
Search for Exclusive \(\gamma \gamma Production \)

$$p + p \rightarrow p + \gamma \gamma + p$$

Test of QCD &

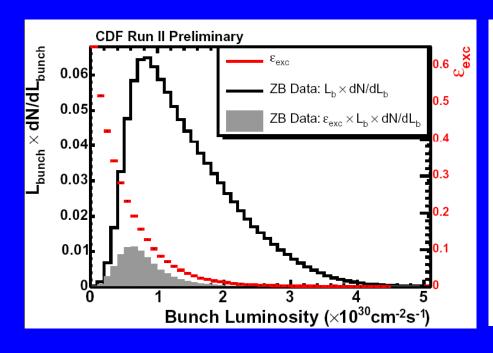
$$p + p \rightarrow p + H + p$$

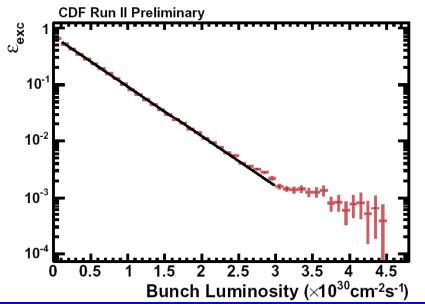
Durham Group Khoze, Martin, Ryskin & Stirling hep-ph/0507040 Eur.Phys.J C38 (2005) 475

$$|\eta(\gamma)| < 1.0$$
; $p_T(\gamma) > 5$ GeV/c $\Rightarrow \sigma_{TeV} = 40$ fb

Factor ~ 3 uncertainty

Installed trigger: 2 EM showers > 4 GeV + Forward "gap seed" < 1 unit \sim 5 Only single interactions can be used!

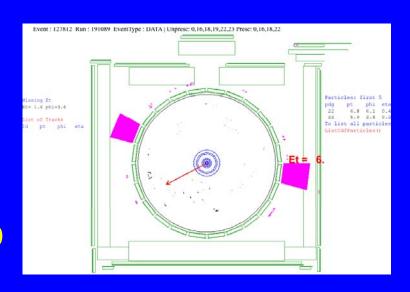

"Exclusive efficiency": Any 2nd interaction spoils the event.

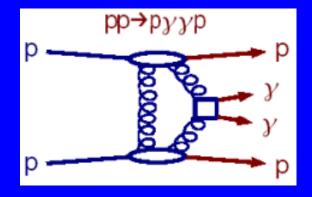

Efficiency depends on bunch x bunch luminosity! (Not all same)

Make distribution of bunch luminosities for whole data set.

Using 0-bias (beam crossing) events find probability of "spoilers" fn(L_bxb)

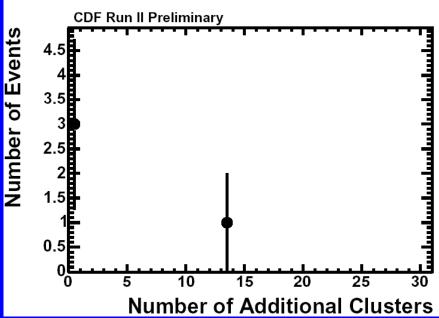
That gives "effective luminosity" = 45/pb cf 532/pb delivered. (0.086)

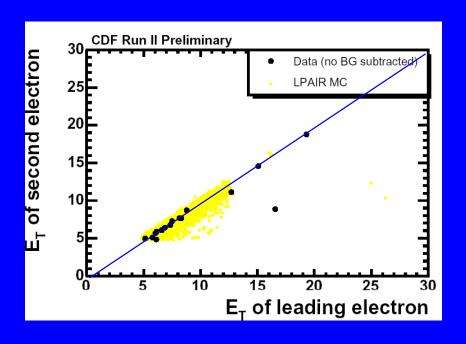

After all cuts, found 16 e+e- events, QED prediction 17.1 events → We understand the exclusivity cuts

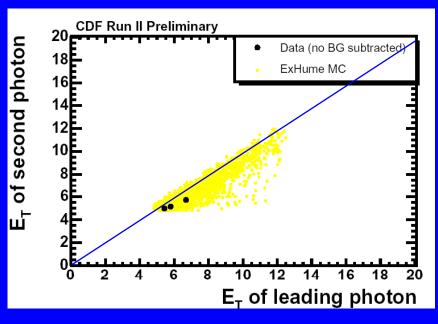

Phys.Rev.Lett. 98, 112001 (2007)

3 events had no tracks to showers, except one clear photon conversion.


