TCAD simulation |

E. Giulio Villani




Overview

Introduction, needs for TCAD simulations

Transport regimes and related equations

Discretization techniques: meshing

Discretization of semiconductor equations: Scharfetter-Gummel technique

Examples

GesX UNIVERSITY OF




|ntrOdUCtiOﬂ l-

Epitax growth SiO, etch N** implant P** implant

* TCAD (Technology Computer Aided =
Design) divides into three groups: ‘

* Process simulation, i.e. simulation of
fabrication process steps (oxidation,
implantation, diffusion...)

* Device simulation, i.e. simulation of
the thermal/electrical/optical
behavior of electronic devices,(IV,CV,

frequency response...) ¢
B
* Device modeling, i.e. creating
compact behavioral models for c
devices for circuit simulation (SPICE, NPN

Cadence...)
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Introduction

e Reasons why TCAD simulations are
needed:

* Market demands cycle of design
to production of 18 months or
less. Typically 2-3 months
required for wafer tape out
implies short time for
development

* Reduce cost to run experiments
on new devices and circuits

Wafer starts 0.13 um
per week

0.18 um

92 93 94 95 96 97 98 99 00 01 02
Time

Shrinking product life cycles in semiconductor industry over time

Hochbaum, Dorit S. et al., Rating Customers According to Their Promptness to Adopt
New Products., Operations Research, vol. 59, no. 5, p. 1171-83, 2011.
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Introduction

Fabncation process

!

Electronic
structure/lattice
dynamics

* Main components of semiconductor

!

device simulation include fabrication
process, description of electronic
structure, driving forces and transport

Transport equations

{mm—
———»

Electromagnetic Fields

phenomena l l

* The two kernels of semiconductor

Device simulation ‘

transport equations and fields that drive
charge flow are coupled to each other
and needs solving self-consistently




Transport regimes

Ly pi Lol Losl,
L) L=I,_, L>=l,,
Transport regime (Quantum Ballistic Fluid Fluid Diffusive
Scattering Rare Rare e—e (Many), e—ph (Few) Many
Model:
Drift-diffusion
e Usually only the quasi-static electric Hydrodynamic Quantum hydrodynamic
Monte Carlo
. . . ’
fields from the solution of Poisson’s
eq uat|0n are necessa ry Schrodinger equation
Green'’s function
Applications MNanowires, Ballistic Present time Present time Jder ICe
® T t i i i d t superlattices transistor ICs ICs Older ICs
ransport regime in semiConauctors sup : : : :

depends on length scale

L: device length
Modern Silicon technology already l...: electron-electron scattering length

. . . le.pn: electron-phonon scattering length
requires tool§ to describe transport in 2~ electron wavelength
guantum regime [p. k. Ferryands. M. Goodnick,

Transport in Nanostructures, 1997] D. Vasileska, et al., Computational Electronics: Semiclassical and Quantum Device Modelling and
Simulation, RC press, 2010,ISBN-13: 978-1-4200-6484-1.
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& \ Mazsomun Vo o cs_i + Solids
§ofe N }J l t-- 5 e \
L S S S $ 1ol
0.001 0.01 01 1 10 By 100 1000 IU4 10° : e cven . . .
0.1 }:ME".(‘;D 100 § 1 [Gelvli);c] 100 1 [Tel,\n,._p] 100 1 2 5 ._; 20 s0 100
Mass stopping power (= —dE/dx) for positive muons in Mass stopping power at minimum
copper as a function of By = p/Mc. ionisation for different chemical elements.
* Charge carrier dynamics in Si detectors
usuaIIy does not require QM R~%% = 3.5 [nm] lonization radius for MIP in Si*
* Semiclassical laws of motions apply JE L 1
= PE Il ~2.5+ 108 MIP charge density within Ionization radius
th
* Drift-diffusion (DD) equations are often b 038 [nm] @10 V
valid, i.e. provided the electron gas is in A= —W~ { 0.12 [nm]@100 v D¢ Broglie wavelength of carriers
thermal equilibrium with lattice @ full depletion
te m peratu re (Te = TL) *E. Segre’, Nuclei and Particles, 15t ed. W.A. Benjamin, Inc, New York, 1965.
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Drift diffusion model

