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Overview

• Introduction, needs for TCAD simulations

• Transport regimes and related equations

• Discretization techniques: meshing

• Discretization of semiconductor equations: Scharfetter-Gummel technique

• Examples
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Introduction

• TCAD (Technology Computer Aided 
Design) divides into three groups:

• Process simulation, i.e. simulation of 
fabrication process steps (oxidation, 
implantation, diffusion…)

• Device simulation, i.e. simulation of 
the thermal/electrical/optical 
behavior of electronic devices,(IV,CV, 
frequency response…)

• Device modeling, i.e. creating 
compact behavioral models for 
devices for circuit simulation (SPICE, 
Cadence…)

Epitax growth N++ implant P++ implantSiO2 etch
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Introduction

• Reasons why TCAD simulations are 
needed:

• Market demands cycle of design 
to production of 18 months or 
less. Typically 2-3 months 
required for wafer tape out 
implies short time for 
development

• Reduce cost to run experiments 
on new devices and circuits

Shrinking product life cycles in semiconductor industry over time

Hochbaum, Dorit S. et al., Rating Customers According to Their Promptness to Adopt

New Products., Operations Research, vol. 59, no. 5, p. 1171–83, 2011.
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Introduction

• Main components of semiconductor 
device simulation include fabrication 
process, description of electronic 
structure, driving forces and transport 
phenomena

• The two kernels of semiconductor 
transport equations and fields that drive 
charge flow are coupled to each other 
and needs solving self-consistently
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Transport regimes

L: device length

le-e: electron-electron scattering length

le-ph: electron-phonon scattering length

: electron wavelength

D. Vasileska, et al., Computational Electronics: Semiclassical and Quantum Device Modelling and 
Simulation, RC press, 2010,ISBN-13: 978-1-4200-6484-1. 

• Usually only the quasi-static electric 
fields  from the solution of Poisson’s 
equation are necessary

• Transport regime in semiconductors 
depends on length scale

Modern Silicon technology already 
requires tools to describe transport in 
quantum regime [D. K. Ferry and S. M. Goodnick, 

Transport in Nanostructures, 1997]
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Transport regimes

• Charge carrier dynamics in Si detectors 
usually does not require QM

• Semiclassical laws of motions apply

• Drift-diffusion (DD) equations are often 
valid, i.e. provided the electron gas is in 
thermal equilibrium with lattice 
temperature (Te = TL)

𝑅~
ℏ
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𝛾𝑣
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~2.5 ∙ 1018 𝑀𝐼𝑃 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝐼𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑑𝑖𝑢𝑠

𝜆 ≤
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2𝑚𝑒𝑉𝑏

~ ቊ
0.38 𝑛𝑚 @10 𝑉
0.12 𝑛𝑚 @100 𝑉

𝐷𝑒 𝐵𝑟𝑜𝑔𝑙𝑖𝑒 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠

@ 𝑓𝑢𝑙𝑙 𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛

*E. Segre’, Nuclei and Particles, 1st ed. W.A. Benjamin, Inc, New York, 1965. 

5

Mass stopping power at minimum 

ionisation for different chemical elements.

Mass stopping power (= −dE/dx) for positive muons in 

copper as a function of βγ = p/Mc.
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Drift diffusion model 

• The semiconductor equations derived 
from 0th and 1st moment of BTE are referred 
to as Drift-Diffusion* model

• The model consists of Poisson's equation 
and PDEs: the continuity and current density 
equations for electrons and holes

• They express charge and momentum 
conservation

• Their self-consistent solutions are 
obtained via discretisation, using finite 
element methods (FEM) 
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𝝏𝒕𝒇 + 𝒖 ∙ 𝜵𝒓𝒇 +
𝑭

ℏ
∙ 𝜵𝒌𝒇 = 𝐂[𝐟] BTE

∇ ∙ 𝜀𝑆∇𝜑 = 𝑒(𝑛 − 𝑝 − 𝑁𝐷 + 𝑁𝐴)

∇ ∙ 𝐽𝑛 − 𝑞
𝜕𝑛

𝜕𝑡
= 𝑞𝑅

∇ ∙ 𝐽𝑝 + 𝑞
𝜕𝑝

𝜕𝑡
= −𝑞𝑅

𝐽𝑛 = 𝑞𝑛𝜇𝑛𝐸 + 𝑞𝐷𝑛∇𝑛

𝐽𝑝 = 𝑞𝑝𝜇𝑝𝐸 − 𝑞𝐷𝑝∇𝑝

Continuity 
equations

Current density 
equations

Poisson’s 
equation

*W. Van Roosbroeck, Theory of flow of electrons and holes in germanium and other
semiconductors, Bell System Technical Journal, vol. 29, p. 560-607, 1950.



