Photoproduction in Ultra Peripheral Relativistic Heavy Ion Collisions with STAR

Yury Gorbunov Creighton University for the STAR collaboration

6th SMALL X AND DIFFRACTION WORKSHOP FERMILAB, March 28 - 31 2007

- \square ρ^0 photoproduction in AuAu and dAu collisions
- \square ρ^0 interferometry
- 4-prong (ρ^{0'})
- Conclusion

Physics Topics γA->VA cross section σ(γA->VA) is related (through optical theorem) to the total VM-nucleon cross section. J/Ψ, Υ sensitive to the gluon distribution in nuclei Coherent and incoherent production Vector meson spectroscopy

- $\rho(1600)$ proposed to be composed of $\rho(1470)$ and $\rho(1700)$
- Cross section in yp and yA has to scale differently with A due to the shadowing

Interferometry

The nuclei act as a two-source interferometer for short-lived

particle - example of the Einstein-Podolsky-Rosen paradox.

STAR & RHIC

49 Institutions

12 Countries USA, Brazil, Britain, China, Croatia, Czech Republic, France, Germany India, The Netherlands, Poland, Russia)

459 Collaborators

RHIC & STAR

Production

- High energy heavy-ions produce strong E.M. fields due to
 - coherent action
- Equivalent flux of photons in EM
 - b_{min} ~2R_A~20fm in AA collisions

Photon beams.

- Flux ~ Z^2 , $\sigma(\gamma\gamma)$ ~ Z^4
- Coherent conditions: γ wavelength > nucleus size
- Final state has $\Sigma p_T < 2h/R_A \sim 0.100 \text{ GeV/c}$; $P_L \sim \gamma h/R_A \sim 6 \text{ GeV}$
- The coherent process dominates mid rapidity vector meson production, incoherent process also can be studied
 - Clear signature

□ Au* decay via neutron emission - simple, unbiased trigger

Enhanced rates for heavy ions

Trigger

Topology

- Central trigger Barrel divided into 4 quadrants
- ρ candidates with hits in North and South quadrants
- Events with hits Top/Bottom are vetoed

Minimum Bias

Events with low multiplicity selected with Central Trigger Barrel detector

- At least one neutron in each of the Zero Degree Calorimeter
 - distinctive signature for nuclear breakup
 - Nuclear excitation 'tag's small b

Background

- Beam gas
- Peripheral hadronic interactions
- Cosmics

Data Samples

- Run 2000 130 GeV AuAu
 - Topology
 - Minimum bias
- Run 2001 200 GeV AuAu
 - Topology
 - Minimum bias
- Run 2004 AuAu
 - 200 GeV 4 prong
 - 200 GeV J/Ψ
 - 200, 62 GeV Minimum bias
- Run 2005 CuCu
 - 200 GeV J/Ψ
 - 200, 62 GeV Minimum bias

Zero Degree Calorimeter

- ZDC spectra obtained with the minimum bias sample
- Allows to distinguish between different excited states of produced vector mesons (1n,2n,3n,... 2.37:1.15:1)
- \Box Acceptance ~ 100%

Available Statistics

Approximately 16 000 candidates in two samples 2001 (minimum bias and topology sample)

- □ M_{pp} spectra includes ρ^0 and direct $\pi^+\pi^-$ production □ $\pi^+\pi^+$ and $\pi^-\pi^-$ model background
- □ Fitted with
 - Breit-Wigner function for the signal
 - Soding's interference term: direct $\pi^+\pi^-$ production

 $rac{d\sigma}{dM_{\pi\pi}} = \left|Arac{\sqrt{M_{\pi\pi}M_
ho\Gamma_
ho}}{M_{\pi\pi}^2-M_
ho^2+iM_
ho\Gamma_
ho} + B
ight|^2 + f_{PS}$

- Background estimated with like sign pairs
 - described by the second order polynomial