d.f +u-Vof + 5 Vif = C[f] BTE

* The semiconductor equations derived on _

from O and 15t moment of BTE are referred Vin —ag = ar

to as Drift-Diffusion™ model — Continuity

dp equations

Velpt a5, =—aR -

* The model consists of Poisson's equation _

and PDEs: the continuity and current density ] = qnu,E + qD,,Vn

equations for electrons and holes — Current density
Jp = qpuy,E — qD,Vp equations

* They express charge and momentum
nservation con’
conservatio VeV = e(n—p—Np + Ny) Poisson’s
equation

* Their self-consistent solutions are

obtained via discretisation, using finite

e | ement m eth Od S ( FEM ) *W. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other
semiconductors, Bell System Technical Journal, vol. 29, p. 560-607, 1950.
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Discretization and meshing

* The device simulations process consists
of two steps:

1. The test volume is obtained through
grid generation (‘mesh generation’ )

2. Solving the discretized differential
equations using Finite-Boxes method
(box integration method) . This method
integrates the PDEs over a test volume

—
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Discretization and meshing A
The Delaunay triangulation with all I'. e §
the circumcircles and their centres '-, e N
'Irf—-—n"""—
I'pk(Pprl= 3x
* The meshing used in most FEM methods relies x e A

i . Xx—-xX|=gk-—x;] ¥ PP, F5€EPpe A
on Delaunay triangulations: x — x| < [x —x¢| ¥ P € Pp, P € Pog
the interior of the circumsphere of each element

contains no mesh vertices.

The Delaunay triangulation of a discrete point

set P in general corresponds to the dual graph
of the Voronoi diagram for P

; Connecting the centres of the circumcircles
the set of all {ocatlons X c‘Iosest to P, € P than to roduces the Voronoi diagram (in red)
any other point of the grid

0; ={x | |x—xﬁ|¢_2|x—xj| YV i#j, x €}
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Discretization and meshing

* Correct Delaunay triangulation”
guarantees element-volume conservation,
important in many problems (diffusion,
charge generation, et cetera)

* Delaunay triangulation maximises the
minimum angle of the triangle

*A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations, John Wiley and Sons Ltd,
1992.

Py

Voronoi boxes do not overlap (each

circumcircle does not include a point of

another triangle). Each can be uniquely P &

assigned to its corresponding grid points. vv
3

Voronoi boxes do overlap (each circumcircle
does include a point of another triangle).
Each cannot be uniquely assigned to its
corresponding grid points. Wrong volumes
calculated

P1=V1+V5+V6

Py

P; =V3+ Ve + Vg
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Discretization and meshing

The discretisation of equations
imposes some constraints on spatial
and temporal mesh size

The mesh size should be smaller than
the Debye length (i.e. the
characteristic length for screening of
field by charges) where charge
variations in space have to be resolved

SEL
S S A 3 8
SRR

—

RER
S

IS

_ /eSkBT
Lp = SN Debye length

N = 103[ecm™3]: Ly ~ 1.3 [um]@T = 300 [K]
N =10Y[cm™3]: Lp = 13 [nm]@T = 300 [K]
N = 10'%[cm~3]: L, ~ 1.3 [nm]@T = 300 [K]




Discretization and meshing

The temporal ‘mesh’ size should be
smaller than the dielectric relaxation
time t,, (i.e. time it takes to charge
fluctuations to decay under the field
they produce)

Time interval smaller than ty, might
give unrealistic transient results
(‘oscillations’ in estimated transient
currents)

SS . . . .
Tqr~—— Dielectric relaxation time
eNu

N = 103[cm™3], u, = 1400 [[em™3V~1s7t|@T = 300 [K]: 74, ~ 400 [ps]

