Conformal Invariance and Pomeron Interaction from AdS/CFT

$+$ \qquad

Technique: Summing generalized Witter Diagrams

Freedman et al., hep-th/9903196
Brower, Polchinski, Strassler, and Tan, hep-th/0003115

Outline
(2) extreme strong coupling limit, $1 /\left(g^{\wedge} 2 N\right)=0$: SUPRA graphs in AdS-5

- reduction to AdS-3 at high energy
(2) $\left.1 / g^{\wedge} 2 N\right)$ nonzero,
- higher order diagrams, e.g., eikonal, fan graphs, etc., importance of confinement

Conformal Invariance

- AdS-5 Background metric:

$$
d^{2} z=\frac{1}{z_{0}^{2}}\left\{d x_{\mu} d x^{\mu}+d^{2} z_{0}\right\}
$$

- Scalar Propagator:

$$
\begin{gathered}
S=\int d z \sqrt{g}\left\{\partial_{M} \phi(z) g^{M N} \partial_{N} \phi(z)+\Delta(\Delta-d) \phi^{2}(z)\right\} \\
\left\langle\phi_{\Delta}(z) \phi_{\Delta}(w)\right\rangle=G_{\Delta}^{(5)}(z, w) \\
\left\{-\frac{1}{\sqrt{g}} \partial_{M} \sqrt{g} g^{M N} \partial_{N}+\Delta(\Delta-d)\right\} G_{\Delta}^{(5)}(z, w)=\delta^{5}(z-w)
\end{gathered}
$$

Conformal Invariance

Scalar Propagator is a function of a single variable-chordal distance between two points, (z, w) :

$$
u=\frac{(x-y)^{2}+\left(z_{0}-w_{0}\right)^{2}}{2 z_{0} w_{0}}
$$

Best to use momentum representation

$$
G(u)=\int \frac{d^{4} q}{(2 \pi)^{4}} e^{i q \cdot(x-y)}\left(z_{0} w_{0}\right)^{2} I_{2}\left(q z_{<}\right) K_{2}\left(q z_{>}\right)
$$

Momentum Representations

$$
\left(-\partial_{z_{0}} z_{0}^{-(d-1-2 S)} \partial_{z_{0}}+q^{2} z_{0}^{-(d+1-2 S)}+z_{0}^{-(d-1-2 S)} m^{2}\right) \phi(u)=0
$$

- Direct calculation, for $s=0, d=4, m=0$:

$$
\begin{aligned}
\tilde{G}\left(q, z_{0}, w_{0}\right)=\left(z_{0} w_{0}\right)^{2} I_{2}\left(q z_{<}\right) K_{2}\left(q z_{>}\right) \\
0<z_{0}, w_{0}<\infty
\end{aligned}
$$

- Spectral in $t=-8^{12}$, (no mass gap):

$$
\tilde{G}\left(q, z_{0}, w_{0}\right)=\left(z_{0} w_{0}\right)^{2} \int_{0}^{\infty} k d k \frac{J_{2}\left(k z_{0}\right) J_{2}\left(k w_{0}\right)}{k^{2}-t} .
$$

Confinement -- Massive Tensor Glueballs Hard-Wall Example:

$$
0<z_{0}<z_{1}=1 / \Lambda
$$

Boundary Condition:

$$
\partial_{z_{1}}\left[z_{1}^{2} J_{2}\left(m_{n} z_{1}\right)\right]=0
$$

Spectral Representation, discrete spectrum (with mass gap):

$$
\begin{aligned}
& \tilde{G}\left(q, z_{0}, w_{0}\right)=\left(z_{0} w_{0}\right)^{2} \sum_{n} \frac{\Phi_{n}\left(z_{0}\right) \Phi_{n}\left(w_{0}\right)}{m_{n}^{2}-t} \\
& t=-q^{2}
\end{aligned}
$$

One Graviton Graph

Coordinate Space:

$$
I_{g r a v}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{g_{s}^{2}}{4} \int d z \sqrt{g} \int d w \sqrt{g} T^{M N}\left(x_{1}, x_{3}, z\right) G_{M N M^{\prime} N^{\prime}}(z, w) T^{M^{\prime} N^{\prime}}\left(x_{2}, x_{4}, w\right)
$$

Momentum Space: $\quad p_{1}+p_{2} \rightarrow p_{3}+p_{4}$

$$
T_{4}^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\frac{1}{4} \int d z_{0} \sqrt{g} \int d w_{0} \sqrt{g} \tilde{T}^{M N}\left(p_{1}, p_{3}, z_{0}\right) \tilde{G}_{M N M^{\prime} N^{\prime}}\left(q, z_{0}, w_{0}\right) \tilde{T}^{M^{\prime} N^{\prime}}\left(p_{2}, p_{4}, w_{0}\right)
$$

One Graviton Exchange at High Energy

- $d=4$, Delta =4:
- Graviton propagator:

$$
\tilde{G}_{++,--}\left(q, z_{0}, w_{0}\right)=\frac{2}{\left(z_{0} w_{0}\right)^{2}} \tilde{G}\left(q, z_{0}, w_{0}\right)
$$

- Energy-momentum tensor:

$$
\begin{aligned}
& \tilde{T}_{13}^{++}\left(p_{1}, p_{3}, z_{0}\right)=2\left(i p_{1}^{+}\right)\left(i p_{3}^{+}\right) \tilde{K}_{\Delta}\left(p_{1}, z_{0}\right) \tilde{K}_{\Delta}\left(p_{3}, z_{0}\right) \\
& \tilde{T}_{24}^{--}\left(p_{2}, p_{4}, w_{0}\right)=2\left(i p_{2}^{-}\right)\left(i p_{4}^{-}\right) \tilde{K}_{\Delta}\left(p_{2}, w_{0}\right) \tilde{K}_{\Delta}\left(p_{4}, w_{0}\right)
\end{aligned}
$$

