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Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w + ∆(∆ − d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 − ∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ − ∆13 + d/2 − 1]f ′

S (7.34)

+(∆ − ∆13)(∆ + ∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(

∆ − ∆13

2
,
d − ∆ − ∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to $w → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k + ∆13)Γ(1

2{∆1 + ∆3 − ∆})Γ(1
2{∆ + ∆1 + ∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 − ∆})Γ(k + 1 + 1

2{∆13 + ∆ − d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆ − ∆13).
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Technique: Summing generalized Witten Diagrams
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Conformal Invariance
• AdS-5 Background metric:

• Scalar Propagator:

1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) − ∆(∆ − d)φ2(z)
}

(2.1)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.2)

Scalar propagator:

〈φ∆(z)φ∆(w)〉 = G(5)
∆ (z,w) (2.3)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N − ∆(∆ − d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.4)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.5)

3 One graviton Exchange

We begin by considering the one gravition exchange Witten diagram in Fig. for scalar sources

on the boundary of AdS at xi. The bluk co-ordiantes are written wM = (wµ, w0) where we

reserve µ, ν, .. for the standard 4-d Minkowski or Euclidean co-ordinates after Wick rotation.
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Scalar Propagator is a function of a single variable--
chordal distance between two points, (z,w):

3.1 Propagators in Momentum Representation

We shall first provide a simple momentum-space representation for the graviton propagator and

then return to the energy-momentum tensors T̃MN and T̃M ′N ′
. Let us begin by first examining

the kernel for a massless scalar, which satisfies a PDE,

(−∂M
√

g gMN∂N +
√

g m2)G(u) = (−∂z0
z−(d−1)
0 ∂z0

− z−(d−1)
0 ∂2

x+z−(d+1)
0 m2)G(u) = δ5(z−w) .

(3.7)

By exploiting the full AdSd+1 isomentries, it is known that this may be reduced to an ordinary

differential equation and solved by a hypergeometric function. For the special case of d = 4 and

∆ = 4, i.e., m2 = 0, this has the closed form,...

G(u) = −
1

8π2

{

· · · · · · · · ·
}

(3.8)

The corresponding momentum space scalar propagator now satisfies an ordinary differential

equation,

{−z0∂z0
z0∂z0

+ 4 + q2z2
0}[(z0w0)

−2G̃(q, z0, w0)] =
√

z0w0δ(z0 − w0) (3.9)

whose homogeneous equation is recognized as Bessel equation. It follows that

G̃(q, z0, w0) = (z0w0)
2I2(qz<)K2 (qz>) . (3.10)

G(u) =

∫

d4q

(2π)4
eiq·(x−y)(z0w0)

2I2(qz<)K2 (qz>) (3.11)

where z< = min (z0, w0) and z> = max (z0, w0). Here Iα and Kα are modified Bessel functions.

Alternatively, by a spectral decomposition in t = −q2, the scalar kernel in momentun space can

also be expressed in a closed form in terms of Bessel function,

G̃(q, z0, w0) = (z0w0)
2
∫ ∞

0
k dk

J2(kz0)J2(kw0)

k2 − t
. (3.12)

Because of conformal invariance the spectrum is continuous, k ∈ (0,∞), with delta-function

normalized wave functions 1

∫ ∞

0
z0 dz0 J2(k

′z0)J2(kz0) = k−1δ(k − k′) (3.15)

1It is also interesting and pedagogically useful to consider the Hard Wall model with a IR cut off at that

z1 = 1/Λ. Here we have a QCD like confining theory with scale parameter Λ. In this case the boundary condition

lead to discrete “glueball” spectra:

G̃(q, z0, w0) = (z0w0)
2

X

n

Φn(z0)Φn(w0)
m2

n − t
(3.13)

where Φn(z0) ∝ J2(mnz0),
R ∞

0
z0dz0Φn(z0)Φm(z0) = δn,m, and glueball masses mn are fixed by:

∂z1
[z2

1J2(mnz1)] = 0 (3.14)

4
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Momentum Representations

• Direct calculation, for s=0, d=4, m=0: 

• Spetral in t= -q^2, (no mass gap):
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u =
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spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.6)

2

∆ : 4 → ∆(J) = 2 + [2
√

λ(J − J0)]
1/2 = 2 +

√

j̄ (2.8)

J0 = 2 −
2√
λ

(2.9)

t = −q2 (2.10)

0 < z0, w0 < ∞ (2.11)

0 < z0 < z1 = 1/Λ (2.12)

3 One graviton Exchange

We begin by considering the one gravition exchange Witten diagram in Fig. for scalar sources

on the boundary of AdS at xi. The bluk co-ordiantes are written wM = (wµ, w0) where we

reserve µ, ν, .. for the standard 4-d Minkowski or Euclidean co-ordinates after Wick rotation.

Freedman et al., (hep − th/9903196), give the following expression for this diagram,

Igrav(x1, x2, x3, x4)

=
g2
s

4

∫

dz
√

g

∫

dw
√

g TMN (x1, x3, z)GMNM ′N ′(z,w)TM ′N ′
(x2, x4, w) (3.1)

where the bulk to bulk graviton propagator is given by

GMNM ′N ′(z,w) = (∂M∂M ′ u ∂N∂N ′ u + ∂M∂N ′ u ∂N∂M ′ u)G(u) + gMNgM ′N ′H(u) (3.2)

gs is the string coupling, G(u) is the scalar propagator, and H(u) a linear function of G(u). By

symmetry arguments they depend only on the geodisic distance for z = (zµ, z0) to w = (wµ, w0):

u =
(z − w)µ(z − w)µ + (z0 − w0)2

2z0w0
(3.3)

TMN (x, x′, z) is the energy momenut tensor for a scalar particle from x to x′ on the boundary

(see figure).
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Confinement --- Massive Tensor Glueballs 
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differential equation and solved by a hypergeometric function. For the special case of d = 4 and

∆ = 4, i.e., m2 = 0, this has the closed form,...

G(u) = −
1

8π2

{

· · · · · · · · ·
}

(3.8)

The corresponding momentum space scalar propagator now satisfies an ordinary differential

equation,

{−z0∂z0
z0∂z0

+ 4 + q2z2
0}[(z0w0)

−2G̃(q, z0, w0)] =
√

z0w0δ(z0 − w0) (3.9)

whose homogeneous equation is recognized as Bessel equation. It follows that

G̃(q, z0, w0) = (z0w0)
2I2(qz<)K2 (qz>) . (3.10)

G(u) =

∫

d4q

(2π)4
eiq·(x−y)(z0w0)

2I2(qz<)K2 (qz>) (3.11)

where z< = min (z0, w0) and z> = max (z0, w0). Here Iα and Kα are modified Bessel functions.