A - amplitude for
$$\rho^0$$

B - amplitude for direct
$$\pi^+\pi^-$$

Direct Pion Production

- |B/A| measure of non-resonant to resonant production
 - The model predicts decrease of the |B/A| with |t| and no angular dependence (hep-ph 9701407)
 - Fit function of the invariant mass gives access to the direct pion production
 - $|B/A| = 0.84 \pm 0.11$ GeV ^{-1/2} in agreement with previous STAR results $|B/A| = 0.81 \pm 0.28$ GeV ^{-1/2}
 - No angular dependence -> in agreement with ZEUS measurements and model
 - Flat as the function of rapidity => photon energy $y = 1/2 \ln(2E_{\gamma}/M_{\rho})$

Cross Section

Models □ Nystrand, Klein: vector dominance model (VDM) & classical mechanical approach for scattering, based on $\gamma p \rightarrow \rho p$ experiments results Vector dominance model – effects of the nuclear shadowing for γA interactions PRC 60(1999)014903 Frankfurt, Strikman, Zhalov : generalized vector dominance model + Gribov-Glauber approach Gribov–Glauber approach – total cross section of photoproduction off heavy nuclei Phys. Rev. C 67, 034901 (2003) □ Goncalves, Machado: QCD dipole approach (nuclear effects and parton saturation phenomenon) Eur.Phys.J. C29 (2003) 271-275

Nystrand & Klein	Goncalves, Machado σ_{total}	Frankfurt, et al. σ_{total}
σ_{total}		
590 mb	876 mb	934 mb

Cross Section

 Measured p⁰ coherent plus incoherent production cross section
 Fit function:

$$\frac{d\sigma}{dt} = a * \exp(b * t) + c * \exp(d * t)$$

To the p_T^2 range: (0.002,0.3) Cev²

Incoherent production

R_{AU}=
$$\sqrt{4b} \sim 1.2 \pm 0.4$$
 fm

In agreement with b from incoherent production in dAu collisions shown earlier

do/dydp², mb/GeV

10

0.25 0.3 p²₊, GeV²

- Coherent production
 - **b** = $388.4 \pm 24.8 \text{ GeV}^{-2}$ nuclear form factor
 - R_{AU}= $\sqrt{4b} \sim 7.9 \pm 1.8$ fm
 - In agreement with previous measurement
- \Box σ incoh/coh ~ 0.29 ±0.03

Spin Density Matrix

- 2-dimensional correlation of Φ_h vs cos(Θ_h) allows to determine the $\rho 0$ spin density matrix elements
 - allows measurement of 3 of the 15 spin density matrix elements (SDME)
 - Θ polar angle between ion and direction of π +
 - Φ azimuthal angle between decay plane and production plane
- s-channel helicity conservation (SCHC)
 - vector meson retains helicity of photon all 3 SDMEs are predicted to be about zero
 - Based on QCD model of the Pomeron as two gluon exchange

Fit function: K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\Theta_h d\Phi_h} = \frac{3}{4\pi} \left[\frac{1}{2} (1 - r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04} - 1)\cos^2\Theta_h - \sqrt{2}\Re e[r_{10}^{04}]\sin2\Theta_h \cos\Phi_h - r_{1-1}^{04}\sin^2\Theta_h \cos2\Phi_h \right]$$
(1)

- \Box r_{00}^{04} represents probability $\rho 0$ having a helicity
- \Box r_{1-1}^{04} related to the level of interference helicity non flip & double flip
- □ $\Re e[r_{10}^{04}]$ related to the level of interference helicity non flip & single flip □ In case of s-channel helicity conservation r_{1-1}^{04} $\Re e[r_{10}^{04}]$ equal 0 and

small

Matrix Elements Fit results are consistent with S-channel helicity conservation In agreement with ZEUS experiment measurements ZEUS 1994 Parameter ZEUS STAR 18 0.2 0.1 r_{00}^{04} $-0.03 \pm 0.03 \pm 0.06$ 0.01 ± 0.03 -0.1-0.2 50 0.01 ± 0.02 $\Re e[r_{10}^{04}]$ $0.04 \pm 0.02 \pm 0.03$ 55 65 70 75 W (GeV) ອີຊີ 0.2 ອັ 0.1 ມີ $-0.01\pm0.03\pm0.05$ -0.01 ± 0.02 0.1 r_{1-1}^{04} -0.1 Arbitrary Units 000 002 002 A00 -0.2 È 75 W (GeV) 55 60 65 70 Arbitrary 005 200 ま² 0.2 250 250 200 0 200 150 -0.1 150 -0.2 50 **STAR** 100 **STAR** 55 60 65 70 75 100F W (GeV) 50 50-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 03 cos(O) -2 -1 0 2 Φ , rad

