Photoproduction in Ultra Peripheral Relativistic Heavy Ion Collisions with STAR

Yury Gorbunov
Creighton University for the STAR collaboration
6th SMALL X AND DIFFRACTION WORKSHOP
FERMILAB, March 28-31 2007

$\square \quad \rho^{0}$ photoproduction in AuAu and dAu collisions
$\square \quad \rho^{0}$ interferometry
4-prong ($\rho^{0^{\prime}}$)Conclusion

Physics Topics

$\square \quad \mathrm{YA}->\mathrm{VA}$ cross section

- $\sigma(\mathrm{YA}->\mathrm{VA})$ is related (through optical theorem) to the total VM nucleon cross section.
- J/ Ψ, Υ sensitive to the gluon distribution in nuclei
- Coherent and incoherent production
\square Vector meson spectroscopy
- $\rho(1600)$ proposed to be composed of $\rho(1470)$ and $\rho(1700)$
- Cross section in Yp and YA has to scale differently with A due to the shadowing
\square Interferometry
- The nuclei act as a two-source interferometer for short-lived particle - example of the Einstein-Podolsky-Rosen paradox.

STAR \& RHIC

RHIC \& STAR

Production

High energy heavy-ions produce strong E.M. fields due to coherent action
\square Equivalent flux of photons in EM

- $b_{\text {min }} \sim 2 R_{A} \sim 20 \mathrm{fm}$ in $A A$ collisions
\square Photon beams:
- Flux ~ $Z^{2}, \sigma(Y y) \sim Z^{4}$

Mutual Excitation:

 $X: J / \psi, \Phi, \rho, \ldots$

- Coherent conditions: y wavelength $>$ nucleus size
- Final state has $\Sigma p_{T}<2 h / R_{A} \sim 0.100 \mathrm{GeV} / \mathrm{c} ; \mathrm{P}_{\mathrm{L}} \sim \gamma h / R_{A} \sim 6 \mathrm{GeV}$
\square The coherent process dominates mid rapidity vector meson production, incoherent process also can be studied
- Clear signature
$\square A u^{*}$ decay via neutron emission - simple, unbiased trigger
- Enhanced rates for heavy ions

Trigger

\square Topology

- Central trigger Barrel divided into 4 quadrants
- ρ candidates with hits in North and South quadrants
- Events with hits Top/Bottom are vetoed
$\square \quad$ Minimum Bias
- Events with low multiplicity selected with Central Trigger Barrel detector
- At least one neutron in each of the Zero Degree Calorimeter
\square distinctive signature for nuclear breakup
\square Nuclear excitation 'tag's small b
\square Background
- Beam gas
- Peripheral hadronic interactions
- Cosmics

Data Samples

ㅁ Run 2000130 GeV AuAu

- Topology
- Minimum bias
\square Run 2001200 GeV AuAu
- Topology
- Minimum bias
\square Run 2004 AuAu
- 200 GeV 4 prong
- $200 \mathrm{GeV} \mathrm{J} / \Psi$
- 200, 62 GeV Minimum bias
\square Run 2005 CuCu
- $200 \mathrm{GeV} \mathrm{J} / \Psi$
- $200,62 \mathrm{GeV}$ Minimum bias

Zero Degree Calorimeter

\square ZDC spectra obtained with the minimum bias sample
\square Allows to distinguish between different excited states of produced vector mesons ($1 \mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}, \ldots-2.37: 1.15: 1$)
ㅁ Acceptance ~ 100%

Available Statistics

- Approximately 16000 candidates in two samples 2001 (minimum bias and topology sample)

ㅁ $\quad M_{p p}$ spectra includes ρ^{0} and direct $\pi^{+} \pi^{-}$production$\pi^{+} \pi^{+}$and $\pi^{-} \pi^{-}$model background

- Fitted with
- Breit-Wigner function for the signal
- Soding's interference term: direct $\pi^{+} \pi^{-}$production
- Background estimated with like sign pairs
\square described by the second order polynomial

$$
\frac{d \sigma}{d M_{\pi \pi}}=\left|A \frac{\sqrt{M_{\pi \pi} M_{\rho} \Gamma_{\rho}}}{M_{\pi \pi}^{2}-M_{\rho}^{2}+i M_{\rho} \Gamma_{\rho}}+B\right|^{2}+f_{P S}
$$

A - amplitude for ρ^{0}
B - amplitude for direct $\pi^{+} \pi^{-}$

Direct Pion Production

$\square \quad|B / A|$ - measure of non-resonant to resonant production

- The model predicts decrease of the $|B / A|$ with $|t|$ and no angular dependence (hep-ph 9701407)
- Fit function of the invariant mass gives access to the direct pion production
- $|B / A|=0.84 \pm 0.11 \mathrm{GeV}^{-1 / 2}$ in agreement with previous STAR results $|B / A|=0.81 \pm 0.28 \mathrm{GeV}^{-1 / 2}$
- No angular dependence $->$ in agreement with ZEUS measurements and model
- Flat as the function of rapidity $=>$ photon energy $y=1 / 2 \ln \left(2 E_{\gamma} / M_{\rho}\right)$