Alternatively, by a spectral decomposition in t = −q2, the scalar kernel in momentun space can

also be expressed in a closed form in terms of Bessel function,

G̃(q, z0, w0) = (z0w0)
2
∫ ∞

0
k dk

J2(kz0)J2(kw0)

k2 − t
. (3.12)

Because of conformal invariance the spectrum is continuous, k ∈ (0,∞), with delta-function

normalized wave functions 1

∫ ∞

0
z0 dz0 J2(k

′z0)J2(kz0) = k−1δ(k − k′) (3.15)

1It is also interesting and pedagogically useful to consider the Hard Wall model with a IR cut off at that

z1 = 1/Λ. Here we have a QCD like confining theory with scale parameter Λ. In this case the boundary condition

lead to discrete “glueball” spectra:

G̃(q, z0, w0) = (z0w0)
2

X

n

Φn(z0)Φn(w0)
m2

n − t
(3.13)

where Φn(z0) ∝ J2(mnz0),
R ∞

0
z0dz0Φn(z0)Φm(z0) = δn,m, and glueball masses mn are fixed by:

∂z1
[z2

1J2(mnz1)] = 0 (3.14)
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Hard-Wall Example:

Boundary Condition:

Spectral Representation, discrete spectrum (with mass gap): 
∆ : 4 → ∆(J) = 2 + [2

√
λ(J − J0)]

1/2 = 2 +
√

j̄ (2.8)

J0 = 2 −
2√
λ

(2.9)

t = −q2 (2.10)

0 < z0 < z1 = 1/Λ (2.11)

3 One graviton Exchange

We begin by considering the one gravition exchange Witten diagram in Fig. for scalar sources

on the boundary of AdS at xi. The bluk co-ordiantes are written wM = (wµ, w0) where we

reserve µ, ν, .. for the standard 4-d Minkowski or Euclidean co-ordinates after Wick rotation.

Freedman et al., (hep − th/9903196), give the following expression for this diagram,

Igrav(x1, x2, x3, x4)

=
g2
s

4

∫

dz
√

g

∫

dw
√

g TMN (x1, x3, z)GMNM ′N ′(z,w)TM ′N ′
(x2, x4, w) (3.1)

where the bulk to bulk graviton propagator is given by

GMNM ′N ′(z,w) = (∂M∂M ′ u ∂N∂N ′ u + ∂M∂N ′ u ∂N∂M ′ u)G(u) + gMNgM ′N ′H(u) (3.2)

gs is the string coupling, G(u) is the scalar propagator, and H(u) a linear function of G(u). By

symmetry arguments they depend only on the geodisic distance for z = (zµ, z0) to w = (wµ, w0):

u =
(z − w)µ(z − w)µ + (z0 − w0)2

2z0w0
(3.3)

TMN (x, x′, z) is the energy momenut tensor for a scalar particle from x to x′ on the boundary

(see figure).

We find it more convenient to write Feynam rules in momentum space for the 4 flat co-ordinates,

(2π)4δ4(p1 + p2 + p3 + p4)T
(1)
4 (p1, p2, p3, p4) =

∫

Πid
4xie

−ipixiIgrav(x1, x2, x3, x4) (3.4)
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3

Eq. (3.26) must be modified if there exists solutions to the homogeneous equations satisfying

both boundary conditions at z = 0 and at z = z0. For the case of hard-wall, it has been shown

in Ref. BPST that such discrete state does not exist for t < 0 since the confining potential is

repulsive. This corresponds to the fact that, for t < 0, the j-plane singularity consists of nothing

but a branch point at j = j0. However, for t > 0, the confining potential turns attractive,

discrete solutions can emerge through the BFKL branch cut as t increases and positive. These

features are illustrated in Fig. 6. At sufficiently large value of t, there exist a sequence of parallel

j!2

t

Figure 6: The analytic behavior of Regge trajectories in the hard-wall model, showing the

location of the bound-state poles at j = 2 and the continuum cut at j = j0 = 2 − 2/
√

λ into

which the Regge trajectories disappear. The lowest Regge trajectory intersects the cut at a small

positive value of t. At sufficiently large t each trajectory attains a fixed slope, corresponding to

the tension of the model’s confining flux tubes.

Regge trajectories. Denote tcr as the value of t when the leading trajectory crosses the value

j = j0. The j-plane singularity structure is illustrated in Fig. XXX, for −∞ < t < tcr, and

for two values of t where tcr < t < ∞. The spectral properties in j has been fully explored in

Ref. BPST, and a spectral presentation analogous to Eq. (8.7) for the case of hard-wall was

also obtained. For completeness, it is summarized here in Appendix C.

An important change in dealing with confined background can be gleamed from Fig. 6. At

fiex j > j0, the propagator G(j, t, z, z′), as a function of t, consists of an infinite set poles, with

locations, (t1(j), t2(j), · · · ), determined by each trajectory crossing a particular value of j. In

particular, all poles will lie to the right of tcr, the value when the leading Regge trajectory

crosses the BFKL cut. Furthermore, G no longer has a singularity at t = 0, as is the case in the

26



One Graviton Graph

Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w + ∆(∆ − d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 − ∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ − ∆13 + d/2 − 1]f ′

S (7.34)

+(∆ − ∆13)(∆ + ∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(

∆ − ∆13

2
,
d − ∆ − ∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to $w → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k + ∆13)Γ(1

2{∆1 + ∆3 − ∆})Γ(1
2{∆ + ∆1 + ∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 − ∆})Γ(k + 1 + 1

2{∆13 + ∆ − d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆ − ∆13).
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Freedman et al., (hep − th/9903196), give the following expression for this diagram,
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dw
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g TMN (x1, x3, z)GMNM ′N ′(z,w)TM ′N ′
(x2, x4, w)

(3.1)

where the bulk to bulk graviton propagator is given by

GMNM ′N ′(z,w) = (∂M∂M ′ u ∂N∂N ′ u + ∂M∂N ′ u ∂N∂M ′ u)G(u) + gMNgM ′N ′H(u) (3.2)

gs is the string coupling, G(u) is the scalar propagator, and H(u) a linear function of G(u). By

symmetry arguments they depend only on the geodisic distance for z = (zµ, z0) to w = (wµ, w0):

u =
(z − w)µ(z − w)µ + (z0 − w0)2

2z0w0
(3.3)

TMN (x, x′, z) is the energy momenut tensor for a scalar particle from x to x′ on the boundary

(see figure).

