## Introduction into Electronics

## (1) Reminder: Electrical circuits

(2) Analog electronics
(3) Digital electronics
(4) Circuit analysis, circuit topologies


## Literature:

Paul Horowitz, Winfield Hill
The Art of Electronics
Cambridge University Press (2015)

D. Sundararajan Introductory Circuit Theory
Springer (2019)

# Introduction into Electronics 

(1) Reminder: Electrical circuits

## Basic elements

onemseme $\phi$ DC voltage source:


DC current source:


AC source:
$U(t)=U_{0} \sin (\omega t)$
$\hat{U}=U_{\text {eff }}=U_{0} / \sqrt{2}$

$U=R \cdot I$.


Capacitance: $\mp \quad \bigoplus_{\square}^{4} \underbrace{\bullet}_{0} u(t)$

$$
Q=C \cdot U \quad i(t)=\frac{\mathrm{d} q}{\mathrm{~d} t}=C \cdot \frac{\mathrm{~d} u}{\mathrm{~d} t}
$$

## Inductance:

$$
\begin{aligned}
& \text { ? } \quad U \square_{i(t)} \\
& u(t)=L \frac{\mathrm{~d} i}{\mathrm{~d} t}:
\end{aligned}
$$

## AC resistance

## Resistance:



$$
I_{R}=\frac{U_{R}}{R}
$$

Rotation of


22/04/2024

Capacitance:

$\hat{U}_{C}=\hat{I}_{C} X_{C}$
$X_{C}=\frac{1}{i \omega C}$

U. Blumenschein, Introduction into Electronics

Inductance:


$$
\begin{aligned}
& \hat{U}_{L}=\hat{I}_{L} X_{L} \\
& X_{L}=i \omega L
\end{aligned}
$$



## Networks (more later)



## Resistance in series:


$R_{\text {total }}=R_{\mathrm{s}}=R_{1}+R_{2}+\cdots+R_{n}$

Loop rule
$\sum_{i}^{n} U_{k}=0$


Resistance in parallel:

$\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots+\frac{1}{R_{n}}$

Impedance in AC circuits

$\hat{I}=\frac{\hat{U}}{Z}$
$Z=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}$

(2) Analog electronics

## Diode: pn junction and biasing



Current-voltage characteristic

## Diode: forward biasing

Ideal diode (forward bias):

$$
\begin{aligned}
& I(U)=I_{\mathrm{S}} \cdot\left(e^{\frac{U}{U_{\mathrm{T}}}}-1\right) \\
& I_{\mathrm{S}}: \text { leakage current } \approx 1-100 \mathrm{\mu A} \\
& U_{T}:=k T / e \approx 40 \mathrm{mV}
\end{aligned}
$$

Real diode (forward bias):
I(U) only >0
for $U>$ Barrier Voltage ( $\approx 0.3-0.8 \mathrm{~V}$ )

## Differential resistance:

$$
r=\frac{d I}{d U}
$$



Current-voltage characteristic

## Zener diodes: reverse biasing




Conventional diodes will typically be destroyed if operated with large reverse-bias voltages.

But a Zener diode is designed to be operated with reverse bias. It is typically heavily doped leading to a small depletion zone.

Resistance breaks down at the Zener voltage: mostly through tunneling of electrons from the p-type valence band into the n-type conduction band

$\rightarrow$ Voltage stabilizer, reference voltage

## Circuits with diodes (1)

Half-wave rectifier


Half-wave rectifier with smoothing capacitor


Half waves smoothened


## Circuits with diodes (2)

Full-wave Bridge rectifier


Bridge rectifier with smoothing capacitance
 to the same point.


