Search for Exclusive $\gamma \gamma$ Production

$$
p+p \rightarrow p+\gamma \gamma+p \text { Test of QCD \& } \quad p+p \rightarrow p+H+p
$$

Durham Group Khoze, Martin, Ryskin \& Stirling hep-ph/0507040 Eur.Phys.J C38 (2005) 475

$$
|\eta(\gamma)|<1.0 ; \mathrm{p}_{\mathrm{T}}(\gamma)>5 \mathrm{GeV} / \mathrm{c} \Rightarrow \sigma_{\mathrm{TeV}}=40 \mathrm{fb}
$$

Factor ~ 3 uncertainty
Installed trigger: 2 EM showers > 4 GeV + Forward "gap seed" < 1 unit ~ 5 Only single interactions can be used!
"Exclusive efficiency" : Any 2 ${ }^{\text {nd }}$ interaction spoils the event.
Efficiency depends on bunch x bunch luminosity! (Not all same)
Make distribution of bunch luminosities for whole data set.
Using 0-bias (beam crossing) events find probability of "spoilers" fn(L_bxb)
That gives "effective luminosity" $=45 / \mathrm{pb}$ cf 532/pb delivered. (0.086)

After all cuts, found 16 e+e- events, QED prediction 17.1 events \rightarrow We understand the exclusivity cuts

$$
\text { Phys.Rev.Lett. 98, } 112001 \text { (2007) }
$$

3 events had no tracks to showers, except one clear photon conversion.

But experimentally identical except no tracks in 2-photon case

Efficiency(tracking) $=100 \%$ for isolated ch. particles with $\mathrm{p}_{\mathrm{T}}>1 \mathrm{GeV} / \mathrm{c}$ and $|\eta|<1.0$

For exclusive production in $\mathrm{p} \overline{\mathrm{p}}$
$\gamma \rightarrow \gamma$ is $<5 \%$ and $q \bar{q} \rightarrow \gamma$ is $<1 \%$
of $g g \rightarrow \gamma \gamma \quad$ (but they are signal not b / g)

Non-exclusive background: With Forward BSC and calorimetry in noise ("empty") count clusters (not = particles) in addition to 2 EM showers. Left plot is with e+e- events, b / g fit gives $0.3+-0.1$ under 16 signal (0 bin). Right plot: require no tracks for $\gamma \gamma$ candidates: $0.06+-0.03$ under 3 events

Left plot: pT balance between e+ and e- (one e bremmed) Right plot: ET balance between photon candidates.

Can the 3 candidates be exclusive $\pi^{0} \pi^{0}$ or $\eta \eta$ rather than $\gamma \gamma$?

$\gamma \pi, \gamma \eta$ are forbidden by C-parity
$\pi \eta \quad$ is forbidden by isospin

Theory (Durham): $\pi^{0} \pi^{0} / \gamma \gamma \approx 0.25$ and $\eta^{0} \eta^{0} / \gamma \gamma \approx 1$
We will give an upper limit on the $\gamma \gamma$ cross section, which is valid independent of the $\pi^{0} \pi^{0}$ and $\eta \eta$ background in the 3 candidates. It is:

$$
\begin{aligned}
& \left(\gamma \gamma+\pi^{0} \pi^{0}+\eta \eta\right) \text { observed, } p=1.7 \times 10^{-4}, 3.7 \sigma \\
& \sigma(p \bar{p} \rightarrow p+\gamma \gamma+\bar{p}) \leq 410 \mathrm{fb}(95 \% \mathrm{cl}) \\
& p_{T}(\gamma) \geq 5 \mathrm{GeV} / \mathrm{c} ;|\eta(\gamma)|<1.0
\end{aligned}
$$

Backgrounds to 3 candidates:

Expected number of e+e- with neither track fitted ... $0.02+-0.02$ (Conservative because not even hits in COT)

Expected number with undetected p/pbar dissociation $0.01+-0.01$ (note: this b / g only exists if fully exclusive process exists)

Expected number associated multiplicity distribution fluctuates to 0 , or associated particle(s) missed (in noise or cracks) ... $0.06+-0.02$

Cosmic background is negligible.
Add backgrounds, \& add uncertainties in quadrature 0.090 ± 0.037
p-value: convolute Gaussian with Poisson = $1.710 \wedge-4=3.7$ sigma

$3 \gamma \gamma$ candidates: $\mathrm{A}, \mathrm{B}, \mathrm{C}$

Have 2 (standard) handles:

1) CES_chi^2 from fit to shower shape in wires/strips cf. electrons
2) N_CES = Number of found clusters in CES chamber

Properties of the 3 candidates.