We find it more convenient to write Feynam rules in momentum space for the 4 flat co-ordinates,

(2π)4δ4(p1 + p2 + p3 + p4)T
(1)
4 (p1, p2, p3, p4) =

∫

Πid
4xie

−ipixiIgrav(x1, x2, x3, x4) (3.4)

Here the superscript for T (1)
4 reminds us that this is the one-graviton exchange contribution to the

four-point amplitude. Since
√

g depends only on the AdS radial variable, e.g., at z,
√

g = z−(d+1)
0 ,

one can carry out the Fourier transform, arriving at a simple “mixed-representation”,

T (1)
4 (p1, p2, p3, p4) =

1

4

∫

dz0
√

g

∫

dw0
√

g T̃MN (p1, p3, z0)G̃MNM ′N ′(q, z0, w0)T̃
M ′N ′

(p2, p4, w0)

(3.5)

Here G̃MNM ′N ′ and T̃MN are the momentum-space graviton propagator and the energy-momentum

tensor for an external scalar respectively, e.g.,

G̃MNM ′N ′(q, z0, w0) =

∫

d4z e−iq(z−w) GMNM ′N ′(z,w) (3.6)

where q = p1 + p3 = −(p2 + p4) is the four-momentum transfer in a 2-to-2 scattering process.

An all incoming momentum convention is used, with s = −(p1 + p2)2 = −(p3 + p4)2 for the CM

energy squared and t = −q2. Note, other than the remaining bulk integrals in z0 and w0, the

four-momentum structure for this one-graviton diagram is the same as an ordinary Feynman

diagram in the flat space.
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Coordinate Space:

Momentum Space:

1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆ − d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

〈φ∆(z)φ∆(w)〉 = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆ − d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)
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One Graviton Exchange at High Energy

• d=4, Delta=4:

• Graviton propagator:

• Energy-momentum tensor:

Similarly, one has

G̃++,−−(q, z0, w0) =
2

(z0w0)2
G̃(q, z0, w0) (3.21)

It follows that the near forward limit in the high energy, the four-point function can be simply

expressed in a factorizable form:

T (1)
4 (p1, p2, p3, p4) = g2

s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)T
(1)
4 (pi, z0, w0)K̃∆(p2

2, w0)K̃∆(p2
4, w0)

(3.22)

where

T (1)
4 (pi, z0, w0) = s2G̃++,−−(q, z0, w0) =

2s2

(z0w0)2
G̃(q, z0, w0) (3.23)

We will show in the next section that this factorizable form can be generalized in treatiing higher

loops contributions.

It is useful to note that, instead of p1, p2, p3, p4, we can treat T (1)
4 as functions of independent

invariants, s, t and p2
1, p

2
2, p

2
3, p

2
4. We also note that K̃∆(p, z0) is a scalar function, so it depends

only on p2, which is being held fixed at some value of the order 1. As mentioned earlier, for

dilaton, ∆ = 4. Similarly, G̃(q, z0, w0) also depends only on q2. to emphasize that it is an

AdS5 scalar propagator, we will occasionally write it as G̃(5)
∆4

(t, z0, w0), t = −q2. For graviton,

∆4 = d = 4.

Lastly, we mention that, had we been working with a confinement situation: each factor

K̃∆(p2
i , z0) in Eq. (3.21) would be replaced by a normalizable “glueball” wave function, and, the

propagator G̃(5)
∆4

(t, z0, w0) would also be similarly modified. This will be discussed in a separate

publication.

3.3 Impact Representation and Reduction to AdS3

For the near-forward limit where s → ∞ with t fixed, it is easy to show that q± = 0(1/
√

s),

so that q is effectively transverse, t % −q2
⊥. It is therefore convenient to define a 2-dim Fourier

transform

T (1)
4 (s, x⊥ − y⊥) = (1/2π)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥T (1)
4 (s,−q2

⊥)

= g2
s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)K(s, x⊥ − y⊥, z0, w0)K̃∆(p2
2, w0)K̃∆(p2

4, w0)

(3.24)

where

K(s, x⊥ − y⊥, z0, w0) =
2s2

(2πz0w0)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥G̃(5)
∆4

(−q2
⊥, z0, w0) (3.25)

6

and the associated completeness
∫ ∞

0
k dk J2(kz0)J2(kz′0) = z0 δ(z0 − z′0) (3.16)

A similar momentum representation, H̃(q, z0, w0), albeit more complicated can also be obtained

for H(u). However, for our application, this turns out to be unnecessary.

Let us return to the graviton propagator in a momentum representation, G̃MNM ′N ′(q, z0, w0). It

can be obtained by making the replacements in Eq. (3.2), G by G̃(q, z0, w0), H by H̃(q, z0, w0),

and

∂µ∂ν′u →
1

2z0w0
gµν′

, ∂z0
∂w0

u → ∂z0
∂w0

u

∂µ∂w0
u →

1

2z0w2
0

∂qµ , ∂z0
∂ν′u → −

1

2z2
0w0

∂qν′ (3.17)

Consider next the energy-momentum tensor. For an external scalar, it is given by

T µν(x1, x3, z) = DµK∆(z, x1)D
νK∆(z, x3) + DνK∆(z, x1)D

µK∆(z, x3)

− gµν
[

∂ρK∆(z, x1)D
ρK∆(z, x3) + m2K∆(z, x1)K∆(z, x3)

]

(3.18)

For a dilaton, ∆ = 4. It is sufficient for us to focus on the scalar “bulk-to-booundary” propagator,

K∆(z, xi), and define its momentum representation

K̃∆(pi, z0) =

∫

d4xie
−ipi(xi−z)K∆(xi, z) (3.19)

It follows that its momentum representation, T̃MN (p1, p3, z0), can be obtained from Eq. (3.18)

with the replacement of K(xi, z) by K̃(pi, z0) and ∂xi by ipi.

3.2 Simplification in High Energy Limit

Let us next extract in the high energy limit for the one-graviton exchange contribution. Consider

the limit s = −(p1 +p2)2 → ∞ with t = −(p1 +p3)2 = −q2 fixed. In addition, we shall also keep

p2
i = 0(1) in this limit. We adopt the convention that p1 and −p3 have large “+” components,

(p+
1 = p1,0 + p1,3 $

√
s), and p2 and −p4 have large “-” components, (p−2 = p2,0 − p2,3 $

√
s).