Discretization and meshing

• The device simulations process consists 
of two steps:

1. The test volume is obtained through 
grid generation  (‘mesh generation’ )

2. Solving the discretized differential 
equations using Finite-Boxes method 
(box integration method) . This method 
integrates the PDEs over a test volume
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• The meshing used in most FEM methods relies 
on Delaunay triangulations:

the interior of the circumsphere of each element 
contains no mesh vertices.

• The Delaunay triangulation of a discrete point 
set P in general corresponds to the dual graph 
of the Voronoi diagram for P

the set of all locations x closest to Pi  P than to 
any other point of the grid

The Delaunay triangulation with all 

the circumcircles and their centres

Discretization and meshing

Connecting the centres of the circumcircles 

produces the Voronoi diagram (in red).
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Pi



𝑃𝑖 = 𝑉𝑖

𝑃1 = 𝑉1 + 𝑉5 + 𝑉6

𝑃3 = 𝑉3 + 𝑉5 + 𝑉6

Voronoi boxes do not overlap (each 
circumcircle does not include a point of 
another triangle). Each can be uniquely 
assigned to its corresponding grid points. 

Voronoi boxes do overlap (each circumcircle 
does include a point of another triangle). 
Each cannot be uniquely assigned to its 
corresponding grid points. Wrong volumes 
calculated

• Correct Delaunay triangulation*

guarantees element-volume conservation, 
important in many problems (diffusion, 
charge generation, et cetera)

• Delaunay triangulation maximises the 
minimum angle of the triangle

*A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations, John Wiley and Sons Ltd, 
1992.

Discretization and meshing

9 Instrumentation Training Lectures, Oxford 21/05/2024



• The discretisation of equations 
imposes some constraints on spatial 
and temporal mesh size

• The mesh size should be smaller than 
the Debye length (i.e. the 
characteristic length for screening of 
field by charges) where charge 
variations in space have to be resolved

𝐿𝐷 =
𝜀𝑠𝑘𝐵𝑇

𝑒2𝑁
𝐷𝑒𝑏𝑦𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑁 = 1013[𝑐𝑚−3]: 𝐿𝐷 ≈ 1.3 𝑢𝑚 @𝑇 = 300 𝐾
𝑁 = 1017[𝑐𝑚−3]: 𝐿𝐷 ≈ 13 𝑛𝑚 @𝑇 = 300 𝐾
𝑁 = 1019[𝑐𝑚−3]: 𝐿𝐷 ≈ 1.3 𝑛𝑚 @𝑇 = 300 [𝐾]

Discretization and meshing

10

nwell

HR p
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• The temporal ‘mesh’ size should be 
smaller than the dielectric relaxation 
time tdr (i.e. time it takes to charge 
fluctuations to decay under the field 
they produce)

• Time interval smaller than tdr might 
give unrealistic transient results 
(‘oscillations’ in estimated transient 
currents)

𝜏𝑑𝑟~
𝜀𝑠

𝑒𝑁𝜇
𝐷𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑟𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑁 = 1013[𝑐𝑚−3], 𝜇𝑛 ≈ 1400 [𝑐𝑚−3𝑉−1𝑠−1 @𝑇 = 300 𝐾 : 𝜏𝑑𝑟 ≈ 400 𝑝𝑠

𝑁 = 1015[𝑐𝑚−3], 𝜇𝑛 ≈ 1350 [𝑐𝑚−3𝑉−1𝑠−1 @𝑇 = 300 𝐾 : 𝜏𝑑𝑟 ≈ 4.8 [𝑝𝑠]

𝜕Δ𝑛

𝜕𝑡
= −

Δ𝑛(𝑡 = 0)

𝑡𝑑𝑟

Δ𝑛 Δ𝑡 = Δ𝑛 0 − Δ𝑡
Δ𝑛(0)

𝑡𝑑𝑟

Discretization and meshing
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Box integration method