Diodes are arranged such that the positive pole is always connected
--> Inverts negative half waves

Voltage regulation/limitation:
If the initial voltage becomes larger than the Zener voltage the Zener current Increases $\rightarrow$ resistance drops


## Transistors

- Active, controllable semiconductor devices.
- Amplify and switch signals and power
- Main types:
- Bipolar junction transistor (BJT)
- here: npn transistor
- pnp transistor: works in an
 analogous manner
- Field Effect Transistor (FET)
- MOSFET: NMOS/PMOS
- CMOS: combines NMOS an
 PMOS

Contemporary Integrated Circuits (IC) are in general not build from discrete transistors but need to understand the transistor principle to understand IC

## Bipolar Junction Transistor



Emitter
heavily n-doped


## Bipolar Junction Transistor



Emitter
heavily $n$-doped


## Bipolar Junction Transistor



Emitter
heavily $n$-doped


## Bipolar Junction Transistor



> Emitter
> heavily $n$-doped

$$
\mathrm{I}_{\mathrm{B}} / \mathrm{U}_{\mathrm{BE}} \rightarrow \text { control } \rightarrow \mathrm{I}_{\mathrm{C}}
$$

## npn BJT: characteristics (1)

Input characteristics



## npn BJT: characteristics (1)

## Input characteristics



Output characteristics



Saturation region:
Small changes in $U_{C E}$ lead to large change in $I_{C}$ $\rightarrow$ switches etc.

Active region:
Small change in base current $I_{B}$ lead to large change in collector current, nearly independent of $U_{C E}$ $\rightarrow$ Current amplification etc.

## npn BJT: characteristics (2)

- working point in active region



## Selecting the working point

## Example circuit


(Calculation: see later)

## Voltage divider biasing

The voltage $U_{B}$ across $R_{2}$ forward-biases the $B E$ junction

$$
U_{B}=U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}-I_{B} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If $R_{1}, R_{2}$ are sufficiently small, the base current does not impact the base voltage

$$
I_{B} \cdot R_{1} \ll U_{0} \quad \rightarrow \quad U_{B} \approx U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

## Selecting the working point

## Example circuit



## Voltage divider biasing

The voltage $U_{B}$ across $R_{2}$ forward-biases the $B E$ junction

$$
U_{B}=U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}-I_{B} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If $R_{1}, R_{2}$ are sufficiently small, the base current does not impact the base voltage

$$
I_{B} \cdot R_{1} \ll U_{0} \quad \rightarrow \quad U_{B} \approx U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

Stabilizing WP by adding emitter resistance $\mathrm{R}_{\mathrm{E}}$
Reduces $\mathrm{U}_{\mathrm{BE}}$ if base current $\mathrm{I}_{\mathrm{B}}$ becomes too large.

## Selecting the working point

## Example circuit



## Voltage divider biasing

The voltage $U_{B}$ across $R_{2}$ forward-biases the $B E$ junction

$$
U_{B}=U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}-I_{B} \cdot \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

If $R_{1}, R_{2}$ are sufficiently small, the base current does not impact the base voltage

$$
I_{B} \cdot R_{1} \ll U_{0} \quad \rightarrow \quad U_{E} \approx U_{0} \cdot \frac{R_{2}}{R_{1}+R_{2}}
$$

## Stabilizing WP by adding emitter resistance $\mathrm{R}_{\mathrm{E}}$

$$
X_{C}=\frac{1}{i \omega C}
$$

Reduces $U_{B E}$ if base current $I_{B}$ becomes too large.
Effect on AC signal can be mitigated by adding a capacitor in parallel $\rightarrow R_{E} \| R_{C}$ reduced for high frequencies, $R \approx R_{E}$ for low frequencies

## FET

BJT not suited for Integrated Circuits (IC): base currents would overheat the IC
$\rightarrow$ use FETs: similar operation as with BJT but:

- controlled with negligible currents
- smaller area
- transfer characteristics more linear
- less noise

Example n-channel MOSFET (Metal-Oxide-Silicon FET):

- p-doted substrate
- n-doted channels: Source, Drain
- Gate isolated from substrate by e.g. $\mathrm{SiO}_{2}$

$\bigcirc \rightarrow$ no Gate-Source/Drain currents



## N-channel MOSFET: operation



- No source drain current


## N-channel MOSFET: operation



- No source drain current

- Electrons from p-doted substrate drawn towards positively charged gate
$\circ \rightarrow$ channel allows for S-D current $I_{D}$