Simplification occurs since we can show that we only need to keep the large components for all

contracted indices, either in Eq. (3.5) or in Eq. (3.1). This corresponds to keep +,+ for µ, ν,

and −,− for µ′, ν ′ in these equations. For instance, for the ++ component of T̃ µν(p1, p3, z0),

and −− component of T̃ µ′ν′
(p2, p4, w0), one has

T̃++
13 (p1, p3, z0) = 2(ip+

1 )(ip+
3 )K̃∆(p1, z0)K̃∆(p3, z0)

T̃−−
24 (p2, p4, w0) = 2(ip−2 )(ip−4 )K̃∆(p2, w0)K̃∆(p4, w0) (3.20)
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One Graviton in Momentum 
Representation at High Energy

Similarly, one has
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expressed in a factorizable form:

T (1)
4 (p1, p2, p3, p4) = g2

s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)T
(1)
4 (pi, z0, w0)K̃∆(p2

2, w0)K̃∆(p2
4, w0)

(3.22)

where

T (1)
4 (pi, z0, w0) = s2G̃++,−−(q, z0, w0) =

2s2

(z0w0)2
G̃(q, z0, w0) (3.23)

We will show in the next section that this factorizable form can be generalized in treatiing higher

loops contributions.

It is useful to note that, instead of p1, p2, p3, p4, we can treat T (1)
4 as functions of independent

invariants, s, t and p2
1, p

2
2, p

2
3, p

2
4. We also note that K̃∆(p, z0) is a scalar function, so it depends

only on p2, which is being held fixed at some value of the order 1. As mentioned earlier, for

dilaton, ∆ = 4. Similarly, G̃(q, z0, w0) also depends only on q2. to emphasize that it is an

AdS5 scalar propagator, we will occasionally write it as G̃(5)
∆4

(t, z0, w0), t = −q2. For graviton,

∆4 = d = 4.

Lastly, we mention that, had we been working with a confinement situation: each factor

K̃∆(p2
i , z0) in Eq. (3.21) would be replaced by a normalizable “glueball” wave function, and, the

propagator G̃(5)
∆4

(t, z0, w0) would also be similarly modified. This will be discussed in a separate

publication.

3.3 Impact Representation and Reduction to AdS3

For the near-forward limit where s → ∞ with t fixed, it is easy to show that q± = 0(1/
√

s),

so that q is effectively transverse, t % −q2
⊥. It is therefore convenient to define a 2-dim Fourier

transform

T (1)
4 (s, x⊥ − y⊥) = (1/2π)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥T (1)
4 (s,−q2

⊥)

= g2
s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)K(s, x⊥ − y⊥, z0, w0)K̃∆(p2
2, w0)K̃∆(p2

4, w0)

(3.24)

where

K(s, x⊥ − y⊥, z0, w0) =
2s2

(2πz0w0)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥G̃(5)
∆4

(−q2
⊥, z0, w0) (3.25)
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2, w0)K̃∆(p2
4, w0)
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T (1)
4 (pi, z0, w0) = s2G̃++,−−(q, z0, w0) =

2s2

(z0w0)2
G̃(q, z0, w0) (3.23)

We will show in the next section that this factorizable form can be generalized in treatiing higher

loops contributions.
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4 as functions of independent
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4. We also note that K̃∆(p, z0) is a scalar function, so it depends

only on p2, which is being held fixed at some value of the order 1. As mentioned earlier, for

dilaton, ∆ = 4. Similarly, G̃(q, z0, w0) also depends only on q2. to emphasize that it is an

AdS5 scalar propagator, we will occasionally write it as G̃(5)
∆4

(t, z0, w0), t = −q2. For graviton,

∆4 = d = 4.

Lastly, we mention that, had we been working with a confinement situation: each factor

K̃∆(p2
i , z0) in Eq. (3.21) would be replaced by a normalizable “glueball” wave function, and, the

propagator G̃(5)
∆4

(t, z0, w0) would also be similarly modified. This will be discussed in a separate

publication.

3.3 Impact Representation and Reduction to AdS3

For the near-forward limit where s → ∞ with t fixed, it is easy to show that q± = 0(1/
√

s),

so that q is effectively transverse, t % −q2
⊥. It is therefore convenient to define a 2-dim Fourier

transform

T (1)
4 (s, x⊥ − y⊥) = (1/2π)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥T (1)
4 (s,−q2

⊥)

= g2
s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)K(s, x⊥ − y⊥, z0, w0)K̃∆(p2
2, w0)K̃∆(p2

4, w0)
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where

K(s, x⊥ − y⊥, z0, w0) =
2s2

(2πz0w0)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥G̃(5)
∆4

(−q2
⊥, z0, w0) (3.25)
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Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w + ∆(∆ − d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 − ∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ − ∆13 + d/2 − 1]f ′

S (7.34)

+(∆ − ∆13)(∆ + ∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(

∆ − ∆13

2
,
d − ∆ − ∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to $w → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k + ∆13)Γ(1

2{∆1 + ∆3 − ∆})Γ(1
2{∆ + ∆1 + ∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 − ∆})Γ(k + 1 + 1

2{∆13 + ∆ − d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆ − ∆13).
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1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆ − d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

〈φ∆(z)φ∆(w)〉 = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆ − d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)
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Reduction to AdS-3 at High Energy 
for Near Forward Scattering

Similarly, one has

G̃++,−−(q, z0, w0) =
2

(z0w0)2
G̃(q, z0, w0) (3.21)

It follows that the near forward limit in the high energy, the four-point function can be simply

expressed in a factorizable form:

T (1)
4 (p1, p2, p3, p4) = g2

s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)T
(1)
4 (pi, z0, w0)K̃∆(p2

2, w0)K̃∆(p2
4, w0)

(3.22)

where

T (1)
4 (pi, z0, w0) = s2G̃++,−−(q, z0, w0) =

2s2

(z0w0)2
G̃(q, z0, w0) (3.23)

We will show in the next section that this factorizable form can be generalized in treatiing higher

loops contributions.

It is useful to note that, instead of p1, p2, p3, p4, we can treat T (1)
4 as functions of independent

invariants, s, t and p2
1, p

2
2, p

2
3, p

2
4. We also note that K̃∆(p, z0) is a scalar function, so it depends

only on p2, which is being held fixed at some value of the order 1. As mentioned earlier, for

dilaton, ∆ = 4. Similarly, G̃(q, z0, w0) also depends only on q2. to emphasize that it is an

AdS5 scalar propagator, we will occasionally write it as G̃(5)
∆4

(t, z0, w0), t = −q2. For graviton,

∆4 = d = 4.

Lastly, we mention that, had we been working with a confinement situation: each factor

K̃∆(p2
i , z0) in Eq. (3.22) would be replaced by a normalizable “glueball” wave function, and, the

propagator G̃(5)
∆4

(t, z0, w0) would also be similarly modified. This will be discussed in a separate

publication.