Measuring the Interference Two samples topology and minimum bias Differ in median impact parameter Larger interference for events with Coulomb excitation □ topology ~ 46 fm □ minimum bias ~ 16 fm Fit function: $\frac{dN}{dt} = Ae^{-kt}(1+c[R(t)-1])$ Total Fit \Box c – degree of interference Sample Dataset **JN/dt** (GeV c = 1 – interference c = 0 – no interference C = 1C = 0R(t) – correction factor $\blacksquare R(t) = MC_{int}(t) / MC_{no int}(t)$ $R(t) = a + \frac{b}{(t+0.012)} + \frac{c}{(t+0.012)^2} + \frac{d}{(t+0.012)^3} + \frac{e}{(t+0.012)^4}$ 0.003 0.004 0.005 0.006 Based on B. Haag presentation

Measuring the Interference

ρ' production

- γAu -> ρ(1450/1700) -> π⁺π⁺π⁻π⁻
 - Overlapping resonances p'(1600) consist of two states p(1450) & p(1700) <u>http://pdg.lbl.gov/reviews/r</u> <u>ppref/mini/2006/rho1700 m</u> <u>065-web.pdf</u>
 - Amplitude for the vector meson production of the Glauber scattering includes non diagonal elements (GVDM)
 - $\Box \quad \gamma {\rightarrow} V'$
 - □ γ→V→V'→V change of meson in multiple rescattering

- ≻Signature
 - 4 charged tracks with ΣQ = 0 Low PT Hits in ZDC
- Trigger Neutrons detected in ZDC Cut on multiplicity

p' in 2004 Data

- Analyzed:3.9 *10⁶ events
- ~123 ρ' candidates
- □ Signal $\pi^+\pi^-\pi^+\pi^-$ Background $\pi^+\pi^+\pi^+\pi^-$ plus low p_T

dAu->d(np)Aup Cross Section

- Triggered with topology trigger + neutron registered in West ZDC
- Sample of 13400 events
- □ Fitted by BW + direct pions + BG
 - $\sigma = 2.63 \pm 0.32 \pm 0.73$ mb
 - mass width in agreement with PDG

P_T in dAu -> d(np)Aup

- P_T spectra reflects γd and no γAu interactions in dAu sample
- Coherent (deuteron stays intact) and incoherently (deuteron dissociation) produced ρ⁰ are accessible in dAu sample

dAu->d(np)Aup t Spectra

- Fit to the t spectra
- Fit function:
- F(t)=e^{-bt} access to the nucleon form factor
 - b = 9.06±0.85 GeV⁻²
 - In agreement with STAR results
 - Same as ZEUS

- Turndown at small t
 - The same behavior seen by γd experiment (SLAC 4.3 GeV)
 - Y.Eisenberg et al Nucl Phys
 B 104 61 1976

Plans

- Improved trigger for the run 2007
 - Improved cluster finder for J/Ψ trigger
 - Monitoring of CTB
- □ TOF will replace CTB in the near future
 - Trigger simulation is underway
 - Triggering on multiplicity
 - Topology trigger
 - Possible PID

Conclusion

- STAR has measured photonuclear p⁰ production in AuAu and dAu at √s= 130 and 200 GeV
 - measured coherent and incoherent ρ⁰ production cross section
 - measured ρ⁰ production cross section agrees with theoretical prediction
 - consistent with S-channel helicity conservation
 - interference in ρ⁰ production
- $\square \rho' \rightarrow \pi^+ \pi^+ \pi^- \pi^-$ events observed

Luminosity (backup)

- The luminosity is determined from the hadronic cross section
 - 14 reference tracks
 - □ PT<0.1 GeV
 - □ |η|<0.5
 - 80% of the total hadronic production cross section 7.2 b
 - SVT detector was read out not in all event → different dead time to events

$$L_{(2002, \text{ minimum bias})} = 461.3 \pm 45.5 \text{m}$$