N-channel MOSFET: operation


- No source drain current


- Electrons from p-doted substrate drawn towards positively charged gate
$\circ \rightarrow$ channel allows for S-D current $I_{D}$

Typically, smaller transconductance than BJT (output current /input voltage)

## Operational amplifier (op amp)

Difference amplifier with two inputs and one output


## Characteristics:

- Output voltage proportional to the difference between the input voltages: very high amplification (> 10000-100000)
- If used with negative feedback ( $\mathrm{U}_{\mathrm{a}}$ connected with U -) the op amp regulates $\mathrm{U}+=\mathrm{U}-$
- Negligible input current (into the op amp) [2]
- The maximum output voltage is the power supply voltage

$$
U_{\mathrm{a}}=v_{0} \cdot\left(U^{+}-U^{-}\right)
$$


negative feedback

## Op amp circuits

Inverting amplifier

[2] $\rightarrow \quad I_{1}=\frac{U_{\mathrm{e}}-U^{-}}{Z_{1}}=\frac{U^{-}-U_{\mathrm{a}}}{Z_{2}}=I_{2}$
[1] $\rightarrow \quad U^{-}=0 \mathrm{~V}$ (virtual ground)

$$
\rightarrow \quad U_{\mathrm{a}}=-\frac{Z_{2}}{Z_{1}} U_{\mathrm{e}}
$$

Non-inverting amplifier


Negative feedback from voltage divider:
${ }^{[1]} \rightarrow \quad U_{e}=U-=\frac{Z_{1}}{Z_{1}+Z_{2}} U a$
$\rightarrow \quad U_{\mathrm{a}}=\left(\frac{Z_{2}}{Z_{1}}+1\right) U_{\mathrm{e}}$

- If used with negative feedback ( $U_{\mathrm{a}}$ connected with U - ) the op amp regulates $\mathrm{U}+=\mathrm{U}$ -
- Negligible input current (into the op amp)


## Op amp circuits

## Differential amplifier



$$
\begin{aligned}
& \text { [1] } U_{-}=U_{+}=U \\
& \text { [2] } I_{1}=\frac{U_{1}-U}{R 1}=\mathrm{I}_{2}=\frac{U-U a}{R 2} \\
& \rightarrow \frac{U_{1} R_{2}}{R_{1}}-\frac{U R_{2}}{R_{1}}=\mathrm{U}-\mathrm{Ua} \\
& \rightarrow U_{a}=U \frac{R_{2}+R_{1}}{R_{1}}-\mathrm{U}_{1} \frac{R_{2}}{R_{1}}\left(^{*}\right)
\end{aligned}
$$

- If used with negative feedback ( $\mathrm{U}_{\mathrm{a}}$ connected with U -) the op amp regulates $\mathrm{U}+=\mathrm{U}$ Negligible input current (into the op amp)
[1]
[2]


## Op amp circuits

## Differential amplifier



[^0]
## Op amp circuits

## Differential amplifier



$$
\begin{aligned}
& \text { [1] } U_{-}=U_{+}=U \\
& \text { [2] } I_{1}=\frac{U_{1}-U}{R 1}=\mathrm{I}_{2}=\frac{U-U a}{R 2} \\
& \rightarrow \frac{U_{1} R_{2}}{R_{1}}-\frac{U R_{2}}{R_{1}}=\mathrm{U}-\mathrm{Ua} \\
& \rightarrow U_{a}=U \frac{R_{2}+R_{1}}{R_{1}}-\mathrm{U}_{1} \frac{R_{2}}{R_{1}}\left(^{*}\right)
\end{aligned}
$$

$U=U_{2} \frac{R_{2}}{R_{1}+R_{2}} \quad$ (voltage divider) (**)
$\left(^{* *}\right)$ in ( ${ }^{*}$ )
$\rightarrow \quad U_{a}=U_{2} \frac{R_{2}}{R_{1}+R_{2}} \frac{R_{1}+R_{2}}{R_{1}}-\mathrm{U}_{1} \frac{R_{2}}{R_{1}}$

$$
\begin{equation*}
\rightarrow \quad U_{\mathrm{a}}=\frac{R_{2}}{R_{1}}\left(U_{2}-U_{1}\right) \tag{1}
\end{equation*}
$$

