

Contents

- Photoproduction @ LHC
- Tagging
- Beam Simulation
- Acceptances & Resolutions
- Quadrupoles misalignment
- Calibration
- Upsilon production

Photoproduction @ LHC

Factorization of photon emission allows using the LHC as a photon-photon or photon-proton collider.

Clean Signal, High QED cross-sections

$$d\sigma_{pp} = \sigma_{\gamma\gamma} dN_{\gamma} dN_{\gamma}$$

 $W\gamma\gamma(p)$ = photon – photon (proton) center of mass energy

Photon – Photon luminosity / LHC lumi:

Photon - Proton luminosity / LHC lumi:

Tagging photoproduction

Detector 220 / 420m

Proton with energy loss / angle

Normal beam proton

Linear Beam optics:

$$x_s = a_s x_0 + b_s x_0' + d_s E$$

$$x_s' = \alpha_s x_0 + \beta_s x_0' + \gamma_s E$$

IP variables reconstruction:

$$E = \frac{b_2 x_1 - b_1 x_2}{b_2 d_1 - b_1 d_2}$$

Chromaticity correction : a,b,α,β change with E

Beam Simulation

Using HECTOR (matrix-based)

$$X(s) = X(0) \underbrace{M_1 M_2 ... M_n}_{M_{\text{beamline}}}$$

Where:

X is the phase-space vector of the particle Mi are the magnets associated matrices With corrections for high energy losses.

- → Fast simulation (> 3000 protons/s)
 - + Aperture checks
 - Cross-checked with MAD-X
 - All material: www.fynu.ucl.ac.be/hector.html

Detectors acceptances

RP acceptance @ 420 m

$$-$$
 t = 0.1 GeV²
 $-$ t = 1.0 GeV²

Acceptances (II)

RP acceptance @ 220 m

IP state reconstruction

Position and angle measurement @ 420m allows photon energy (and angle) reconstruction.

t is low for photon emission $\rightarrow \delta e \sim 1 \text{ GeV}$

Quadrupoles misalignment

Moving quadrupoles by 0.5 mm

- According to LHC people, quadrupoles could move by ~ 1mm!
- A transverse displacement of that size would lead to big errors in energy reconstruction using forward detectors
- One could correct using beam position measurement, but it is insufficient in many cases.
- Anyway, this causes unavoidable acceptance losses

Detectors calibration using physics

Photon-Photon di-muon production can be used for calibration:

Signature : acoplanarity

Cross-section (LPAIR) with:

- Both muons central
- Pt > 4 GeV
- Single proton tag

 $\sigma \sim 3$ pb (triggered)

(from: "Prospects for Diffractive and forward physics at the LHC")

Calibration (II)

Photon energy fraction (x) reconstructed from µµ system

This gives the basic calibration for protons with no angle at IP $(t \sim 0.01 \text{ GeV}^2)$

- For detectors @ 420 m : > 100 evts / run
- 220 m detectors get 15 times less events

Upsilon photoproduction @ LHC

Different interests:

- Depends on double gluon exchange and gluon correlations
- In the μμ decay channel, can help the calibration of low Pt tracks
- Opens a window to odderon
- Cross-section (RP 420 single tag) :~ 160 pb

Upsilon (II): simulation

Based on HERA results:

Distribution:

- Photon Energy
- Upsilon Pz
- Pomeron Energy
 - → Pythia

Upsilon (III): acceptance

We need 2 central muons with decent Pt (> 4 GeV):

(Generator level plots)

Upsilon (III): open questions

How to distinguish between photon- and pomeron-induced tag

to extract $\sigma(W_{\gamma p})$?

- Photon tag dominates more at high energy loss
- Momentum transfer is higher for pomeron tag → Difference in Pt (not simulated yet)

Conclusions & Prospects

Conclusions:

- Photon physics at LHC offers the possibility for complementary studies to nominal hard pp ones
- Tools for particle propagation event simulation have been set
- Calibration of fp420 can be achieved using QED muon pair production
- The same final state allows the study of Upsilon photoproduction at high energy

Prospects:

- Full simulation (detector + trigger) of Upsilon production is needed
- We need a proper way to distinguish between pomeron- and photoninduced tag.
- Backgrounds have to be studied