But experimentally identical except no tracks in 2-photon case


Efficiency(tracking) = 100% for isolated ch. particles with $p_T > 1 \text{ GeV/c}$ and $|\eta| < 1.0$




For exclusive production in $p\bar{p}$ $\gamma\gamma \to \gamma\gamma$ is < 5% and $q\bar{q} \to \gamma\gamma$ is < 1% of $gg \to \gamma\gamma$ (but they are signal not b/g) Non-exclusive background: With Forward BSC and calorimetry in noise ("empty") count clusters (not = particles) in addition to 2 EM showers. Left plot is with e+e- events, b/g fit gives 0.3 +- 0.1 under 16 signal (0 bin). Right plot: require no tracks for $\gamma\gamma$ candidates: 0.06 +- 0.03 under 3 events

Left plot: pT balance between e+ and e- (one e bremmed) Right plot: ET balance between photon candidates.

Can the 3 candidates be exclusive $\pi^0 \pi^0$ or $\eta \eta$ rather than $\gamma \gamma$?

$$\gamma\pi,\gamma\eta$$
 are forbidden by C-parity $\pi\eta$ is forbidden by isospin

Theory (Durham):
$$\pi^0 \pi^0 / \gamma \gamma \approx 0.25$$
 and $\eta^0 \eta^0 / \gamma \gamma \approx 1$

We will give an upper limit on the $\gamma\gamma$ cross section, which is valid independent of the $\pi^0\pi^0$ and $\eta\eta$ background in the 3 candidates. It is:

$$(\gamma\gamma + \pi^0\pi^0 + \eta\eta)$$
 observed, $p = 1.7 \times 10^{-4}, 3.7\sigma$

$$\sigma(p\overline{p} \to p + \gamma\gamma + \overline{p}) \le 410 \text{ fb } (95\% \text{ cl})$$

$$p_T(\gamma) \ge 5 \text{ GeV/c}; |\eta(\gamma)| < 1.0$$

Backgrounds to 3 candidates:

Expected number of e+e- with neither track fitted ... 0.02 +- 0.02 (Conservative because not even hits in COT)

Expected number with undetected p/pbar dissociation 0.01 +- 0.01 (note: this b/g only exists if fully exclusive process exists)

Expected number associated multiplicity distribution fluctuates to 0, or associated particle(s) missed (in noise or cracks) ... 0.06 +- 0.02

Cosmic background is negligible.

Add backgrounds, & add uncertainties in quadrature

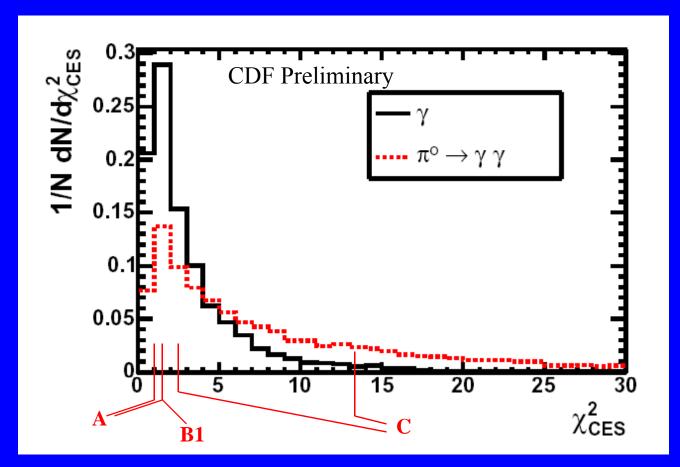
 $|0.090 \pm 0.037|$

p-value: convolute Gaussian with Poisson = $1.7 \cdot 10^{-4} = 3.7 \cdot 10^{-4}$

 $3 \gamma \gamma$ candidates: A,B,C

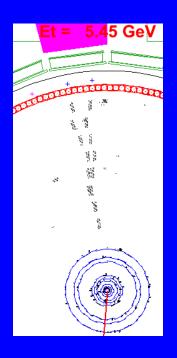
Have 2 (standard) handles:

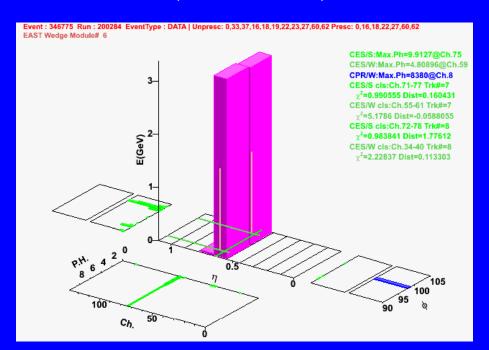
- 1) CES chi^2 from fit to shower shape in wires/strips cf. electrons
- 2) N_CES = Number of found clusters in CES chamber


Properties of the 3 candidates.