- If used with negative feedback ( $\mathrm{U}_{\mathrm{a}}$ connected with U -) the op amp regulates $\mathrm{U}+=\mathrm{U}$ -
- Negligible input current (into the op amp) [2]


## Op amp circuits

Integrator


Virtual ground offset by input current
$\rightarrow$ op amp passes a current that charges the capacitor to maintain the virtual ground

$$
I_{R}=\frac{U_{e}}{R} \approx I_{c}
$$

## Op amp circuits

## Integrator



Capacitor equation:

- Differential: $I=C \frac{d U}{d t}$
- Integrated: $\quad U=\frac{1}{C} \int I d t$

Virtual ground offset by input current
$\rightarrow$ op amp passes a current that charges the capacitor to maintain the virtual ground

$$
I_{R}=\frac{U_{e}}{R} \approx I_{c}
$$

## Op amp circuits

## Integrator



Capacitor equation:

- Differential: $I=C \frac{d U}{d t}$
- Integrated: $U=\frac{1}{C} \int I d t$

Virtual ground offset by input current
$\rightarrow$ op amp passes a current that charges the capacitor to maintain the virtual ground

$$
\begin{aligned}
& I_{R}=\frac{U_{e}}{R} \approx I_{c} \\
& \text { with(*): } \\
& U_{a}=-\frac{1}{R C} \int_{0}^{t} U_{e} d t
\end{aligned}
$$

$\rightarrow$ The output voltage is proportional to the time integrated input voltage

## Op amp circuits

Schmitt trigger: positive feedback


If $U_{a}$ rises, the difference between $U_{\text {. }}$ and $U_{+}$will rise. This causes $U_{a}$ to rise even further until maximum output voltage (given by the power supply voltage) is reached

## Op amp circuits

Schmitt trigger: positive feedback


If $U_{a}$ rises, the difference between $U_{-}$and $U_{+}$will rise. This causes $U_{a}$ to rise even further until maximum output voltage (given by the power supply voltage) is reached

Example: $\mathrm{U}_{\max }=14 \mathrm{~V}, \mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=4 \Omega$ If $U_{a}=14 \mathrm{~V}, \mathrm{U}+=4 \mathrm{~V}$. If $\mathrm{U}_{\mathrm{e}}$ exceeds 4 V , $\mathrm{U}_{-}>\mathrm{U}_{+}$and $\mathrm{U}_{\mathrm{a}}$ flips to -14 V


# (3) Digital electronics 

## Digital electronics

Work with only two voltage levels (depend on type and input/output)

- High: 1, typically 2-5V
- Low: 0, typically 0-1.5V
- Hexadecimal 4-bit groups:

| 0000 | 0 | 0100 | 4 | 1000 | 8 | 1100 | C |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0001 | 1 | 0101 | 5 | 1001 | 9 | 1101 | D |
| 0010 | 2 | 0110 | 6 | 1010 | A | 1110 | E |
| 0011 | 3 | 0111 | 7 | 1011 | B | 1111 | F |

Example:

- Decimal: 2024
- Binary: 0000011111101000
- Hexadecimal: 07E8
- Boolean algebra



NOT

| $x$ | $\neg x$ |
| :---: | :---: |
| $\mathbf{0}$ | 1 |
| $\mathbf{1}$ | 0 |

Laws:

- Associativity
- Commutativity
- Distributivity


## Logical operations

Full table of symbols, including secondar operations


Simple diode-based AND gate


CMOS-based NAND gate


## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

## Simple SR Latch



## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

## Simple SR Latch



## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

## Simple SR Latch



## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

Simple SR Latch


## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

Simple SR Latch


## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

Simple SR Latch

stable situation

## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

## Simple SR Latch


stable situation


Likewise, setting the reset to 1 and the set to 0 , will lead to the inverse stable Situation
If the second inputs are $0, Q$ does not change latch is "opaque"
$\rightarrow$ Gated or clocked SR latch

