Interactions of Particles with Matter – Part 2

Karol Krizka

k.krizka@bham.ac.uk

May 10, 2024

UNIVERSITY^{OF} BIRMINGHAM

UK Adv Instr 2024

Two Lectures

Lecture 1: Mechanics of Particle Interactions with Matter

- Define "particle" interactions with "matter"
- Ionizing Radiation
- Non-Ionizing Radiation

Lecture 2: Detecting Particle Interactions with Matter

- Efficiencies and energy resolutions for individual sensors
- Brief overview of silicon sensor technologies
- Gaseous detectors for tracking

Further Reading

This is a survey lecture to summarize many mechanisms.

The following are references for a more in-depth understanding.

Particle Data Group's Review

34. Passage of Particles Through Matter

34. Passage of Particles Through Matter

Revised August 2021 by D.E. Groom (LBNL) and S.R. Klein (NSD LBNL; UC Berkeley).

Applications of silicon strip and pixel-based particle tracking detectors

Philip Allport

1

Nature Reviews Physics 1, 567–576 (2019) Cite this article

Material based on Phil Allport's.

Particle Detectors fundamentals and applications

Hermann Kolanoski and Norbert Wermes

ATLAS Inner Most Pixel Layer

Study of the material of the ATLAS inner detector for Run 2 of the LHC **ATLAS**

4 UK Adv Instr 2024

Intrinsic efficiency measures efficiency of detector element.

number of pulses detected

 $\epsilon_{\rm int} = \frac{1}{\rm number of incident particles}$

 ϵ_{int} (charged) ≈ 1 ϵ_{int} (neutral) $\ll 1$

Absolute efficiency measures efficiency of entire detector.

 $\epsilon_{abs} = \frac{\text{number of pulses detected}}{\text{number of emitted particles}}$

Point source subtended by Ω solid angle of detector.

They are related (for example) coverage of detector:

 $\epsilon_{\rm abs} = \frac{\Omega}{4\pi} \epsilon_{\rm int}$

May 10, 2024

Energy deposition is a random process.

1)A traversing particle deposits (exactly) E energy. 2)Number of signal carrier created is N = E/w.

- w is the energy to create a single signal carrier
- Creating a carrier is a random and independent event
 - Poisson statistics!

$$< N >= N$$

 $\sigma_N = \sqrt{N}$

Intrinsic Sensor Resolution: Fano Factor

Signal carrier are not independent events.

- (Fixed) input of energy is absorbed in different ways.
- *Total energy absorbed* must equal (fixed) input energy.
- Fano Factor (F) is a correction to account for these variations.
 - Also a random process, usually with a very small variance.
 - F≤1, by definition.

$$< N > = FN$$

 $\sigma_N = \sqrt{FN}$

Consider energy deposited as ionizing (E_{ion}) and lattice (E_{phonon}).

 $E = E_{ion} N_{ion} + E_{pho} N_{pho}$

Correlated statistical variations in N_{ion} and N_{pho}, as E is fixed.

See chapter 2.2.3 in Speiler for derivation.

Example Theoretical Values

	Feno Factor
Si	0.115
Ge	0.13
GeAs	0.12
Diamond	0.08

Example Measured Values

	Feno Factor
Ar (gas)	0.20 ± 0.01/0.02
Xe (gas)	0.13 ± 0.29
CZT	0.089 ± 0.05

Intrinsic Sensor Resolution: Poisson

For large <N>, Poisson distribution ~ Gaussian distribution.

$$P(N) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(N - \langle N \rangle\right)^2}{2\sigma^2}\right)$$

Experimentally, we measure Full Width at Half Maximum (FWHM) of pulse heights, H ∝ N.

$$FWHM = 2\sqrt{2\ln 2}\sigma \approx 2.35\sigma$$

Intrinsic Sensor Resolution: Poisson

Energy resolution, ΔE , is defined as FWHM/H_{0.}

Distinguish two peaks when separated by FWHM.

Semiconductor Tracking Detectors

Charged particle trajectory reconstruction (*tracking*) requires precise position information. Semiconductors are great for this!

Example Technologies

- Strip detectors
- Silicon drift detectors
- Hybrid pixel detectors
- Monolithic pixel detectors
- Charged Coupled Devices
- 3D pixels
- 4D detectors (timing)

Most devices discussed today will be based on segmented p-n junction diodes.

Silicon Detectors Throughout The Years

Credit: Applications of silicon strip and pixel-based particle tracking detectors

Silicon Detectors Throughout The Years

Follows Moore's Law!

"the number of transistors in an integrated circuit (IC) doubles about every two years"

Credit: Applications of silicon strip and pixel-based particle tracking detectors

Fast Recap of p-n Junction: Doping

Two types of doped silicon.

Fast Recap of p-n Junction: Junction

+: **holes** = electrons missing in covalent bonds

Note: The entire material is neutral! N_{electrons} = N_{protons}

Fast Recap of p-n Junction: Equilibrium

Fast Recap of p-n Junction: Reverse Biased Junct.