N = 10*%[cm™3], u,, = 1350 [[em™3V~1s7t|@T = 300 [K]: 74, ~ 4.8 [ps]

dAn  An(t=0)

ot tar

An(0)
An (At) = An (0) — At n

dr
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Box integration method

* The discretisation of Poisson’s and
continuity equations is done via Box
Integration method

V-esVo =e(n—p—Np+ Ny EjD-dSzfpdV
* The LHS of equations is transformed via
Gauss’ theorem and integrated over a on
: . Veln —q5-=4qR
Voronoi box Q, of point P, ot

ap_
V']p-l-qE——qR
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Box integration method

* Example of Poisson’s equation discretisation
V.-esVop=e(n—p—Np+ Ny EjD-dSszdV

[,j, k:nodal indices
* Assume that the electric potential is linearly L, Lj, Ly: side vectors

varying over each elementary domain Li, L, Ly: magnitude side vectors

e

ST kT

@:normalized potential




Box integration method

 Components of D vector along sides L
* Flux of D vector associated to node k:

* The discretisation of RHS is obtained by
multiplying the node value of charge by
the area of the portion of the Voronoi box
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Box integration method

D;y:projection along grid line

_ A:.:areaof K —Vbox
E DiAix = prVk le U
k

* Summing over all points P, of Voronoi
boxes

d
Z]n,ikAik = q(Ry + Enk)vk
R

e Same approach to discretise the continuity
equations for electrons and holes

d
sz,ikAik = —q(Ry + Epk)vk
X
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Scharfetter-Gummel discretisation

* In case of no strong generation-
recombination the current density varies little
within each domain

* Even so, this implies an exponential
dependence of electron / hole density n/p with
position along grid’s edge

* Using previous discretization method would
require very dense mesh: the Scharfetter-
Gummel technique™ includes such dependence,
requiring less grid points

*D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon read diode
oscillator,” IEEE Trans. Electron Devices, vol. ED-16, pp. 64—77, Jan. 1969

kT

Dy == —y

from],

projection along L, ~ constant




Scharfetter-Gummel discretisation

e Assume u varies linearly along the edge
and current density J,, =~ constant over
the domain

* Define the reduced current j,,;. and
assume an average diffusion D,,; along
the edge

* Obtain first order equation in n along
the edge

— Nnag

u. —u.

u = ] :
Ly
. _ Ink

Jnk: CIan’
, dn

lk +ul- = aklk +ul-

an =< D‘ni! Dn] >
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Scharfetter-Gummel discretisation

Ly Ly
* Integrate from node i to node j, i.e. for f exp(—agly) jnx = j exp(—aklk)<ﬂ —nay | d
|k=[0, Lk] 0 0 dlk

Ly d
= | or Cwadma,
* Obtain expression relating potential and 0
carriers concentration

. 1
Jnk o (1 —exp(—u;;) = exp(—uj)n; — n;

nj n;

)

ik = a +
Jnk k(exp(uji)—l exp(—u;;)-1




Scharfetter-Gummel discretisation

e Obtain the flux of current density
relative to node k

* The Scharfetter -Gummel discretisation
requires less fine mesh as the exponential
dependence of carriers concentration is
included in the discretisation scheme

* It also depends on boundary values, i.e.
2D and 3D cases can be reduced to local
1D cases

1 uﬂn] uijnl-

Jnie = Ly (eXp(uji)_l - exp(u;;)-1

X

_ 1
Jie = 7= (B = B(wij)ni) - Bernoulli function B() = Coles—

V ']nk
d; d;
= qDy; T (B(ujx)n; — B(ug)ng) + qDy; 7, (B (uix)n;
i ]
— B(ug)ng)
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28800 [um]

9000 [um]