## Flip Flop: SR latch

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information

## Simple SR Latch



Clocked SR Latch

clk provides " 1 " in a clocked way

## D-latch and serial register

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information
D- Latch: only "set" input needed, due to inverter

symbol:


Truth table:

| C | D | Q | $\overline{\mathbf{Q}}$ | Comment |
| :---: | :---: | :---: | :---: | :---: |
| 0 | X | $Q_{\text {prev }}$ | $\bar{Q}_{\text {prev }}$ | No change |
| 1 | 0 | 0 | 1 | Reset |
| 1 | 1 | 1 | 0 | Set |

## D-latch and serial register

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information
D- Latch: only "set" input needed, due to inverter
D

symbol:

.... can be used to construct serial shift register


## D-latch and serial register

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information
D- Latch: only "set" input needed, due to inverter
D

symbol:

.... can be used to construct serial shift register


## D-latch and serial register

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information
D- Latch: only "set" input needed, due to inverter

symbol:

.... can be used to construct serial shift register


## D-latch and serial register

Flip flops (latches) are digital circuits with two stable states $\rightarrow$ store information
D- Latch: only "set" input needed, due to inverter

symbol:

.... can be used to construct serial shift register


## (4) Circuit analysis, topologies

Basic circuit analysis can be performed based on the two Kirchhoff laws:

## Junction rule or <br> Kirchhoff's Current Law (KCL):

The currents flowing out of any closed
Region of a circuit sum to 0
$\sum_{k=1}^{n} I_{k}=0$


## Loop rule or <br> Kirchhoff's Voltage Law (KVL):

The sum of voltage changes around a closed loop is 0
$\sum_{k=1}^{n} U_{k}=0$


How can we apply these laws to calculate the circuits in an efficient way ?

Basic circuit analysis can be performed based on the two Kirchhoff laws:

## Junction rule or <br> Kirchhoff's Current Law (KCL):

The currents flowing out of any closed Region of a circuit sum to 0
$\sum_{k=1}^{n} I_{k}=0$


## Loop rule or <br> Kirchhoff's Voltage Law (KVL):

The sum of voltage changes around a closed loop is 0
$\sum_{k=1}^{n} U_{k}=0$


How can we apply these laws to calculate the circuits in an efficient way ?
$\rightarrow$ Nodal analysis: identify nodes and applies KCL for each node
$\rightarrow$ Mesh current analysis: identify essential meshes, assign mesh current and apply KVL
$\rightarrow$ Thevenin equivalent: replace part of the network by source + resistance in series
$\rightarrow$ Norton equivalent: replace part of the network by source and resistance in parallel

## Nodal Analysis

Node: section of the circuit which connects components. Aim: determine the voltage at each node relative to a reference node, then use them to derive the other relevant quantities

## Steps:

- Identify all nodes and assign voltage variables (treat floating or dependent sources as super nodes with internal equation)
- Choose reference node
- Write a KCL equation at each node

- Solve the system of equations (e.g. via matrix inversion)


## Nodal Analysis

Node: section of the circuit which connects components. Aim: determine the voltage at each node relative to a reference node, then use them to derive the other relevant quantities

## Steps:

- Identify all nodes and assign voltage variables (treat floating or dependent sources as super nodes with internal equation)
- Choose reference node
- Write a KCL equation at each node

- Solve the system of equations (e.g. via matrix inversion)

Example: $\mathrm{U}_{0}: \quad U_{0}=0 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{U}_{1}: \quad U_{1}=U \\
& \mathrm{U}_{2} \mathrm{KCL}: \\
& \\
& \mathrm{U}_{3} \mathrm{KCL}: \frac{U_{2}-U_{2}}{R_{1}}=\frac{U_{2}-U_{0}}{R_{4}}+\frac{U_{2}-U_{3}}{R_{2}}=\frac{U_{3}-U_{0}}{R_{3}}
\end{aligned}
$$

## Nodal Analysis

Node: section of the circuit which connects components. Aim: determine the voltage at each node relative to a reference node, then use them to derive the other relevant quantities