Depletion region:

- Missing holes and free electrons in the middle.
- Develops ΔV opposing V_{bias} at equilibrium.
- ΔV prevents any current from flowing.

Fast Recap of p-n Junction: IV Curve

Credit: ATLAS ITk Strip Sensor Quality Control and Review of ATLAS18 Pre-Production Sensor Results

Space Charge Region

Consider a 1D sensor. Following Poisson's equation

 $\frac{d^2V}{dx^2} = -\frac{
ho}{\epsilon}$ ho = charge density ho = dielectric constant

Assume all dopands ionized up to a in n-type and b in p-type $ho_n=eN_n~$ n-type $~~
ho_p=-eN_p~$ p-type

Integrate once to get E-field as linear

$$E = \frac{eN_n}{\epsilon} (a+x), -a < x < 0$$
$$E = \frac{eN_p}{\epsilon} (b-x), 0 < x < b$$

E must be continuous at x=0

$$aN_n = bN_p$$

Integrate again to get voltage

$$V = -\frac{eN_n}{2\epsilon} (x+a)^2 + V_0, -a < x < 0$$
$$V = +\frac{eN_p}{2\epsilon} (x-b)^2, 0 < x < b$$

Depletion Depth

Require potential to be continuous at x=0

$$\frac{eN_p}{2\epsilon}b^2 = V_0 - \frac{eN_n}{2\epsilon}a^2$$

Solving for applied voltage, V₀, and applying E-field continuity

$$V_0 = \frac{e}{2\epsilon} \left(N_p b^2 + N_n a^2 \right) = \frac{e}{2\epsilon} N_p b \left(b + a \right)$$

Take $N_n \gg N_p$, making b \gg a. $aN_n = bN_p$

$$V_0 = \frac{e}{2\epsilon} N_p b^2$$

Solving for distances.

$$b \approx \sqrt{\frac{e\epsilon V_0}{eN_p}}, N_n >> N_p \quad a \approx \sqrt{\frac{e\epsilon V_0}{eN_n}}, N_p >> N_n$$

Or more generally, take N_{min}=min(N_p, N_n)

$$d \approx \sqrt{\frac{e\epsilon V_0}{eN_{\min}}}$$

Treat depletion layer as parallel plate capacitor

$C(V) = \frac{\epsilon_0 \epsilon_{r,\mathrm{Si}} A}{d(V)}$ $\overline{C^2} \propto V$ 0.14 C_{bulk}^{-2} [1/nF²] 0.12 0.1 Measure capacitance to find VPX32502 0.08 • N_{min} (doping amount) +015 013 +014 +016 +019 *020 ↔021 018 0.06 023 **~**024 026 •027 Substrate resistivity + 029 •030 +031 028 0.04 035 036 037 034 040 041 +042 +043 0.02 046 0 100 200 300 500 600 700 400

Credit: ATLAS ITk Strip Sensor Quality Control and Review of ATLAS18 Pre-Production Sensor Results V_{bias} [-V]

21

A sensor is just a **reverse biased diode**.

How A Sensor Works

Electric field is formed inside an insulator.

Bias voltage is still here, just not shown.

Passing particle excites electrons (ionizes) into conducting band.

Electron/hole pairs travel, creating detectable current.

Bias voltage is still here, just not shown.

Silicon Drift Detectors

Use drift time to determine incidence position.

Like a gas drift chamber, but in solid state.

- Few readout channels.
- Only for low flux of particles.
- Electron mobility, μ, varies
 - Inhomogenities
 - Radiation damage $V_{drift} = \mu E$

Readout electronics on PCB's glued to silicon sensors. Individual connections to segmented channels in the sensor.

Strips Vs Pixels

A **pixel** is just a short **strip**.

ITk Pixel example: 50 μm x 50 μm

Defines the segmentation of the sensitive part.

ITk Strip example: 75 um x 5 cm

Question:

- When do you use a strip vs pixel sensor?
- How to make a strip give a 2D position?

Charged Coupled Devices (CCD)

1)Use a SiO₂ (insulator) layer to trap charge.

2)Scan through pixelated contacts, transferring charge one at time.

- Shared readout electronics.
 - Multiple channels with less space (~µm pixels)
- Very slow readout.
- Sensitive to radiation damage.

Charged Coupled Devices (CCD)

• Heavily used for optical imagining.

- Examples: cameras, x-ray imagining, telescopes astronomy
- Need to mask detector during readout to avoid smearing.
 - Cameras mask out adjacent column, transfer to it after exposure and readout.
- Most commercial systems moving to CMOS Imagining Sensors.

a)

DAMIC experiment searches for DM-nucleus recoil inside CCDs.

May 10, 2024

Combine sensor (silicon) with readout electronics (silicon).

You save half construction time by no mention of glue in meetings.

NWELL NMOS PMOS TRANSISTOR TRANSISTOR

- Using CMOS technology for both readout and imagining
 - \$\$\$\$ industry (phone cameras!)
- Main challenge is making them radiation hard.