Simulation examples

‘_ LGAD (WITH GL) I PiN (WITHOUT GL)
SUBS EPITAX growth | Oxidation Resist depo
50 um JTE etch E:> ‘:
| Strip resist
JTE P31 IMPLANT (7,27) JTE drive in Resist depo Resist depo
Pstop implant ACTIVE etch |:,j> _
* Examples from Synopsys TCAD (more on
e L RN N e e e ——
t h I S fro m N . OWe n | e Ct u re S) Oxidation | Resist depo : DRIVE IN [GL implant] Resist depo l—wf
‘ GLimplant SHN implant (A&ITE) E:>
| Strip resist I Strip resist _
I LGAD only I
. . . . LTO deposit ACTIVATION Resist depo METAL DEPOSITION
1 B esli d ee I ectrica I Simu I ation , p rocess LTO DENSIFICATION CONTACTS ETCHING Electrodes with Al WF  |E) e
Strip resist in SDEVICE
Slmulatlon IS pOSSIble comparison
REMESHING FOR DEVICE 1V plots Charge collection TCAD test
SIMULATION » _
=

* Most of the typical steps of fabrication Simulated process steps for LGAD fabrication
process can be simulated Nwell-GR Nwell

P-epi
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Simulation examples

* Fabrication process and Electrical
performances simulation of a Low Gain
Avalanche Detector (LGAD") sensor

* The simulation of the fabrication included
photolithography, etching, implantation,
diffusion, metal deposition

* The electrical simulations included charge
collection and gain due to impact ionisation
w.r.t to a PIN diode

*G. Pellegrini, et al., Technology developments and first measurements of
low gain avalanche detectors (LGAD) for high energy physics applications,
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 765,
p. 12— 16, 2014.

guard ring p-stop Cathode

JTE GL

NetActive
[cm-]

y16e+18
8.1e+14
22e+11
1.2e+15

H25e+18

g.uard ring p-stop Cathode

JTE

NetActive
[cm-]

§i6e+18
8.1e+14
22e+11
1.2e+15

25018

Cross section of simulated LGAD (top) and PIN diode (bottom)
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10
18, passsm s
— 1071 /= swss doping
. . ME 101?]1 " 2 ;ﬁ:«g;ﬁ gop@ng
Simulation examples 5" 1 O R e
o 1077 \\ ; —  SRMS bulk doping
810" i
Q 4] /i
10 ' P
1013, -t . e e
10 20 30 40 50 60
Depth [um]
Full doping profile TCAD (dotted line) and SIMS/SRMS (thick line) comparison for LGAD.
* High energy implants of ions were
simulated, both analytically or through T s
Monte Carlo Tk B Z auis v o
g 1 0171 -~ TCAD *P doping
2, , 6]
* Results compared with Secondary lon 2" T,
Mass Spectrometry (SIMS): Accuracy = é””m WW“\’\ )
2B W]
13 | | Tt e
10 | | i
0 1 3 4 5
Depth [um]

An expanded view of GL doping. SIMS (thick line) and TCAD (dotted line) results are
shown for comparison
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‘A
. . o | — SRIM
Simulation examples 2506107 " ] | As 50 keV
&A1 — As 100 keV
o /¢ b 137 As 150 keV

3 #\ | SPROCESS | |
o /| 70 ' i
5 5\ o7 ] | As 50 keV |
S 1so{ [f v { As 100 keV ;
< . . b----t t As 150 keV !
£ V 0%\ 100 oo .
P F 8-

£ 1004 6 /f¢ A& N\ ...,

& AV e S

/S 6 o ® N\
. . . I} | \@ o,
* A note on ion implantation: so{ ] /f /e W e
/] .'f F\ h\b o . Ne
/ \ 3 @
0- w b \::.‘..v!mt\.....:_t...,..:r:ﬂ.i e —

e At least with As, MC (SRIM) and
SPROCESS predictions on doping
seem to agree within = 20%

T T T T T
0 50 100 150 200
z [nm]

Fit Type: least squares fit
Function: gauss
Model: —— fAt_SPROCESS50keV_As_normflu_Tle
¥ data: @ root:SPROCESS50keV_As_normflu_lel4
Coefficient values + one standard deviation
y0  =5384.4 + 2,58e+03
A =2.187%9e+05 + 5.46e+03
x0  =40.009 = 0.44

width =?0.693 + 1.ART

Fit Type: least squares fit

T

250

Fit Type: least squares fit
Function: gauss
Maodel: - fit_SPROCESS1 50keV_As_normflu_1
¥ data: @ root:SPROCESS150keV_As_normflu_lel4
Coefficient values * one standard deviation
yO =783.8 = 1.28e+03
A =BB673 = 1.88e+03
x0 =109.32 + 0.866
width =54.005 = 1.66