• The discretisation of Poisson’s and 
continuity equations is done via Box 
Integration method

• The LHS of equations is transformed via 
Gauss’ theorem and integrated over a 
Voronoi box Ωk of point Pk

𝑖

𝑗𝑘

≡ න 𝐷 ∙ 𝑑𝑆 = න 𝜌𝑑𝑉

12

∇ ∙ 𝜀𝑆∇𝜑 = 𝑒(𝑛 − 𝑝 − 𝑁𝐷 + 𝑁𝐴)

∇ ∙ 𝐽𝑛 − 𝑞
𝜕𝑛

𝜕𝑡
= 𝑞𝑅

∇ ∙ 𝐽𝑝 + 𝑞
𝜕𝑝

𝜕𝑡
= −𝑞𝑅
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• Example of Poisson’s equation discretisation

• Assume that the electric potential is linearly 
varying over each elementary domain

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖

𝑖, 𝑗, 𝑘: 𝑛𝑜𝑑𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑒𝑠

𝑳𝒊, 𝑳𝒋, 𝑳𝒌: 𝑠𝑖𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝐿𝑖 , 𝐿𝑗, 𝐿𝑘: 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑠𝑖𝑑𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑢 ≔
𝑒

𝑘𝐵𝑇
𝜑: 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

Box integration method

13

≡ න 𝐷 ∙ 𝑑𝑆 = න 𝜌𝑑𝑉∇ ∙ 𝜀𝑆∇𝜑 = 𝑒(𝑛 − 𝑝 − 𝑁𝐷 + 𝑁𝐴)
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• Components of D vector along sides Li,j,k

• Flux of D vector associated to node k:

• The discretisation of RHS is obtained by 
multiplying the node value of charge by 
the area of the portion of the Voronoi box

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖

𝑘𝐵𝑇

𝑒
𝜀𝑠

1

𝐿𝑖
𝑢𝑗 − 𝑢𝑘

𝑘𝐵𝑇

𝑒
𝜀𝑠

1

𝐿𝑗
𝑢𝑘 − 𝑢𝑖

𝑘𝐵𝑇

𝑒
𝜀𝑠

1

𝐿𝑘
(𝑢𝑖 − 𝑢𝑗)

𝑘𝐵𝑇

𝑒
𝜀𝑠[

𝑑𝑖

𝐿𝑖
𝑢𝑗 − 𝑢𝑘 + 

𝑑𝑗

𝐿𝑗
𝑢𝑖 − 𝑢𝑘 ]   𝐹𝑙𝑢𝑥 𝑜𝑓 𝐷

Box integration method
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• Summing over all points Pk of Voronoi 
boxes

• Same approach to discretise the continuity 
equations for electrons and holes

෍

𝑘

𝐷𝑖𝑘𝐴𝑖𝑘 = 𝜌𝑘𝑉𝑘

෍

𝑘

𝐽𝑛,𝑖𝑘𝐴𝑖𝑘 = 𝑞(𝑅𝑘 +
𝑑

𝑑𝑡
𝑛𝑘)𝑉𝑘

෍

𝑘

𝐽𝑝,𝑖𝑘𝐴𝑖𝑘 = −𝑞(𝑅𝑘 +
𝑑

𝑑𝑡
𝑝𝑘)𝑉𝑘

𝐴𝑖𝑘: 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐾 − 𝑉𝑏𝑜𝑥
𝐷𝑖𝑘: 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝑔𝑟𝑖𝑑 𝑙𝑖𝑛𝑒

Box integration method

𝑖

𝑗𝑘
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Scharfetter-Gummel discretisation

• In case of no strong generation-
recombination the current density varies little 
within each domain

• Even so, this implies an exponential 
dependence of electron / hole density n/p with 
position along grid’s edge

• Using previous discretization method would 
require very dense mesh: the Scharfetter-
Gummel technique* includes such dependence, 
requiring less grid points 

*D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon read diode 
oscillator,” IEEE Trans. Electron Devices, vol. ED-16, pp. 64–77, Jan. 1969

𝑢 ≔
𝑒

𝑘𝐵𝑇
𝜑 𝐷𝑛 ≔

𝑘𝐵𝑇

𝑒
𝜇𝑛

𝐽𝑛 ≔ 𝑞𝐷𝑛[∇𝑛 − 𝑛∇𝑢]