Cross Section

ρ^{0} production cross section for events with mutual excitation $\left(X_{n} X_{n}\right)$ in AuAu collisions at $200 \mathrm{GeV} / \mathrm{c}$$\rho^{0}$ total production cross section (AuAu, 200 GeV) along with 3 theoretical models
ㅁ
ρ^{0} scaled from XnXn $X_{0} X_{0} / X_{n} X_{n}$ from toplogy sample extrapolation to 4π based on MC

Models

\square Nystrand, Klein: vector dominance model (VDM) \& classical mechanical approach for scattering, based on $\mathrm{Vp} \rightarrow \mathrm{pp}$ experiments results

- Vector dominance model - effects of the nuclear shadowing for YA interactions
- PRC 60(1999)014903
\square Frankfurt, Strikman, Zhalov: generalized vector dominance model + Gribov-Glauber approach
- Gribov-Glauber approach - total cross section of photoproduction off heavy nuclei
- Phys. Rev. C 67, 034901 (2003)
\square Goncalves, Machado: QCD dipole approach (nuclear effects and parton saturation phenomenon)
■ Eur.Phys.J. C29 (2003) 271-275

Cross Section Comparison

ㅁ ρ^{0} production cross was measured by STAR at 200 GeV and 130 GeV (PRL 89, 027302 (2002))
\square Normalized to 7.2 b hadronic cross section

	STAR	STAR
$\sqrt{s}=200 \mathrm{GeV}, \mathrm{mb}$	$\sqrt{\mathrm{s}=130 \mathrm{GeV}, \mathrm{mb}}$	
σ_{xnxn}	$30.26 \pm 1.1 \pm 6.35$	$26.2 \pm 1.8 \pm 5.8$
$\sigma_{\text {total }}$	$509.2 \pm 34.5 \pm 106.9$	$410 \pm 190 \pm 100$

Nystrand \& Klein $\sigma_{\text {total }}$	Goncalves, Machado $\sigma_{\text {total }}$	Frankfurt, et al. $\sigma_{\text {total }}$
590 mb	876 mb	934 mb

Cross Section

$\square \quad$ Measured ρ^{0} coherent plus incoherent production cross section
\square Fit function:

$$
\frac{d \sigma}{d t}=a^{*} \exp \left(b^{*} t\right)+c^{*} \exp \left(d^{*} t\right)
$$

\square Incoherent production

- $\mathrm{d}=8.8 \pm 1.0 \mathrm{GeV}^{-2}$ - access to the nucleon form factor;
- $R_{A U}=\sqrt{ } 4 b \sim 1.2 \pm 0.4 \mathrm{fm}$
- In agreement with b from incoherent production in dAu collisions shown earlier
\square Coherent production
- $b=388.4 \pm 24.8 \mathrm{GeV}^{-2}$ - nuclear form factor
- $R_{A U}=\sqrt{ } 4 b \sim 7.9 \pm 1.8 \mathrm{fm}$
- In agreement with previous measurement
$\square \sigma$ incoh/coh $\sim 0.29 \pm 0.03$

Spin Density Matrix

2-dimensional correlation of $\Phi_{h} \mathrm{vs} \cos \left(\Theta_{h}\right)$ allows to determine the $\rho 0$ spin density matrix elements

- allows measurement of 3 of the 15 spin density matrix elements (SDME)
- Θ - polar angle between ion and direction of π^{+}
- Φ - azimuthal angle between decay plane and production plane
\square s-channel helicity conservation (SCHC)
- vector meson retains helicity of photon - all 3 SDMEs are predicted to be about zero
- Based on QCD model of the Pomeron as two gluon exchange
- Fit function: K . Schiling and G . Wolf, Nuct. Phys. B61, 381 (1973)
$\square r_{00}^{04}$ represents probability $\rho 0$ having a helicity
- r_{1-1}^{04} related to the level of interference helicity non flip \& double flip
$\square \Re e\left[r_{10}^{04}\right]$ related to the level of interference helicity non flip \& single flip
ㅁ In case of s-channel helicity conservation $r_{1-1}^{04} \Re e\left[r_{10}^{04}\right]$ equal 0 and small r_{00}^{04}

Matrix Elements

\square Fit results are consistent with S-channel helicity conservation
\square In agreement with ZEUS experiment measurements

Interference

\square Two possible scenarios:

- Photon emitted by nucleus 1 and scattered from nucleus 2
- Photon emitted by nucleus 2 and scattered from nucleus 1

\square Cross section:
- Due to ρ negative parity amplitudes subtracted

1. $A(p, r, t)=\int A\left(p, r, t ; x, t^{\prime}\right) d x d t^{\prime} \propto \int E\left(x, t^{\prime}\right) \rho\left(x, t^{\prime}\right) d x d t^{\prime}$
2. E-field: $\quad E(x, t)=-E(-x, t)$ anti symmetric
3. Density: $\quad \rho(x, t)=\rho(-x, t)$ symmetric