## Steps:

- Identify all nodes and assign voltage variables (treat floating or dependent sources as super nodes with internal equation)
- Choose reference node
- Write a KCL equation at each node

- Solve the system of equations (e.g. via matrix inversion)

$$
\begin{array}{lll}
\text { Example: } & \mathrm{U}_{0}: & U_{0}=0 \mathrm{~V} \\
& \mathrm{U}_{1}: & U_{1}=U \\
& \mathrm{U}_{2} \mathrm{KCL}: & \frac{U_{1}-U_{2}}{R_{1}}=\frac{U_{2}-U_{0}}{R_{4}} \\
& \mathrm{U}_{3} \mathrm{KCL}: & \frac{U_{2}-U_{3}}{R_{2}}=\frac{U_{3}-U_{0}}{R_{3}}
\end{array}
$$

$$
\text { - conveniently using conductance } G=\frac{1}{R} \text { - }
$$

$$
\mathrm{U}_{2} \mathrm{KCL}: \frac{U_{1}-U_{2}}{R_{1}}=\frac{U_{2}-U_{0}}{R_{4}}+\frac{U_{2}-U_{3}}{R_{2}} \rightarrow\left[\begin{array}{cc}
G_{1}+G_{2}+G_{4} & -G_{2} \\
G_{2} & -G_{2}-G_{3}
\end{array}\right]\binom{U_{2}}{U_{3}}=\binom{G_{1} U}{0}
$$

- invert matrix or solve by substitution -

$$
\rightarrow U_{3}=\frac{G_{1} G_{2} U}{G_{2}\left(G_{1}+G_{4}\right)+G_{3}\left(G_{1}+G_{2}+G_{4}\right)} \rightarrow U_{2}
$$

## Mesh current Analysis

Essential mesh: loop in the circuit that does not contain any other loop. Aim: determine the current through each mesh
then use them to derive the other relevant quantities

## Steps:

- Identify all essential meshes and assign mesh current (special treatment for dependent sources and current sources which are part of two meshes)
- Apply the KVL for each mesh

- Solve the system of equations (e.g. via matrix inversion)


## Mesh current Analysis

Essential mesh: loop in the circuit that does not contain any other loop. Aim: determine the current through each mesh
then use them to derive the other relevant quantities

## Steps:

- Identify all essential meshes and assign mesh current (special treatment for dependent sources and current sources which are part of two meshes)
- Apply the KVL for each mesh

- Solve the system of equations (e.g. via matrix inversion)

Example: Mesh 1: $\quad R_{1} I_{1}+R_{4}\left(I_{1}-I_{2}\right)=U$
Mesh 2: $\quad R_{4}\left(I_{2}-I_{1}\right)+R_{2} I_{2}+R_{3} I_{2}=0$

## Mesh current Analysis

Essential mesh: loop in the circuit that does not contain any other loop. Aim: determine the current through each mesh
then use them to derive the other relevant quantities
Steps:

- Identify all essential meshes and assign mesh current (special treatment for dependent sources and current sources which are part of two meshes)
- Apply the KVL for each mesh

- Solve the system of equations (e.g. via matrix inversion)

Example: Mesh 1: $\quad R_{1} I_{1}+R_{4}\left(I_{1}-I_{2}\right)=U$
Mesh 2: $\quad R_{4}\left(I_{2}-I_{1}\right)+R_{2} I_{2}+R_{3} I_{2}=0$
$\rightarrow\left[\begin{array}{cc}R_{1}+R_{4} & -R_{4} \\ -R_{4} & R_{2}+R_{3}+R_{4}\end{array}\right]\binom{I_{1}}{I_{2}}=\binom{U}{0}$

- invert matrix or solve by substitution -

$$
\rightarrow \mathrm{I}_{1}=\frac{\left(R_{2}+R_{3}+R_{4}\right) U}{\left(R_{1}+R_{4}\right)\left(R_{2}+R_{3}+R_{4}\right)-R_{4}^{2}} \rightarrow I_{2}
$$

## Thevenin equivalent circuit

Thevenin's theorem: Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load"

Example circuit:


## Thevenin equivalent circuit

Thevenin's theorem: Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load"

