdrift = μE
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Hybrid Detectors

Readout electronics on PCB’s glued to silicon sensors.

Individual connections to segmented channels in the sensor.

bump bond
wirebonds

ex: ASIC wirebonded to 
PCB
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Strips Vs Pixels

Question:
● When do you use a strip vs pixel sensor?
● How to make a strip give a 2D position?

A pixel is just a short strip.

ITk Pixel example: 50 μm x 50 μm ITk Strip example: 75 um x 5 cm

Defines the segmentation
    of the sensitive part.
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Charged Coupled Devices (CCD)

1)Use a Si02 (insulator) layer to trap charge.

2)Scan through pixelated contacts, transferring charge one at time.

● Shared readout electronics.
● Multiple channels with less space (~μm pixels)

● Very slow readout.
● Sensitive to radiation damage.
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Charged Coupled Devices (CCD)

● Heavily used for optical imagining.
● Examples: cameras, x-ray imagining, telescopes astronomy

● Need to mask detector during readout to avoid smearing.
● Cameras mask out adjacent column, transfer to it after exposure and readout.

● Most commercial systems moving to CMOS Imagining Sensors.

DAMIC experiment searches for DM-nucleus recoil inside CCDs.
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Combine sensor (silicon) with readout electronics (silicon).
You save half construction time by no mention of glue in meetings.

Monolithic Pixels

● Using CMOS technology for 
both readout and imagining
● $$$$ industry (phone cameras!)

● Main challenge is making 
them radiation hard.

ALICE ITS3

Bent  wafer-scale sensors.

MAPS = Monolithic Active Pixel Sensor

Attend  Eva Vilella Figueras’s lecture!
May 14, 2024
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Future detectors require timing (~ps) in addition to position.

Fast Timing Detectors (4D Tracking)

Timing resolution limited by 
electron drifting to anodes

● vdrift ≈ 100 um / ns
● tcollection(300 μm) ≈ 3 ns

BIB rejection in Muon Collider Detector.

Vertex discrimination in FCChh
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Shorten drift time by making sensors thinner!

Low Gain Avalange Diodes

● Thinner sensors collect less charge.
● Lower signal-to-noise.

● LGADs add a “gain layer” with very 
high E field to cause an avalanche.

● Two big challenges
● Rad dam: Gain layer less efficient.
● Fill factor: dead area around pixels.

● Part of HL-LHC upgrades for a fast 
timing calorimeter layer (BIG pixels).

Attend Francisca Munoz Sanchez’s lecture!
May 10, 2024
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Shorten drift time by putting cathodes into bulk!

3D Sensors

● No need for a gain layer.
● Used in part of ATLAS detector.

● Test of technology.

● Good radiation hardness.

Credit: Charged-particle timing with 10 ps accuracy using TimeSPOT 3D trench-type silicon pixels

See Francisca Munoz Sanchez’s lecture!
May 7, 2024

https://doi.org/10.3389/fphy.2023.1117575
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Example to illustrate concept
● Chamber filled with gas.
● Two parallel plates with voltage.

Operation
1)Traversing charged particle ionizes 

gas atoms.

2)Ions drift toward cathode, electrons 
drift toward anode.

3)Charge* is as a pulse in the current.

Pulse Mode Ionization Chambers

Credit: Wikipedia

* Current is not arrival of charges at plates. It 
happens “instantly” via changes (new charges) 
in the E-field. See Shockley–Ramo theorem.

Attend Philipp Windischhofer’s lecture!
May 14, 2024

https://en.wikipedia.org/wiki/File:Ion_chamber_operation.gif
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What is the size of pulse?
● VR = voltage across sense resistor in 

“Ion Current”
● V0 = voltage on DC source
● ½CV2 = energy stored in plates

From energy conservation:

Pulse Mode Ionization Chambers
Credit: Wikipedia

Initially: Voltage on plates is from PS. V0 = VR + Vplates work done by moving charge

https://en.wikipedia.org/wiki/File:Ion_chamber_operation.gif
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Pulse Mode Ionization Chambers

Expand and rearrange Assume VR<<V0

More rearranging, E=V0/d

Distance by ions / electrons transverse the plates… d+ + d- = d

Pulse proportional to charge! 
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Pulse Mode Ionization Chambers

Credit: What is Proportional Region – Ionization Detector – Definition

https://www.radiation-dosimetry.org/what-is-proportional-region-ionization-detector-definition/
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Geiger-Muller Region

● Ionized electrons gain energy as they are accelerated.
● At high energies, they can ionize further atoms.

● Starts to happen at ~106 V/m.

● Repeat… you get an avalanche.

Usual Geiger-Muller detector
● Cylindrical geometry with a thin wire.
● Electric field is proportional to 1/r.
● Avalanche will occur close to the thin wire.

Credit: Wikipedia

https://commons.wikimedia.org/wiki/File:Spread_of_avalanches_in_G-M_tube.jpg
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E-field in cylinder

a ≈100 μm, b ≈1cm → 106 V/m when r < 0.2 
mm

Formation of Avalanche

● Electron contribution very small → short distance traveled
● Pulse mostly from positive ions.

● Positive ions take long time to travel (heavy)
● Pulse develops much faster (Shockley–Ramo theorem!)
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Drift Time of Ions

Starting from drift velocity in cylinders.

Integrate to get distance at time t.

Start at anode (formation of most ions)...

Use r=b to get flow from cathode to anode
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Time for furthest ion to reach 
cathode

a ≈100 μm, b ≈1cm, V0 ≈1000V, μ=10-4 m2 / Vs

Drift Time of Ions

● In a typical detector, this is 2 ms (slow!)
● Half of pulse height achieved when  ln(r/a) = ½ ln(b/a)

● r = 0.1cm, giving 20us (fast!) Exercise: use conservation of energy to show that the 
pulse height after ions traveled a distance r is...
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Two Stars and a Wish

Feedback is very welcome!

Two Stars: What are two new things you learned or were explained 
well?

Wish: What is something you would want to learn about or should be 
explained better?

https://forms.gle/B845w2MvyF4zj75XA

https://forms.gle/B845w2MvyF4zj75XA
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