- At mid rapidity $\left(p_{z}=0\right)$
\square Contribution equal from both sources
$\square \sigma$ depends on the transverse momentum and impact parameter

$$
\mathrm{d} \sigma / \mathrm{dy} \mathrm{dpT}=\int|\mathrm{A} 1+\mathrm{A} 2|^{2} \mathrm{db}^{2}
$$

$$
|A 1+A 2|^{2}=2|A 1|^{2}[1-\cos (\mathbf{p} \cdot \mathbf{b})]
$$

- P_{T} spectra suppressed for $P_{T}\langle h /\langle b\rangle$

Measuring the Interference

\square Two samples topology and minimum bias

- Differ in median impact parameter
- Larger interference for events with Coulomb excitation
\square topology ~ 46 fm
ㅁ minimum bias $\sim 16 \mathrm{fm}$
\square Fit function: $\frac{d N}{d t}=A e^{-k t}(1+c[R(t)-1])$
$\square \quad c$ - degree of interference
- c = 1 - interference
- $\mathrm{c}=0$ - no interference
$\square \quad R(t)$ - correction factor
- $R(t)=M C_{\text {int }}(t) / M C_{\text {no int }}(t)$
$R(t)=a+\frac{b}{(t+0.012)}+\frac{c}{(t+0.012)^{2}}+\frac{d}{(t+0.012)^{3}}+\frac{e}{(t+0.012)^{4}}$
Based on B. Haag presentation

Measuring the Interference

ρ^{\prime} production

$\square \quad$ YAu $->\rho(1450 / 1700)->$ $\Pi^{+} \Pi^{+} \Pi^{-} \Pi^{-}$

- Overlapping resonances $\rho^{\prime}(1600)$ consist of two states $\rho(1450) \& \rho(1700)$
http://pdg.lbl.gov/reviews/r ppref/mini/2006/rho1700 m 065-web.pdf
- Amplitude for the vector meson production of the Glauber scattering includes non diagonal elements
(GVDM)
- $Y \rightarrow V^{\prime}$
$\square \quad \mathrm{V} \rightarrow \mathrm{V} \rightarrow \mathrm{V}^{\prime} \rightarrow \mathrm{V}$ - change of meson in multiple rescattering

>Signature
4 charged tracks with $\sum Q=0$ Low PT
Hits in ZDC
$>$ Trigger
Neutrons detected in ZDC Cut on multiplicity

ρ ' in 2004 Data

\square Analyzed:3.9 * 10^{6} events
$\square \sim 123 \rho$ ' candidates
\square Signal $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$Background $\pi^{+} \pi^{+} \pi^{+} \pi^{-}$plus low p_{T}

$d A u->d(n p) A u \rho$ Cross Section

$\square \quad$ Triggered with topology trigger + neutron registered in West ZDC
\square Sample of 13400 events
\square Fitted by BW + direct pions + BG
■ $\sigma=2.63 \pm 0.32 \pm 0.73 \mathrm{mb}$

- mass width in agreement with PDG

P_{T} in $d A u->d(n p) A u \rho$

- P_{T} spectra reflects $y d$ and no $\gamma A u$ interactions in $d A u$ sample
\square Coherent (deuteron stays intact) and incoherently (deuteron dissociation) produced ρ^{0} are accessible in dAu sample

$d A u->d(n p) A u \rho$ t Spectra

$\square \quad$ Fit to the t spectra
\square Fit function:
$F(t)=e^{-b t}$ - access to the nucleon form factor

- $b=9.06 \pm 0.85 \mathrm{GeV}^{-2}$
\square In agreement with STAR results
\square Same as ZEUS
\square Turndown at small t
- The same behavior seen by yd experiment (SLAC 4.3 GeV)
- Y.Eisenberg et al Nucl Phys B 104611976

Plans

- Improved trigger for the run 2007
- Improved cluster finder for J/ Ψ trigger
- Monitoring of CTB
\square TOF will replace CTB in the near future
- Trigger simulation is underway
\square Triggering on multiplicity
\square Topology trigger
- Possible PID

Conclusion

\square STAR has measured photonuclear ρ^{0} production in AuAu and dAu at $\sqrt{ } \mathrm{s}=130$ and 200 GeV

- measured coherent and incoherent ρ^{0} production cross section
- measured ρ^{0} production cross section agrees with theoretical prediction
- consistent with S-channel helicity conservation
- interference in ρ^{0} production
$\square \rho^{\prime} \rightarrow \Pi^{+} \Pi^{+} \Pi^{-} \Pi^{-}$events observed

Luminosity (backup)

\square The luminosity is determined from
hnminus HadProfile the hadronic cross section

- 14 reference tracks
$\square \mathrm{PT}<0.1 \mathrm{GeV}$
$\square|\eta|<0.5$
- 80% of the total hadronic production cross section 7.2 b
- SVT detector was read out not in all event \rightarrow different dead time to events
- $L_{(2002, \text { minimum bias })}=461.3 \pm 45.5 \mathrm{mb}^{-1}$