Example circuit:
Step1: remove load and shorten sources. Then calculate total Thevenin resistance $R_{T}$ wrt $A / B$


$$
R_{T}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

## Thevenin equivalent circuit

Thevenin's theorem: Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a single resistance connected across the load"

Example circuit:
Step1: remove load and shorten sources. Then calculate total Thevenin resistance $R_{T}$ wrt $A / B$

Step2: Reconnect sources. Calculate Thevenin voltage $U_{T}$


$$
I=\frac{U_{1}-U_{2}}{R_{1}+R_{2}}
$$

$$
R_{T}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

$$
U_{T}=U A_{B}=U_{1}-I R_{1}=U_{2}+I R_{2}
$$

$$
=\frac{R_{1} U_{2}+U_{1} R_{2}}{R_{1}+R_{2}}
$$

## Example: nodal analysis

## Revisiting Voltage divider biasing circuit



Reminder: The voltage $U_{B}$ across $R_{2}$ forward-biases the BE junction

Here: can use nodal analysis:
Apply Kirchhoff's current law (KCL) at node 2
Reminder the $I_{B}-U_{B}$ relation does not follow Ohms law but a diode-like input characteristics (which for this exercise, we pretend not to know)

$$
\begin{array}{ll}
\text { U1: } & U_{1}=U_{0} \\
\text { U2 KCL: } & I_{1}=I_{2}+I B \tag{2}
\end{array}
$$

## Example: nodal analysis

## Revisiting Voltage divider biasing circuit



Reminder: The voltage $U_{B}$ across $R_{2}$ forward-biases the BE junction

Here: can use nodal analysis:
Apply Kirchhoff's current law (KCL) at node 2
Reminder the $I_{B}-U_{B}$ relation does not follow Ohms law but a diode-like input characteristics (which for this exercise, we pretend not to know)

$$
\begin{array}{ll}
\mathrm{U}_{1}: & U_{1}=U_{0} \\
\mathrm{U}_{2} \mathrm{KCL}: & I_{1}=I_{2}+I B \tag{2}
\end{array}
$$

reference
(1) \& (2) $\rightarrow \frac{U_{0}-U B}{R_{1}}=\frac{U_{B}}{R_{2}}+I_{B} \rightarrow U_{0}-U B=U B \frac{R_{1}}{R_{2}}+I B R_{1} \rightarrow U_{B} \frac{R_{1}+R_{2}}{R_{2}}=U_{0}-I_{B} R_{1}$

$$
\rightarrow U_{B}=U_{0} \frac{R_{2}}{R_{1}+R_{2}}-I_{\mathrm{B}} \frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

## Example: Thevenin equivalent

Voltage divider biasing with emitter resistance

Reminder: We can stabilize the working point by adding an emitter resistance

In order to simplify the calculations, we want to replace the voltage divider by the Thevenin equivalent

- Thevenin voltage: $U_{T}=U_{0} \frac{R_{2}}{R_{1}+R_{2}}$
- Thevenin resistance: $R_{T}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$


## Example: Thevenin equivalent

Voltage divider biasing with emitter resistance
Reminder: We can stabilize the working
 point by adding an emitter resistance

In order to simplify the calculations, we want to replace the voltage divider by the Thevenin equivalent

- Thevenin voltage: $U_{T}=U_{0} \frac{R_{2}}{R_{1}+R_{2}}$
- Thevenin resistance: $R_{T}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$


## Example: Thevenin equivalent

Voltage divider biasing with emitter resistance
Reminder: We can stabilize the working
 point by adding an emitter resistance

In order to simplify the calculations, we want to replace the voltage divider by the Thevenin equivalent

- Thevenin voltage: $U_{T}=U_{0} \frac{R_{2}}{R_{1}+R_{2}}$
- Thevenin resistance: $R_{T}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

Now we can analyze the mesh (KVL):

$$
U_{T}=I B R_{T}+U B_{E}+R E\left(I_{B}+I c\right)
$$

## Example: Thevenin equivalent

Voltage divider biasing with emitter resistance
Reminder: We can stabilize the working
 point by adding an emitter resistance