3.3 Impact Representation and Reduction to AdS3

For the near-forward limit where s → ∞ with t fixed, it is easy to show that q± = 0(1/
√

s),

so that q is effectively transverse, t % −q2
⊥. It is therefore convenient to define a 2-dim Fourier

transform

T (1)
4 (s, x⊥ − y⊥) = (1/2π)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥T (1)
4 (s,−q2

⊥)

= g2
s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)K(s, x⊥ − y⊥, z0, w0)K̃∆(p2
2, w0)K̃∆(p2

4, w0)

(3.24)

where

K(s, x⊥ − y⊥, z0, w0) =
2s2

(2πz0w0)2

∫

d2q⊥ei(x⊥−y⊥)·q⊥G̃(5)
∆4

(−q2
⊥, z0, w0) (3.25)
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* momentum transfer q is transverse:

Note that K(s, x⊥ − y⊥, z0, w0) is a function of (x⊥, z0) and (y⊥, w0), i.e., over AdS3. We next

show that this is given by an AdS3 scalar propagator, with conformal dimension ∆2 = ∆4−1 = 3.

Let us recall that an AdS(d+1) scalar propagator satisfies the following scalar equation:

{−∇ + m2}Gd+1)
∆d

(u) = {−
1
√

g
∂M

√
ggMM∂M + m2}G(d+1)

∆d
=

1
√

g
δ(z0 − z′0)δ(x − x′) (3.26)

where ∆d(∆d − d) − m2
d = 0 For d = 4, m2

4 = 0, and ∆4 = 4. where
√

g = z−(d+1)
0 . Go to the

momentum space, we have

{−zd+1
0 ∂z0

z−(d−1)
0 ∂z0

+ q2z2
0 + m2

d}G̃
(d+1)
∆d

= zd+1
0 δ(z0 − z′0) (3.27)

which can be written as, z0 = e−u,

{−∂2
u + (d/2)2 + m2

d + q2z2
0}[(z0w0)

−d/2G̃(d+1)
∆d

] = δ(u − u′) (3.28)

With d = 4 and m2
4 = 0, and ∆4 = 4, we have

{−∂2
u + 4 + q2z2

0}[(z0w0)
−2G̃(5)

∆4
] = δ(u − u′) (3.29)

where (∆4 − 2)2 = 4. For d = 2, we have instead

{−∂2
u + 1 + m2

2 + q2z2
0}[(z0w0)

−1G̃(3)
∆2

] = δ(u − u′) (3.30)

where (∆2 − 1)2 + 1 = m2
2. Comparing these, we see they are equivalent if m2

2 = 3, and

∆2 = ∆4 − 1 (3.31)

In a momentum representation, we have

G̃(5)
∆4

(−q2, z0, w0) = z0w0G̃
(3)
∆2

(−q2, z0, w0) (3.32)

Taking a two-dimensional Fourier transform, we can therefore identify our kernel K(s, x⊥, z0, w0)

with

K(s, x⊥, z0, w0) =
2s2

z0w0
G(3)

∆2
(x⊥, z0, w0) (3.33)

where G(3)
∆2

(x⊥, z0, w0) is the AdS3 propagator with conformal dimension ∆2. This reduction

from AdS5 to AdS3 in high energy is general and has profound implications, which will be

explored further in a separate publication.

Finally, we have

T (1)
4 (s, x⊥) = 2s2g2

s

∫

dz0

z5
0

∫

dw0

w5
0

K̃∆(p2
1, z0)K̃∆(p2

3, z0)
[G(3)

∆2
(x⊥, z0, w0)

z0w0

]

K̃∆(p2
2, w0)K̃∆(p2

4, w0)

(3.34)
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* AdS-3 Propagator:

* Isometry of Euclidean AdS-3 is SL(2C)  ---
the same symmetry group as BFKL kernel



Strong Coupling Pomeron Propagator--

Conformal Limit 
• Spin 2 ------->  J

• Use Complex angular momentum 
reprsentation

• Use J-dependent Dimension: 

• BFKL-cut: 

∆ : 4 → ∆(J) = 2 + [2
√

λ(J − J0)]
1/2 = 2 +

√

j̄ (2.8)

J0 = 2 −
2√
λ

(2.9)

3 One graviton Exchange

We begin by considering the one gravition exchange Witten diagram in Fig. for scalar sources

on the boundary of AdS at xi. The bluk co-ordiantes are written wM = (wµ, w0) where we

reserve µ, ν, .. for the standard 4-d Minkowski or Euclidean co-ordinates after Wick rotation.

Freedman et al., (hep − th/9903196), give the following expression for this diagram,

Igrav(x1, x2, x3, x4)

=
g2
s

4

∫

dz
√

g

∫

dw
√

g TMN (x1, x3, z)GMNM ′N ′(z,w)TM ′N ′
(x2, x4, w) (3.1)

where the bulk to bulk graviton propagator is given by

GMNM ′N ′(z,w) = (∂M∂M ′ u ∂N∂N ′ u + ∂M∂N ′ u ∂N∂M ′ u)G(u) + gMNgM ′N ′H(u) (3.2)

gs is the string coupling, G(u) is the scalar propagator, and H(u) a linear function of G(u). By

symmetry arguments they depend only on the geodisic distance for z = (zµ, z0) to w = (wµ, w0):

u =
(z − w)µ(z − w)µ + (z0 − w0)2

2z0w0
(3.3)

TMN (x, x′, z) is the energy momenut tensor for a scalar particle from x to x′ on the boundary

(see figure).

We find it more convenient to write Feynam rules in momentum space for the 4 flat co-ordinates,

(2π)4δ4(p1 + p2 + p3 + p4)T
(1)
4 (p1, p2, p3, p4) =

∫

Πid
4xie

−ipixiIgrav(x1, x2, x3, x4) (3.4)

Here the superscript for T (1)
4 reminds us that this is the one-graviton exchange contribution to the

four-point amplitude. Since
√

g depends only on the AdS radial variable, e.g., at z,
√

g = z−(d+1)
0 ,

one can carry out the Fourier transform, arriving at a simple “mixed-representation”,

T (1)
4 (p1, p2, p3, p4) =

1

4

∫

dz0
√

g

∫

dw0
√

g T̃MN (p1, p3, z0)G̃MNM ′N ′(q, z0, w0)T̃
M ′N ′

(p2, p4, w0)

(3.5)

3



Spin-Dimension Curve

!1 1 2 3 4 5

0.5

1

1.5

2

2.5

3

∆

λ ! 1

λ " 1

j

Figure 5: Schematic form of the ∆ − j relation for λ ! 1 and λ " 1. The dashed lines show

the λ = 0 DGLAP branch (slope 1), BFKL branch (slope 0), and inverted DGLAP branch

(slope −1). Note that the curves pass through the points (4,2) and (0,2) where the anomalous

dimension must vanish. This curve is often plotted in terms of ∆ − j instead of ∆, but this

obscures the inversion symmetry ∆ → 4 − ∆.