MAPS = Monolithic Active Pixel Sensor

Fast Timing Detectors (4D Tracking)

Future detectors require timing (~*ps*) in addition to position.

Timing resolution limited by electron drifting to anodes

- $v_{drift} \approx 100 \text{ um} / \text{ ns}$
- $t_{collection}(300 \ \mu m) \approx 3 \ ns$

Vertex discrimination in FCChh

Low Gain Avalange Diodes

Attend Francisca Munoz Sanchez's lecture! May 10, 2024

Shorten drift time by making sensors thinner!

- Thinner sensors collect less charge.
 - Lower signal-to-noise.
- LGADs add a "gain layer" with very high E field to cause an avalanche.
- Two big challenges
 - Rad dam: Gain layer less efficient.
 - Fill factor: dead area around pixels.
- Part of HL-LHC upgrades for a fast timing calorimeter layer (BIG pixels).

May 10, 2024

3D Sensors

See Francisca Munoz Sanchez's lecture! May 7, 2024

Shorten drift time by putting cathodes into bulk!

- No need for a gain layer.
- Used in part of ATLAS detector.
 - Test of technology.
- Good radiation hardness.

34 UK Adv Instr 2024

1.50 2.00 2.50 MIP deposit) May 10, 2024

Example to illustrate concept

- Chamber filled with gas.
- Two parallel plates with voltage.

Operation

- 1)Traversing charged particle ionizes gas atoms.
- 2)Ions drift toward cathode, electrons drift toward anode.

3)Charge* is as a pulse in the current.

* Current is not arrival of charges at plates. It happens "instantly" via changes (new charges) in the E-field. See Shockley–Ramo theorem.

Attend **Philipp Windischhofer**'s lecture! May 14, 2024

May 10, 2024

What is the size of pulse?

- V_R = voltage across sense resistor in "Ion Current"
- V_0 = voltage on DC source
- $\frac{1}{2}CV^2$ = energy stored in plates

From energy conservation:

work done by moving charge

Visualisation of ion chamber operation

May 10, 2024

Credit: Wikipedia

 $V_0 = V_R + V_{plates}$

Initially: Voltage on plates is from PS.

36

$$\frac{1}{2}CV_0^2 = \frac{1}{2}C(V_0 - V_R)^2 + qEd_+ + qEd_-$$

Expand and rearrange

$$CV_0V_R - \frac{1}{2}CV_R^2 = qE(d_+ + d_-)$$

Assume $V_R << V_0$

More rearranging, E=V₀/d

$$V_R = \frac{qE}{CV_0} \left(d_+ + d_- \right) = \frac{q}{Cd} \left(d_+ + d_- \right)$$

Distance by ions / electrons transverse the plates... $d_+ + d_- = d$

$$V_R = \frac{q}{C}$$

Pulse proportional to charge!

Regions of Gaseous Ionization Detectors

Credit: What is Proportional Region - Ionization Detector - Definition

Geiger-Muller Region

- Ionized electrons gain energy as they are accelerated.
- At high energies, they can ionize further atoms.
 - Starts to happen at ~10⁶ V/m.
- Repeat... you get an avalanche.

Usual Geiger-Muller detector

- Cylindrical geometry with a thin wire.
- Electric field is proportional to 1/r.
- Avalanche will occur close to the thin wire.

Formation of Avalanche

- Electron contribution very small → short distance traveled
 - Pulse mostly from positive ions.
- Positive ions take long time to travel (heavy)
 - Pulse develops much faster (Shockley–Ramo theorem!)

Drift Time of Ions

Starting from drift velocity in cylinders.

$$\frac{dr}{dt} = v_{\rm drift} = \mu E = \frac{\mu V_0}{\ln\left(\frac{b}{a}\right)r}$$

Integrate to get distance at time t.

$$\int_{a}^{r} r dr = \frac{\mu V_0}{\ln\left(\frac{b}{a}\right)} \int_{0}^{t} dt$$
Start at anode (formation of most ions)
$$\frac{1}{2} \left(r^2 - a^2\right) = \frac{\mu V_0}{\ln\left(\frac{b}{a}\right)} t$$

Use r=b to get flow from cathode to anode

$$t = \frac{1}{2} \left(b^2 - a^2 \right) \frac{\ln\left(\frac{b}{a}\right)}{\mu V_0}$$

41 UK Adv Instr 2024

...

May 10, 2024

Drift Time of Ions

- In a typical detector, this is 2 ms (slow!)
- Half of pulse height achieved when ln(r/a) = 1/2 ln(b/a)
 - r = 0.1cm, giving 20us (fast!)

Exercise: use conservation of energy to show that the pulse height after ions traveled a distance r is...

$$V_R = \frac{q}{C\ln\left(\frac{b}{a}\right)}\ln\left(\frac{r}{a}\right)$$

May 10, 2024

Feedback is very welcome!

Two Stars: What are two new things you learned or were explained well?

Wish: What is something you would want to learn about or should be explained better?

https://forms.gle/B845w2MvyF4zj75XA