In order to simplify the calculations, we want to replace the voltage divider by the Thevenin equivalent

- Thevenin voltage: $U_{T}=U_{0} \frac{R_{2}}{R_{1}+R_{2}}$
- Thevenin resistance: $R_{T}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

Now we can analyze the mesh (KVL):

$$
U_{T}=I B R_{T}+U B_{E}+R E\left(I_{B}+I c\right)
$$

with $I_{C}=\beta I_{\mathrm{B}}$ (transfer characteristics):

$$
\begin{aligned}
& U_{T}=I_{B} R_{T}+U_{B E}+R E I_{B}(1+\beta) \\
& \rightarrow I_{B}=\frac{U_{T}-U B_{E}}{R_{T}+R E(1+\beta)} \rightarrow I_{C}=\beta I B \rightarrow \ldots .
\end{aligned}
$$

## Circuit topologies

The formal layout of the equations following the application of Kirchhoff's rules applied to a circuit does not depend on the type of device connected in the branches. It only depends on the topology of the circuit.

Circuit Topology describes how components in a network are connected. Circuits with different physical layout can have the same topology.

Example: three circuits with the same topology:


Example: There are only two topologies for a network with 2 branches: series and parallel.

## Graph theory

Mathematical Graph theory is used to analyze the topology:
Graphs represents the aspects of a network connected to its topology. The devices are left out. $\rightarrow$ a line represents a device. A nod represents all points at the same potential.

graph


The graph representation makes it easier to analyze complex circuits. Graphs are equivalent if they can be transformed into each other by translation, rotation, reflection, stretching or crossing/knotting the branches,

## Graph theory: dual graph

Each graph has a dual graph with the following elements exchanged:

- $R \longleftrightarrow 1 / R$
- U source $\leftrightarrow \rightarrow$ I source
- $L \leftrightarrow C$
- mesh $\longleftrightarrow \rightarrow$ node
- $u \leftrightarrow \rightarrow 1$
graph


$$
I_{3}=-I_{1}-I_{2}=U\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

## Graph theory: dual graph

Each graph has a dual graph with the following elements exchanged:

- $R \longleftrightarrow \rightarrow 1 / R$
- U source $\rightarrow$ I source
- $L \leftrightarrow C$
- mesh $\longleftrightarrow \rightarrow$ node $\bigcirc$
- $u \leftrightarrow \rightarrow 1$


$$
I_{3}=-I_{1}-I_{2}=U\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

## Graph theory: dual graph

Each graph has a dual graph with the following elements exchanged:

- $R \longleftrightarrow 1 / R$
- U source $\leftrightarrow \rightarrow$ I source
- $L \leftrightarrow C$
- mesh $\leftrightarrow \rightarrow$ node
- $u \leftrightarrow \rightarrow 1$

converted parallel
 circuit into serial circuit

$$
I_{3}=-I_{1}-I_{2}=U\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

## Graph theory: dual graph

Each graph has a dual graph with the following elements exchanged:

- $R \longleftrightarrow 1 / R$
- U source $\leftrightarrow \rightarrow$ I source
- $L \leftrightarrow C$
- mesh $\leftrightarrow \rightarrow$ node
- $u \leftrightarrow \rightarrow 1$

converted parallel
 circuit into serial circuit
both solutions are equivalent as $\cup \longleftrightarrow$ ।

$$
I_{3}=-I_{1}-I_{2}=U\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \quad u_{3}-u_{1}=I\left(r_{1}+r_{2}\right)=I\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

## Literature

(1) Reminder: Electrical circuits
(2) Analog electronics
(3) Digital electronics
(4) Circuit analysis, circuit topologies

## Literature:



Paul Horowitz, Winfield Hill
The Art of Electronics


Cambridge University Press (2015)
D. Sundararajan

Introductory Circuit Theory
Springer (2019)



[^0]:    - If used with negative feedback ( $\mathrm{U}_{\mathrm{a}}$ connected with U -) the op amp regulates $\mathrm{U}+=\mathrm{U}$ -
    Negligible input current (into the op amp) [2]