This simple result is related to the intuitive picture of scattering of two highly boosted objects

contracted in the longitudinal direction and follows essentially from the conformal algebraic

structure of AdS3. It is interesting to note that this structure is similar to the weak coupling

one loop n gluon BFKL spin chain operator, HBFKL =
∑n

i=1[H(J2
i,i+1) + H(J̄2

i,i+1)], where the

two body operator is a sum of holomorphic and anti-holomorphic function of the Casimir. To

be exact the operator is defined by its action on two body eigenstates,

H(J2
1,2)Φn,ν = [2ψ(1) − ψ(h) − ψ(1 − h)]Φn,ν (3.11)

with 5

Φn,ν(b1 − b0, b2 − b0) =
[ b1 − b2

(b1 − b0)(b2 − b0)

]iν+(1+n)/2 [ b̄1 − b̄2

(b̄1 − b̄0)(b̄2 − b̄0)

]iν+(1−n)/2
(3.12)

and weight h = iν +(n+1)/2. Here the impact parameters are complex numbers, bi = bi,x + bi,y

for each gluon in the chain.

Presumably the fact that the SL(2,C) representation in the leading strong coupling Hamiltonian

obeys J̄2 = J2 with eigenstates independent of n = h− h̄ reflects the nearly point-like property

5As pointed out in Ref. BPST, in comparing with our strong coupling result, the convention used requires a

translation of ν → ν/2.
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Strong Coupling Pomeron Propagator--
Comparison with BFKL

• AdS-3 propagator:

• BFKL kernel:

This is just a realization of the fact that boosts M+− commute with all the generators of SL(2, C)

in the conformal group. (IS THIS TRUE?) As a consequence the Euclidean AdS3 isometries, it

is not surprising that this converts the Regge problem into the wave equation for a propagator

in Euclidean AdS3. This connection will be exploited in detail below. (Need to state things

better.)

We note first that the eigenfunctions,

ψν(u, x⊥ − x′
⊥) =

iν

πz

[
z

z2 + (x⊥ − x′
⊥)2

]1+iν

(3.9)

for Hψ = Eφ, E = 4 + ν2, are, upto this rescaling by this factor e−u, the bulk to boundary

propagator for AdS3. To be precise, after conjugating Eq. (??) with e−u and eu, it leads to

a scalar wave equation in AdS3 with an AdS mass.3 It follows that the Pomeron propagator,

K(j, x⊥ − x′
⊥, z, z′), other than a scaling factor of 1/zz′, is the AdS3 scalar bulk-to-bulk Greens

function, 〈φ∆3(x⊥, z)φ∆3(x
′
⊥, z′)〉, with conformal dimension ∆3 = ∆+(j) − 1, where ∆+(j) is

the root of ∆(∆ − 4) = 2
√

λ(j − 2), with ∆+(j) > 2. The structure of this ∆ − j relation 4 is

illustrated in Fig. ??.

A standard analysis then leads to

K(j, x⊥ − x′
⊥, z, z′) =

1

4πzz′

[
y +

√
y2 − 1

](2−∆+(j))

√
y2 − 1

, (3.10)

where the cordal distances in AdS3 is

y ± 1 =
(z ∓ z′)2 + (x⊥ − x′

⊥)2

2zz′

With ∆+(j) > 2, this propagator satisfies Dirichlet boundary conditions, G → 0 when z → 0

and z → ∞. We note that ∆+(j) can also be written as ∆+(j) = 2+
√

c(j − j0), where c = 2
√

λ.

The BFKL singularity j0 corresponds to the minimum of the j(∆) at ∆ = 2.

3Note that a general scalar AdSd+1 bulk to boundary propagator, (D’Hoker and Freedman, hep-th/9811257),

is 〈φ∆(x, z)φ∆(x0, 0)〉 ≡ K∆(x, z; x0, 0) = C∆

h

z
z2+(!x−!x0)2

i∆
→ zd−∆δd(#x − #x0) as z → 0 with ∆ = d/2 ±

p

d2/4 + m2 and C∆ = Γ(∆)/(πd/2Γ(∆ − d/2)), m being the AdS mass. By examining Eq. (??), where j enters

formally as a part of AdS mass squared, we find that the Pomeron kernel satisfies the same scalar wave equation,

with d = 2 and ∆3 = 1+
√

1 + m2, m2 = 3− 2
√

λ(2− j) = −1 +2
√

λ(j − j0). Here j0 = 2− 2/
√

λ is the location

of the BFKL branch point in the strong coupling limit found in Ref. BPST.
4There is a more general relation between 4-dim conformal dimension ∆ and spin j. Here, we explore this

relation in the strong coupling in the region near j = 2. The deviation of ∆+(j) from the canonical dimension

∆(0) = 2 + j yields the anomalous dimension. Traditional weak coupling analysis can be understood as exploring

the structure of this curve either by perturbing around j = 1 (BFKL) or around ∆ = j + 2 (DGLAP). See

Ref. BPST for further discussion. Recently, the opposite limit of ∆ and j → ∞ has been studied intensively in

establishing AdS/CFT for N = 4 YM. Ref. XYZZYX.
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This simple result is related to the intuitive picture of scattering of two highly boosted objects

contracted in the longitudinal direction and follows essentially from the conformal algebraic

structure of AdS3. It is interesting to note that this structure is similar to the weak coupling

one loop n gluon BFKL spin chain operator, HBFKL =
∑n

i=1[H(J2
i,i+1) + H(J̄2

i,i+1)], where the

two body operator is a sum of holomorphic and anti-holomorphic function of the Casimir. To

be exact the operator is defined by its action on two body eigenstates,

H(J2
1,2)Φn,ν = [2ψ(1) − ψ(h) − ψ(1 − h)]Φn,ν (3.11)

with 5

Φn,ν(b1 − b0, b2 − b0) =
[ b1 − b2

(b1 − b0)(b2 − b0)

]iν+(1+n)/2 [ b̄1 − b̄2

(b̄1 − b̄0)(b̄2 − b̄0)

]iν+(1−n)/2
(3.12)

and weight h = iν +(n+1)/2. Here the impact parameters are complex numbers, bi = bi,x + bi,y

for each gluon in the chain.

Presumably the fact that the SL(2,C) representation in the leading strong coupling Hamiltonian

obeys J̄2 = J2 with eigenstates independent of n = h− h̄ reflects the nearly point-like property

of a string in this limit. In strong coupling one should visualize the Pomeron as a tight binding

(or mean field) description of the exchange of an infinite number of gluonic “string bits”. (Blaa

Blaa make this more precise in a future article?)