𝐽𝑛𝑘 ≔ 𝑞𝐷𝑛[
𝑑𝑛

𝑑𝑙𝑘
− 𝑛

𝑑𝑢

𝑑𝑙𝑘
]

from 𝐽𝑛

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑙𝑜𝑛𝑔 𝐿𝑘~ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖
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𝐽𝑛 = 𝑞𝑛𝜇𝑛𝐸 + 𝑞𝐷𝑛∇𝑛

𝐽𝑝 = 𝑞𝑝𝜇𝑝𝐸 − 𝑞𝐷𝑝∇𝑝



• Assume u varies linearly along the edge 
and current density 𝐽𝑛 ≃ constant over 
the domain 

• Define the reduced current 𝑗𝑛𝑘 and 
assume an average diffusion 𝐷𝑛𝑘 along 
the edge

• Obtain first order equation in n along 
the edge

Scharfetter-Gummel discretisation

𝑢 =
𝑢𝑗 − 𝑢𝑖

𝐿𝑘
𝑙𝑘 + 𝑢𝑖 = 𝑎𝑘𝑙𝑘 + 𝑢𝑖

𝑗𝑛𝑘: =
𝐽𝑛𝑘

𝑞𝐷𝑛𝑘
, 𝐷𝑛𝑘 ≔< 𝐷𝑛𝑖 , 𝐷𝑛𝑗 >

𝑗𝑛𝑘 =
𝑑𝑛

𝑑𝑙𝑘
− 𝑛𝑎𝑘

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖
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• Integrate from node i to node j, i.e. for 
lk=[0, Lk]

• Obtain expression relating potential and 
carriers concentration

Scharfetter-Gummel discretisation

න

0

𝐿𝑘

exp(−𝑎𝑘𝑙𝑘) 𝑗𝑛𝑘 = න
0

𝐿𝑘

exp(−𝑎𝑘𝑙𝑘)
𝑑𝑛

𝑑𝑙𝑘
− 𝑛𝑎𝑘 𝑑 𝑙𝑘

= න
0

𝐿𝑘 𝑑

𝑑𝑙𝑘
(exp(−𝑎𝑘𝑙𝑘)𝑛)𝑑𝑙𝑘

𝑗𝑛𝑘
1

𝑎𝑘
(1 − exp( −𝑢𝑗𝑖) = exp(−𝑢𝑗𝑖)𝑛𝑗 − 𝑛𝑖

𝑗𝑛𝑘 = 𝑎𝑘(
𝑛𝑗

exp(𝑢𝑗𝑖)−1
+

𝑛𝑖

exp(−𝑢𝑗𝑖)−1
)

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖
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𝑗𝑛𝑘 =
1

𝐿𝑘
(

𝑢𝑗𝑖𝑛𝑗

exp(𝑢𝑗𝑖)−1
−

𝑢𝑖𝑗𝑛𝑖

exp(𝑢𝑖𝑗)−1
)

𝑗𝑛𝑘 =
1

𝐿𝑘
(𝐵(𝑢𝑗𝑖)𝑛𝑗 − 𝐵(𝑢𝑖𝑗)𝑛𝑖) 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐵 𝑥 =

𝑥

exp 𝑥 − 1

• Obtain the flux of current density 
relative to node k

• The Scharfetter –Gummel discretisation 
requires less fine mesh as the exponential 
dependence of carriers concentration is 
included in the discretisation scheme

• It also depends on boundary values, i.e. 
2D and 3D cases can be reduced to local 
1D cases

𝐿𝑗

𝐿𝑘

𝐿𝑖

𝑖 𝑗

𝑘

𝑑𝑗

𝑑𝑘

𝑑𝑖

∇ ∙ 𝐽𝑛𝑘

= q𝐷𝑛𝑖

𝑑𝑖

𝐿𝑖
(𝐵(𝑢𝑗𝑘)𝑛𝑗 − 𝐵 𝑢𝑘𝑗)𝑛𝑘 + q𝐷𝑛𝑖

𝑑𝑗

𝐿𝑗
(𝐵(𝑢𝑖𝑘)𝑛𝑖

− 𝐵(𝑢𝑘𝑖)𝑛𝑘)

Scharfetter-Gummel discretisation
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• Examples from Synopsys TCAD (more on 
this from N. Owen lectures)

