Exclusive Di-jet Production at CDF

Koji Terashi The Rockefeller University On behalf of the CDF Collaboration

Small-x workshop, Fermilab, March 28-30, 2007

Exclusive Di-jet Production

Observe exclusive di-jets experimentally

Test existing exclusive production models

Calibrate predictions for exclusive Higgs at LHC

• $gg \rightarrow gg, q\overline{q}g, ...$

- gg→qq̄ suppressed (Jz=0 rule)
- large cross section

gg→H→bb (for light SM Higgs)
Potential to determine Higgs property at LHC

Outline

Analysis Strategy
Search for the Signal
Results
Summary

Analysis Strategy

- Select inclusive DPE di-jets : $\bar{p}+p \rightarrow \bar{p}+X(\ni 2jets)+gap$
- Reconstruct di-jet mass fraction : $R_{jj} = M_{jj}/M_X$
- Look for data excess over DPE di-jet background as $R_{ij} \rightarrow I$

➡ Signal (R_{jj}=1) smeared due to shower/hadronization effects, NLO gg→ggg, qq̄g contributions, etc.

 DPE di-jet background shape from POMWIG MC simulation (=> Uncertainty from Pomeron PDF)

POMWIG Monte Carlo Simulation

Use POMWIG v1.3 β [Cox and Forshaw, CPC 144, 104(2002)] to obtain DPE di-jet background shape

Modified diffractive structure functions to incorporate some of recent experimental measurements

HI-fit2	HI LO-fit to '94 LRG data
CDF	CDF CDF Run I F _{ij} ^D from SD/ND di-jets
CDF⊕HI	CDF Run I F_{jj}^{D} from DPE/SD di-jets (\Rightarrow main PDF)
ZEUS-LPS	ZEUS NLO-fit to '97 LPS data

Also, used
HI NLO-fit 3 to '94 LRG data
Groys, Levy, and Proskuryakov NLO-fit to '98-'99 ZEUS M_X data

New HI Diffractive PDFs

P. Newman : Hera-LHC workshop, March 2007 (Also, see yesterday's M. Ruspa talk)

Current analysis uses HI-fit2 (1997)

Diffractive PDFs recently updated by HI (2006)

New HI (2006) DPDFs have similar shapes to old DPDFs

Di-jet Mass Fraction

Excess observed over MC simulations with varied PDFs

Exclusive Dijet MC Simulations

MC Fit to R_{jj} Shape

Di-jet Pseudorapidity Distributions

Exclusive djets produced towards outgoing \overline{p} side due to our kinematic acceptance

η_{jet} -dependence of the Excess

MC Fit to R_{jj} Shape

stat. error only

Exclusive Di-jet Signal

LO exclusive $gg \rightarrow q\overline{q}$ suppressed due to Jz=0 rule Look for the suppression in heavy flavor jet fraction vs R_{jj}

The two results are consistent with each other

 $= M_{ii} / M_X$

R..

Exclusive Di-jet Cross Section

Integrated Cross Section for R_{jj} > 0.8 vs Minimum Jet E_T

DPEMC Exclusive DPE ExHuME

Khoze, Martin, Ryskin at LO parton-level (factor 3 uncertainty) hep-ph/0507040

Measured σ_{ij}^{excl} prefers ExHuME and KMR calculations

Exclusive Di-jet Mass Reach

Unfold measured σ_{jj}^{excl} to $d\sigma_{jj}^{excl}/dM_{jj}$ using ExHuME

Summary

Observed exclusive di-jet production in $\overline{p}p$ collisions for the first time

- Measured rate consistent with Durham parton-level calculations (factor ~3 uncertainty)
- Data prefer ExHuME over Exclusive DPEMC
- Results encouraging for $pp \rightarrow pHp$ at LHC

Backup

CDF II Detector

Wide detector coverage helps exclusive measurements

Tracking Detectors : |η|<2.0
 Calorimeters : |η|<5.2
 Veto Counters (BSC) : 5.4<|η|<7.4
 Leading Antiproton Detectors (RPS)

Roman Pot Spectrometers

Beam Shower Counters

MiniPlug Calorimeters

 Good position resolution retained
 Used to measure particle energy and multiplicity in 3.6<|η|<5.2

Read out by

WLS fibers

RP Spectrometer Acceptance

inclusive (simulation)

DPE di-jets (data)

78.4±0.3(stat) % at $0 < \xi < 0.1, |t| < 3 \text{ GeV}^2$

Data Sample and Selections

Data Selection : DPE Jet Trigger (312.5±18.7 pb⁻¹)

- Single Vertex
- ≥ 2 jets with E_T>10 GeV and $|\eta| < 2.5$ (corrected to hadron level)
- ZERO hit multiplicity in MP_P and CLC_P
- 0.01 < $\xi_{\overline{p}}$ < 0.12 to reject events with multiple $\overline{p}p$ interactions

$$(S)_{OL} = \begin{pmatrix} + & CDF \text{ data, based on DPE/SD} \\ 10 \\ 10 \\ 10 \\ - & Expectation from H1 2002 \sigma_r^{D} QCD Fit (prel.) \\ 0.1 \\ 0.1 \\ - & B \end{pmatrix}$$

$$\mathsf{F}_{jj}^{\mathsf{D}}(\beta,\xi) = \mathsf{C} \cdot \beta^{\mathsf{-n}} \cdot \xi^{\mathsf{-m}}$$

 $n = 1.0\pm0.1$ $m = 0.9\pm0.1$ \Rightarrow Pomeron exchange

2nd gap less suppressed \Rightarrow approx. equal to HI dPDF

$IP_1 + IP_2 \rightarrow X$	IP ı	IP ₂
CDF	β-ι	β-ι
CDF⊕HI	β-ι	HI-fit2

Reggeon Contributions

Pomeron/Reggeon contributions:

 $\mathsf{F}_{jj}^{\mathsf{D}}(\beta) \sim \sum_{i=\mathsf{IP}, \mathsf{IR}} \int dt \int d\xi \ \mathsf{C}_i \ \mathsf{f}_{i/\mathsf{P}}(\xi, t) \ \mathsf{F}_{jj}^{i}(\beta)$

flux : $f_{i/p}(\xi,t) = e^{b_i t} \xi^{1-2\alpha_i(t)}$				
	IP	IR		
$\alpha_i(t)$	1.20+0.26t	0.57+0.9t		
b _i (GeV ⁻²)	4.6	2.0		
Ci		16 (fit 2)		

Mean Jet ET

Shape comparison between data and POMWIG MC

POMWIG MC = DPE Signal + ND&SD Background (from data)

Mean Jet Pseudorapidity

Shape comparison between data and POMWIG MC

POMWIG MC = DPE Signal + ND&SD Background (from data)

Calorimeter Tower Multiplicity

HI-fit3 (ZEUS-MX) looks too hard (soft)
 POMWIG with other 4 PDFs reproduces data shapes well

Detector Effects

All distributions are POMWIG DPE signal (CDF HI)

Corrected detector-level distributions agree well with hadron-level distributions

Comparison with KMR

More direct comparison with KMR calculations including hadronization effects preferred

CDF out-of-cone energy measurement (cone R=0.7) : ▶20-25% at E_T^{jet}=10-20 GeV ▶10-15% at E_T^{jet}=25-35 GeV

Good agreement with data found by rescaling parton p_T to hadron jet E_T