An important observation for the simplicity of Eq. (??) is the fact that the propagator vanishes

at large separation in impact parameter space as a power,

K(j, x⊥ − x′
⊥, z, z′) ∼ [(x⊥ − x′

⊥)2]1−∆+(j) (3.13)

where we have used the fact that ∆+(j) = 2 +
√

c(j − j0). As a function of j it contains a

branch point at j = j0, the BFKL singularity in the strong coupling limit. For j = j0,

K(j0, x⊥ − x′
⊥, z, z′) ∼ 1

(x⊥ − x′
⊥)2

, (3.14)

which simply reflects the dominance of a massless exchange at large impact separation.

The remarkable simplicity of Eq. (??) will be modified when confinement is taken into account.

In particular, it is often not possible to solve for the Pomeron kernel in closed analytic form.

Furthermore, we expect the feature of power behavior for large impact separation will change

dramatically when confinement is taken into account. This in turn would have important con-

sequence on saturating the Froissart bound. In order to explore methods amenable to the case

5As pointed out in Ref. BPST, in comparing with our strong coupling result, the convention used requires a

translation of ν → ν/2.
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This is just a realization of the fact that boosts M+− commute with all the generators of SL(2, C)

in the conformal group. (IS THIS TRUE?) As a consequence the Euclidean AdS3 isometries, it

is not surprising that this converts the Regge problem into the wave equation for a propagator

in Euclidean AdS3. This connection will be exploited in detail below. (Need to state things

better.)

We note first that the eigenfunctions,

ψν(u, x⊥ − x′
⊥) =

iν

πz

[
z

z2 + (x⊥ − x′
⊥)2

]1+iν

(3.9)

for Hψ = Eφ, E = 4 + ν2, are, upto this rescaling by this factor e−u, the bulk to boundary

propagator for AdS3. To be precise, after conjugating Eq. (??) with e−u and eu, it leads to

a scalar wave equation in AdS3 with an AdS mass.3 It follows that the Pomeron propagator,

K(j, x⊥ − x′
⊥, z, z′), other than a scaling factor of 1/zz′, is the AdS3 scalar bulk-to-bulk Greens

function, 〈φ∆3(x⊥, z)φ∆3(x
′
⊥, z′)〉, with conformal dimension ∆3 = ∆+(j) − 1, where ∆+(j) is

the root of ∆(∆ − 4) = 2
√

λ(j − 2), with ∆+(j) > 2. The structure of this ∆ − j relation 4 is

illustrated in Fig. ??.

A standard analysis then leads to

K(j, x⊥ − x′
⊥, z, z′) =

1

4πzz′

[
y +

√
y2 − 1

](2−∆+(j))

√
y2 − 1

, (3.10)

where the cordal distances in AdS3 is

y ± 1 =
(z ∓ z′)2 + (x⊥ − x′

⊥)2

2zz′

With ∆+(j) > 2, this propagator satisfies Dirichlet boundary conditions, G → 0 when z → 0

and z → ∞. We note that ∆+(j) can also be written as ∆+(j) = 2+
√

c(j − j0), where c = 2
√

λ.

The BFKL singularity j0 corresponds to the minimum of the j(∆) at ∆ = 2.

3Note that a general scalar AdSd+1 bulk to boundary propagator, (D’Hoker and Freedman, hep-th/9811257),

is 〈φ∆(x, z)φ∆(x0, 0)〉 ≡ K∆(x, z; x0, 0) = C∆

h

z
z2+(!x−!x0)2

i∆
→ zd−∆δd(#x − #x0) as z → 0 with ∆ = d/2 ±

p

d2/4 + m2 and C∆ = Γ(∆)/(πd/2Γ(∆ − d/2)), m being the AdS mass. By examining Eq. (??), where j enters

formally as a part of AdS mass squared, we find that the Pomeron kernel satisfies the same scalar wave equation,

with d = 2 and ∆3 = 1+
√

1 + m2, m2 = 3− 2
√

λ(2− j) = −1 +2
√

λ(j − j0). Here j0 = 2− 2/
√

λ is the location

of the BFKL branch point in the strong coupling limit found in Ref. BPST.
4There is a more general relation between 4-dim conformal dimension ∆ and spin j. Here, we explore this

relation in the strong coupling in the region near j = 2. The deviation of ∆+(j) from the canonical dimension

∆(0) = 2 + j yields the anomalous dimension. Traditional weak coupling analysis can be understood as exploring

the structure of this curve either by perturbing around j = 1 (BFKL) or around ∆ = j + 2 (DGLAP). See

Ref. BPST for further discussion. Recently, the opposite limit of ∆ and j → ∞ has been studied intensively in

establishing AdS/CFT for N = 4 YM. Ref. XYZZYX.
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Strong Coupling Pomeron Propagator--with 
Confinement

of a string in this limit. In strong coupling one should visualize the Pomeron as a tight binding

(or mean field) description of the exchange of an infinite number of gluonic “string bits”. (Blaa

Blaa make this more precise in a future article?)

An important observation for the simplicity of Eq. (3.10) is the fact that the propagator vanishes

at large separation in impact parameter space as a power,

K(j, x⊥ − x′
⊥, z, z′) ∼ [(x⊥ − x′

⊥)2]−1−
√

c(j−j0) (3.13)

where we have used the fact that ∆+(j) = 2 +
√

c(j − j0). As a function of j it contains a

branch point at j = j0, the BFKL singularity in the strong coupling limit. For j = j0,

K(j0, x⊥ − x′
⊥, z, z′) ∼ 1

(x⊥ − x′
⊥)2

, (3.14)

which simply reflects the dominance of a massless exchange at large impact separation.

The remarkable simplicity of Eq. (3.10) will be modified when confinement is taken into ac-

count. In particular, it is often not possible to solve for the Pomeron kernel in closed analytic

form. Furthermore, we expect the feature of power behavior for large impact separation will

change dramatically when confinement is taken into account. This in turn would have important

consequence on saturating the Froissart bound. In order to explore methods amenable to the

case with confinement, we develop various alternative representations for our conformal kernel

in Appendix B. We show that, in a Fourier representation, the conformal kernel can also be

expressed simply as

K(j, x⊥ − x′
⊥, z, z′) =

1

(2π)2

∫
dq⊥eiq⊥·(x⊥−x′

⊥)G(j, q⊥, z, z′)

=
1

(2π)2

∫
dq⊥eiq⊥·(x⊥−x′

⊥)I√
j̄
(qz<)K√

j̄
(qz>) , (3.15)

where z< = min (z, z′) and z> = max (z, z′), 0 < z, z′ < ∞, q = |q⊥|, and Iα and Kα are

modified Bessel functions. For notational simplicity, we have also introduced j̄ = 2
√

λ(j − j0) =

(∆+(j) − 2)2, or simply
√

j̄ = ∆+(j) − 2. This simple result can be directly related to the

spectral representation given in Ref. BPTS

G(j, q⊥, z, z′) =

∫
dq⊥e−iq⊥·(x⊥−x′

⊥)K(j, z, z′ , x⊥ − x′
⊥)

=
1

π2

∫ ∞

−∞
dν(ν sinh πν)

Kiν(qz)K−iν(qz′)

ν2 + (2
√

λ)(j − j0)
, (3.16)

which explicitly exhibits the analytic structure in j: It is real for j > j0 and has a branch point

at j = j0, the BFKL singularity. An alternative spectral representation is

G(j, t, z, z′) =

∫ ∞

0
dk k

J√
j̄
(kz)J√

j̄
(kz′)

k2 − t
(3.17)
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Spectral Rep. in Conformal limit:

particular, all poles will lie to the right of tcr, the value when the leading Regge trajectory

crosses the BFKL cut. Furthermore, G no longer has a singularity at t = 0, as is the case in the

conformal limit.