• Beside electrical simulation, process 
simulation is possible

• Most of the typical steps of fabrication 
process can be simulated 

Simulated process steps for LGAD fabrication

p++

P-epi

Nwell-GR Nwell

Simulation examples
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• Fabrication process and Electrical 
performances simulation of a Low Gain 
Avalanche Detector (LGAD*) sensor

• The simulation of the fabrication included 
photolithography, etching, implantation, 
diffusion, metal deposition

• The electrical simulations included charge 
collection and gain due to impact ionisation 
w.r.t to a PIN diode

*G. Pellegrini, et al., Technology developments and first measurements of 
low gain avalanche detectors (LGAD) for high energy physics applications, 
Nuclear Instruments and Methods in Physics Research Section A: 
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 765, 
p. 12 – 16, 2014.

Cross section of simulated LGAD (top) and PIN diode (bottom)
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• High energy implants of ions were 
simulated, both analytically or through 
Monte Carlo

• Results compared with Secondary Ion 
Mass Spectrometry (SIMS): Accuracy ≃
10% or better

An expanded view of GL doping. SIMS (thick line) and TCAD (dotted line) results are 
shown for comparison

22

Full doping profile TCAD (dotted line) and SIMS/SRMS (thick line) comparison for LGAD.
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• A note on ion implantation:

• At least with As, MC (SRIM) and 
SPROCESS predictions on doping 
seem to agree within ≈ 20%

• SRIM assumes amorphous Si, 
<100> used for SPROCESS
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• Internal field configuration vs. bias and 
temperature

• DC and AC characteristics can be 
obtained from the simulated model

24 Instrumentation Training Lectures, Oxford 21/05/2024

LGAD electrical simulation, showing the extension of depletion region (white line) and 
equipotential lines (black lines)

PIN  electrical simulation, showing the extension of depletion region (white line), equipotential 
lines (black lines) and vertical electrical field (red lines)

Guard ring P-stop Cathode

Simulation examples



• Charge collection is simulated using 
laser light and MIP injection

• Spatial-temporal meshing different for 
Light and MIP injection 

Device meshing for MIP charge injection. A meshing resolution of up to 0.3 nm was used in 
the radial direction along the MIP track. Values in µm.
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Device meshing for an optical charge injection in the PIN diode. The same meshing resolution 
was used for LGAD devices. Values in µm.
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• The gain of the LGAD is defined as the ratio 
of collected charge w.r.t. the charge collected 
by a PIN diode, under the same biasing 
condition

• The gain depends on the bias voltage 
applied, as this affects the impact 
ionisation, leading to charge multiplication

• Different impact ionisation models predict
different gain

The transient current from optical charge injection in a PIN diode (line) and an LGAD (line 
with markers) at different percentage of breakdown voltage Vbd. The simulation uses the 
Okuto impact ionisation model with default values and T = 21 °C.
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The simulation results of gain normalized to the percentage of Vbd using MIP and IR charge 
injection for an LGAD. 

Instrumentation Training Lectures, Oxford 21/05/2024

Simulation examples



27

Laser gain and charge collected of five LGAD devices vs. bias normalized to breakdown. The TCAD
gain obtained from a laser injection, when the bias voltage is normalized to the breakdown voltage,
matches the results up to approximately 80% of the breakdown.

• The TCAD simulations using the Okuto-
Crowell model* for impact ionisation match the 
measured LGAD gain up to values of the bias 
voltage of approximately 80% of the 
breakdown.

• Additional corrections to the modelling are 
needed to improve the accuracy of 
prediction  

• Due to the exponential dependence of 
impact  ionisation on field / doping / 
parameters the task of LGAD modelling 
presents interesting challenges
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*Y. Okuto and C. R. Crowell, Threshold Energy Effect on Avalanche Breakdown Voltage in Semiconductor 
Junctions, Solid-State Electronics, vol. 18, no. 2, p. 161–168, 1975.
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• Introduction to simulation
• Needs and transport regimes
• Meshing and discretization. Intro to DD 

model discretization. SG method
• Some examples of TCAD simulations: 

process and electrical device 
simulations, charge collection
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Thank you

giulio.villani@stfc.ac.uk

TCAD and simulation I

Instrumentation Training Lectures, Oxford 21/05/2024