Function: gauss

* SRIM assumes amorphous Si,
<100> used for SPROCESS Y data: 8- rootSPROCESS100KeY Ao normita_1e14

Coefficient values * one standard deviation
y0  =2570.2 £ 1.48e+03
A =1.2472e+05 * 2.65e+03
x0 =74.679 £ 0.615
width =36.607 = 1.05
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Guard ring P-stop Cathode

—

Simulation examples

* Internal field configuration vs. bias and

tem pe rature LGAD electrical simulation, showing the extension of depletion region (white line) and
equipotential lines (black lines)

—

e DC and AC characteristics can be
obtained from the simulated model

PIN electrical simulation, showing the extension of depletion region (white line), equipotential
lines (black lines) and vertical electrical field (red lines)




Simulation examples

* Charge collection is simulated using
laser light and MIP injection

* Spatial-temporal meshing different for
Light and MIP injection

L 2
MIP/Laser 3.3nF
LGAD Rbias

H" < 2 i s =

Rin

-50 -25 0

Device meshing for an optical charge injection in the PIN diode. The same meshing resolution
was used for LGAD devices. Values in um.

-50 -25

Device meshing for MIP charge injection. A meshing resolution of up to 0.3 nm was used in
the radial direction along the MIP track. Values in um.
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Simulation examples

* The gain of the LGAD is defined as the ratio
of collected charge w.r.t. the charge collected
by a PIN diode, under the same biasing
condition

* The gain depends on the bias voltage
applied, as this affects the impact
ionisation, leading to charge multiplication

* Different impact ionisation models predict
different gain

2 30% Vo,
60% Vi

- 15 90% Vs
3 95% Vg
£ 10 ® LGAD
2 - PIN
=
O 54

99 100 101 102 103 104

Time [ns]

The transient current from optical charge injection in a PIN diode (line) and an LGAD (line
with markers) at different percentage of breakdown voltage Vbd. The simulation uses the
Okuto impact ionisation model with default values and T = 21 °C.

50
1 — IR Okuto
} -- IR UniBo
4‘}; — MIP Okufo
1 -- MIP UniBo
£ 30
T
O 20!
101
D: L T -
20 40 B0 80 100

1I|Ir‘t:liﬂs [%ut:d]

The simulation results of gain normalized to the percentage of V*? using MIP and IR charge
injection for an LGAD.
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Simulation examples

* The TCAD simulations using the Okuto-
Crowell model” for impact ionisation match the
measured LGAD gain up to values of the bias
voltage of approximately 80% of the
breakdown.

* Additional corrections to the modelling are
needed to improve the accuracy of
prediction

* Due to the exponential dependence of
impact ionisation on field / doping /
parameters the task of LGAD modelling
presents interesting challenges

100; 4 TCAD OKUTO 60
80‘: WF2
—_ ] @)
5 607 WF9 i 40 g
S, Qa
£ 40 o g
O v i '202
20 é
P b '
0- T . . 0
20 40 60 80 100
Vbias [%Vbd]

Laser gain and charge collected of five LGAD devices vs. bias normalized to breakdown. The TCAD
gain obtained from a laser injection, when the bias voltage is normalized to the breakdown voltage,

matches the results up to approximately 80% of the breakdown.

*Y. Okuto and C. R. Crowell, Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor

Junctions, Solid-State Electronics, vol. 18, no. 2, p. 161-168, 1975.
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TCAD and simulation |

* Introduction to simulation

* Needs and transport regimes

* Meshing and discretization. Intro to DD
model discretization. SG method

* Some examples of TCAD simulations:
process and electrical device
simulations, charge collection

Thank you

giulio.villani@stfc.ac.uk
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