Event	S	$E_{T}(\mathrm{GeV})$	(η, ϕ)	N_{CES}	χ_{CES}^{2}	$\mathrm{P}\left(\pi^{\circ}\right)$	$\mathrm{P}(\gamma)$
A	A 1	6.8	$(0.44,6.11)$	1	1.0	0.14	0.26
	A 2	5.9	$(0.19,2.83)$	1	1.3	0.19	0.36
B	B 1	5.0	$(-0.07,4.86)$	1	1.4	0.21	0.39
	B 2	5.4	$(0.67,1.66)$	2	n.a.	n.a.	n.a.
C	C 1	6.0	$(-0.44,1.66)$	1	13.4	0.89	0.98
	C 2	5.1	$(0.22,5.05)$	2	2.2	0.33	0.57

$P\left(\pi^{0}\right)$ and $P(\gamma)$: Probabilit y that π^{0} and γ have $\chi_{\text {CES }}^{2} \leq$ observed
From simulation the probability of one photon
from pio/eta not being detected in the CES, by ranging out or not interacting, is $\mathbf{0 . 1 2 5 + / - 0 . 0 2 5}$.

Using this we calculate probabilities that a γ or a π^{0} will have a $\chi_{\text {CES }}^{2}$ as small as or smaller than the observed value.

Shower B2 (conversion)

Tracks same η but diverge in ϕ (+/-)

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{T}}\left(\mathrm{e}^{+}\right)=3.0 \mathrm{GeV} / \mathrm{c} ; \mathrm{p}_{\mathrm{T}}\left(\mathrm{e}^{-}\right)=2.4 \mathrm{GeV} / \mathrm{c} \\
& \sum \mathrm{p}_{\mathrm{T}}=5.40 \mathrm{GeV} / \mathrm{c} \leftrightarrow \mathrm{E}_{\mathrm{T}}(\mathrm{cal})=5.45 \pm 0.35 \mathrm{GeV} \\
& \text { Any other } \gamma \text { had } \mathrm{E}_{\mathrm{T}}<0.55 \mathrm{GeV}(95 \% \mathrm{c} .1) \\
& P\left(\pi^{0} / \eta\right)<10 \% \text { so asymmetric }
\end{aligned}
$$

Run/Event 191089/127812 (Event A)

CES strip/wire chambers at 6 Xo in EM calorimeter

Event : 127812 Run : 191089 Eventitype : DATA|Unpresc: $0,16,18,19,22,23$ Presc: $0,16,18,22$
EAST
Event: : 127812 Run : 1910
EAST Wedge Module\#t 10

Event	S	$E_{T}(\mathrm{GeV})$	(η, ϕ)	$N_{\text {CES }}$	$x_{\text {CIS }}^{2}$	$\mathbb{P}\left(\pi^{\mathrm{o}}\right)$	$\mathrm{P}(\gamma)$
A	A 1	6.8	$(0.44,6.11)$	1	1.0	0.14	0.26
	A 2	5.9	$(0.19,2.83)$	1	1.3	0.19	0.36

Both sides are single narrow showers.

Conclusion: We have observed:

3 candidates for exclusive $\left(\gamma \gamma+\pi^{0} \pi^{0}+\eta \eta\right)$ production May be mixture
$\mathrm{B} / \mathrm{G}=0.09 \pm 0.04 ; \mathrm{P}(\geq 3)=1.7 \times 10^{-4} \equiv 3.7 \sigma$
$\sigma(\gamma \gamma)<410 \mathrm{fb}(95 \%$ c.l.)
A, B favor $\gamma \gamma$ and C favors $\pi^{0} \pi^{0}$
If we assume that 2 of the 3 candidates are gamma-gamma events we obtain a cross section: $\sigma(2$ events $)=\left(90_{-30}^{+120} \pm 16\right) \mathrm{fb}$

cf | Durham Group Khoze, Martin, Ryskin \& Stirling |
| :--- |
| hep-ph/0507040 Eur.Phys.J C38 (2005) 475 : |
| 40 fb with factor 3 uncertainty |

Existence of exclusive $\gamma \gamma$ implies that exclusive H must exist (if H exists)
Agreement with Durham group suggests H cross section at LHC in reach