The absence of a singularity at t = 0 can be understood by a careful examination of the

representation given by Eq. (??). This is explained in Appendix C. Instead, we shall obtain

below a spectral representation in t for the propagator G(j, t, z, z′), exhibiting its singularity

structure in t explicitly.

Treating Eq.(??) as a spectral problem in t, with j > j0 fixed at a real value, one needs to deal

with the following generalized eigenvalue problem

{−∂2
u + B(u) + 2

√
λ(j − 2)}ψν(u) = νe−A(u)ψν(u) (3.29)

Due to confinement, the spectrum is discrete, νn, n = 1, 2 · · · , where n is the label for the nth

trajectory in Fig. ??, counting from the left. Once the spectrum is found, it directly leads to a

representation for G

G(j, t, z, z′) =
∑

n

ψn(z)ψ∗
n(z′)

tn(j) − t
(3.30)

where we have replaced νn(j) by tn(j). Inverting the relation tn(j) = t directly leads to j = αn(t)

for the nth Regge trajectory function. Let us focus on the leading trajectory, α1(t), which will

provide the location for the lowest singularity in t. For j > j0, it follows that t1(j) > tcr. That

is, from Eq. (??), all pole of G(j, t, z, z′) lie to the right of tcr. Normalized wave-functions and

the completeness relation are given in Appendix C.

Let us end this section by noting that, given this spectral representation, Eq. (??), it is also

simple to move back to an impact representation. Using the identity

∫
dq⊥

eiq⊥x⊥

tn + q2
⊥

= 2πK0(
√

tnx) (3.31)

where x = |x⊥|, one arrives a useful representation for the Pomeron kernel, in the case of a

confining background,

K(j, x⊥, z, z′) = (1/2π)
∞∑

n=1

ψn(z)ψ∗
n(z′)K0(

√
tn(j)x) (3.32)

We shall explore the consequence of this representation in the next section.
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Spectral Rep. with Confinement

Eq. (3.26) must be modified if there exists solutions to the homogeneous equations satisfying

both boundary conditions at z = 0 and at z = z0. For the case of hard-wall, it has been shown

in Ref. BPST that such discrete state does not exist for t < 0 since the confining potential is

repulsive. This corresponds to the fact that, for t < 0, the j-plane singularity consists of nothing

but a branch point at j = j0. However, for t > 0, the confining potential turns attractive,

discrete solutions can emerge through the BFKL branch cut as t increases and positive. These

features are illustrated in Fig. 6. At sufficiently large value of t, there exist a sequence of parallel

j!2

t

Figure 6: The analytic behavior of Regge trajectories in the hard-wall model, showing the

location of the bound-state poles at j = 2 and the continuum cut at j = j0 = 2 − 2/
√

λ into

which the Regge trajectories disappear. The lowest Regge trajectory intersects the cut at a small

positive value of t. At sufficiently large t each trajectory attains a fixed slope, corresponding to

the tension of the model’s confining flux tubes.

Regge trajectories. Denote tcr as the value of t when the leading trajectory crosses the value

j = j0. The j-plane singularity structure is illustrated in Fig. XXX, for −∞ < t < tcr, and

for two values of t where tcr < t < ∞. The spectral properties in j has been fully explored in

Ref. BPST, and a spectral presentation analogous to Eq. (8.7) for the case of hard-wall was

also obtained. For completeness, it is summarized here in Appendix C.

An important change in dealing with confined background can be gleamed from Fig. 6. At

fiex j > j0, the propagator G(j, t, z, z′), as a function of t, consists of an infinite set poles, with

locations, (t1(j), t2(j), · · · ), determined by each trajectory crossing a particular value of j. In

particular, all poles will lie to the right of tcr, the value when the leading Regge trajectory

crosses the BFKL cut. Furthermore, G no longer has a singularity at t = 0, as is the case in the

26

Ref. Brower, Polchinski, Strassler, Tan, 
het-0603115



Higher Order Diagrams:

The Born term in both weak and strong coupling violates this bound s−1ImAelastic(s, t) ! sj0−1

with 0 < j0 − 1 < 1. Moreover the n-th loop term in the perturbative sum gives rise stronger

violations of order s(n+1)j0−1 up to log corrections. A fundamental question is what is the

physical mechanism for restoring this bound and at what energy scale. Here we investigate how

the bound is restored within the eikonal approximation. The eikonal sum is a resummation of

the leading high energy limit of the perturbative terms.

Add stuff on impact parameter, the multi-channel interpretation of ACV, gravitational domi-

nance of ’tHooft, etc.

The purpose of this section is to present a heuristic review of the eikonal expansion in a form

that can be readily generalized to high energy limit of diffractive scattering via string/gauge

duality. There is a vast eikonal literature with special cases treated rigorously and a variety of

formal derivations. We choose here to present details on the first loop contribution to illustrate

the critical issues and appeal to intuitive arguments for its generalization to the full sum. We

will use the formalism of an on shell Reggeon vertex in Ref. [?] in this context to re-derive the

eikonal expansion of Amati, Ciafaloni and Veneziano for strings in flat space. This will allow us

to follow the same logic progression of Ref. [?] to extend the analysis to the Pomeron for string

scatting in Anti-de Sitter space.

Under certain restrictions (to be dealt with in more detail later) the sum over ladder diagram for

the t-channel exchange of a elementary field of spin j or Reggeon gives the dominant high energy

contribution. (see Fig. 4) Good figure. Might want to modify the last figure by having a Pomeron

line all the way across. In that case the full eikonal sum is expressed by exponentiating the high

p

p

+ +

++

p

p

Figure 1: xxxx
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Eikonal Sum:

Fan Diagrams:

AdS-3 Pomeron Calculus:
Warning: Breaking Conformal Invariance--
Physics changes when confinement is 

taken into account !!



Gauge/String Duality provides 
a robust framework for 
concrete calculations and 

predictions!!
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