One Graviton in Momentum Representation at High Energy

$$
T_{4}^{(1)}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z_{0}}{z_{0}^{5}} \int \frac{d w_{0}}{w_{0}^{5}} \tilde{K}_{\Delta}\left(p_{1}^{2}, z_{0}\right) \tilde{K}_{\Delta}\left(p_{3}^{2}, z_{0}\right) \mathcal{T}_{4}^{(1)}\left(p_{i}, z_{0}, w_{0}\right) \tilde{K}_{\Delta}\left(p_{2}^{2}, w_{0}\right) \tilde{K}_{\Delta}\left(p_{4}^{2}, w_{0}\right)
$$

$$
p_{1}+p_{2} \rightarrow p_{3}+p_{4}
$$

$$
\mathcal{T}_{4}^{(1)}\left(p_{i}, z_{0}, w_{0}\right)=s^{2} \tilde{G}_{++,--}\left(q, z_{0}, w_{0}\right)=\frac{2 s^{2}}{\left(z_{0} w_{0}\right)^{2}} \tilde{G}\left(q, z_{0}, w_{0}\right)
$$

Reduction to AdS-3 at High Energy for Near Forward Scattering

* momentum transfer 8 is transverse:

$$
\begin{aligned}
& \mathcal{T}_{4}^{(1)}\left(s, x_{\perp}-y_{\perp}\right)=(1 / 2 \pi)^{2} \int d^{2} q_{\perp} e^{i\left(x_{\perp}-y_{\perp}\right) \cdot q_{\perp}} T_{4}^{(1)}\left(s,-q_{\perp}^{2}\right) \\
& =g_{s}^{2} \int \frac{d z_{0}}{z_{0}^{5}} \int \frac{d w_{0}}{w_{0}^{5}} \tilde{K}_{\Delta}\left(p_{1}^{2}, z_{0}\right) \tilde{K}_{\Delta}\left(p_{3}^{2}, z_{0}\right) \mathcal{K}\left(s, x_{\perp}-y_{\perp}, z_{0}, w_{0}\right) \tilde{K}_{\Delta}\left(p_{2}^{2}, w_{0}\right) \tilde{K}_{\Delta}\left(p_{4}^{2}, w_{0}\right)
\end{aligned}
$$

* Ads-3 Propagator:

$$
\mathcal{K}\left(s, x_{\perp}, z_{0}, w_{0}\right)=\frac{2 s^{2}}{z_{0} w_{0}} G_{\Delta_{2}}^{(3)}\left(x_{\perp}, z_{0}, w_{0}\right)
$$

* Isometry of Euclidean $A d S-3$ is $S \angle(2 C)$ the same symmetry group as BFKL Kernel

Strong Coupling Pomeron Propagator--
Conformal Limit

- Spin 2 ---..-- $>$ J
- Use Complex angular momentum representation
- Use J-dependent Dimension:
$\Delta: \quad 4 \rightarrow \Delta(J)=2+\left[2 \sqrt{\lambda}\left(J-J_{0}\right)\right]^{1 / 2}=2+\sqrt{\bar{j}}$
- BFKL-cut: $\quad J_{0}=2-\frac{2}{\sqrt{\lambda}}$

Spin-Dimension Curve

Strong Coupling Pomeron Propagator-Comparison with $B F K L$

- Ads-3 propagator:

$$
\begin{gathered}
\mathcal{K}\left(j, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right)=\frac{1}{4 \pi z z^{\prime}} \frac{\left[y+\sqrt{y^{2}-1}\right]^{\left(2-\Delta_{+}(j)\right)}}{\sqrt{y^{2}-1}}, \\
y \pm 1=\frac{\left(z \mp z^{\prime}\right)^{2}+\left(x_{\perp}-x_{\perp}^{\prime}\right)^{2}}{2 z z^{\prime}}
\end{gathered}
$$

- BFKL Kernel:

$$
\Phi_{n, \nu}\left(b_{1}-b_{0}, b_{2}-b_{0}\right)=\left[\frac{b_{1}-b_{2}}{\left(b_{1}-b_{0}\right)\left(b_{2}-b_{0}\right)}\right]^{i \nu+(1+n) / 2}\left[\frac{\bar{b}_{1}-\bar{b}_{2}}{\left(\bar{b}_{1}-\bar{b}_{0}\right)\left(\bar{b}_{2}-\bar{b}_{0}\right)}\right]^{i \nu+(1-n) / 2}
$$

Strong Coupling Pomeron Propagator--with
Confinement

Spectral Rep. in Conformal limit:

$$
G\left(j, t, z, z^{\prime}\right)=\int_{0}^{\infty} d k k \frac{J_{\sqrt{\bar{j}}}(k z) J_{\sqrt{\bar{j}}}\left(k z^{\prime}\right)}{k^{2}-t}
$$

Spectral Rep. with Confinement

$$
G\left(j, t, z, z^{\prime}\right)=\sum_{n} \frac{\psi_{n}(z) \psi_{n}^{*}\left(z^{\prime}\right)}{t_{n}(j)-t}
$$

Ref. Brower, Polchinski, Strassler, Tan, het-0603115

Higher Order Diagrams:

Eikonal Sum:

Fan Diagrams:

AdS-3 Pomeron Calculus:
Warning: Breaking Conformal Invariance-Physics changes when confinement is taken into account!!

Gauge/String Duality provides a robust framework for concrete calculations and predictions!!

Ref: hep-th/0603115, and papers in preparation, R. C. Brower, M. Strassler, J. Polchinski, CIT