Event	S	$E_T({ m GeV})$	(η,ϕ)	N_{CES}	$\chi^2_{\rm CES}$	$P(\pi^{\circ})$	$P(\gamma)$
A	A1	6.8	(0.44,6.11)	1	1.0	0.14	0.26
	A2	5.9	(0.19,2.83)	1	1.3	0.19	0.36
В	В1	5.0	(-0.07,4.86)	1	1.4	0.21	0.39
	B2	5.4	(0.67, 1.66)	2	n.a.	n.a.	n.a.
С	C1	6.0	(-0.44,1.66)	1	13.4	0.89	0.98
	C2	5.1	(0.22, 5.05)	2	2.2	0.33	0.57

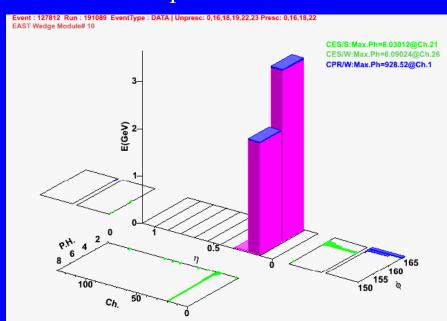
conversion

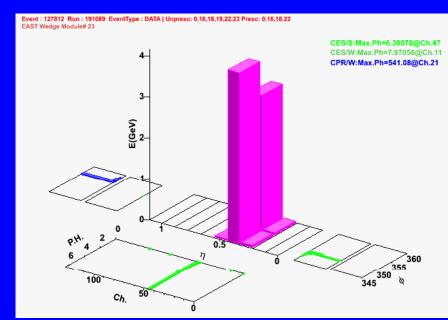

 $P(\pi^0)$ and $P(\gamma)$: Probabilit y that π^0 and γ have $\chi^2_{CES} \leq$ observed


From simulation the probability of one photon from pio/eta not being detected in the CES, by ranging out or not interacting, is 0.125 ± 0.025 .

Using this we calculate probabilities that a γ or a π^0 will have a χ^2_{CES} as small as or smaller than the observed value.

Shower B2 (conversion)




Tracks same η but diverge in ϕ (+/-)

$$p_{T}(e^{+}) = 3.0 \text{ GeV/c}$$
; $p_{T}(e^{-}) = 2.4 \text{ GeV/c}$
 $\sum p_{T} = 5.40 \text{ GeV/c} \leftrightarrow E_{T}(\text{cal}) = 5.45 \pm 0.35 \text{ GeV}$
Any other γ had $E_{T} < 0.55 \text{ GeV}$ (95%c.l)
 $P(\pi^{0}/\eta) < 10\%$ so asymmetric

Run/Event 191089/127812 (Event A)

CES strip/wire chambers at 6 Xo in EM calorimeter

Event	S	$E_T({\rm GeV})$	(η,ϕ)	N_{CES}	$\chi^2_{\rm CES}$	$P(\pi^a)$	$\mathrm{P}(\gamma)$
Α	A1	6.8	(0.44,6.11)	1	1.0	0.14	0.26
	A2	5.9	(0.19, 2.83)	1	1.3	0.19	0.36

Both sides are single narrow showers.

Conclusion: We have observed:

3 candidates for exclusive $(\gamma \gamma + \pi^0 \pi^0 + \eta \eta)$ production May be mixture

B/G =
$$0.09 \pm 0.04$$
; P(≥ 3) = $1.7 \times 10^{-4} \equiv 3.7 \sigma$
 $\sigma(\gamma\gamma) < 410 \text{ fb } (95\% \text{ c.l.})$

A, B favor $\gamma\gamma$ and C favors $\pi^0\pi^0$

If we assume that 2 of the 3 candidates are gamma-gamma events we obtain a cross section: $\sigma(2 \text{ events}) = (90^{+120}_{30} \pm 16) \text{ fb}$

Durham Group Khoze, Martin, Ryskin & Stirling cf hep-ph/0507040 Eur.Phys.J C38 (2005) 475: 40 fb with factor 3 uncertainty

Existence of exclusive $\gamma\gamma$ implies that exclusive H must exist (if H exists)

Agreement with Durham group suggests H cross section at LHC in reach