Exclusive Central Production in Proton-Proton Collisions: from Glueballs to Higgs Bosons

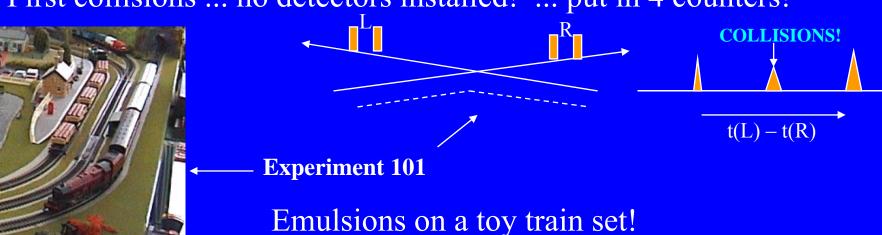
Mike Albrow (Fermilab)

- 1) Background: elastic and hard diffractive scattering
- 2) Single Diffractive Excitation of High Masses (Jets, W,Z) CDF/D0
- 3) Central Exclusive Production:

Higgs,
$$\gamma\gamma$$
, e^+e^- , $\mu^+\mu^-$, $\chi_c(\chi_b)$, $Jet + Jet$

- 4) LHC: Study of Higgs (*iff*) through p+H+p, WW and ZZ.
- 5) FP420: R&D project to make this happen.

Compare & Contrast ISR & LHC


ISR = Intersecting Storage Rings started 1971 First colliding proton beams.

p(31 GeV/c) p(31 GeV/c) p(28 GeV/c)

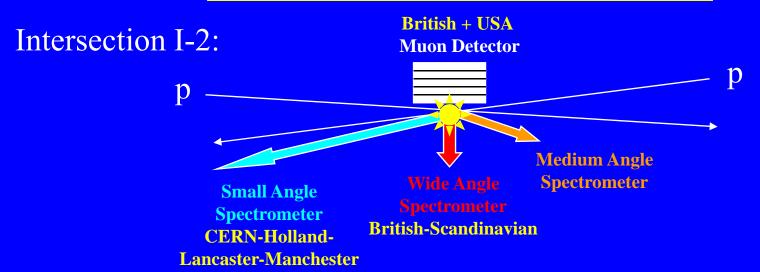
Equivalent to beam of 2110 GeV + fixed p target "Into the realm of cosmic rays!"

First collisions ... no detectors installed! ... put in 4 counters!

2006: LHC = Large Hadron Collider

 $\equiv 10^8 \, \text{GeV} = 10^{17} \, \text{eV}$

7 TeV = 7000 GeV


7 TeV = 7000 GeV

cf. cosmic cut off $\approx 10^{20}$ eV

ATLAS being installed. ~ 2000 physicists! One of four experiments.

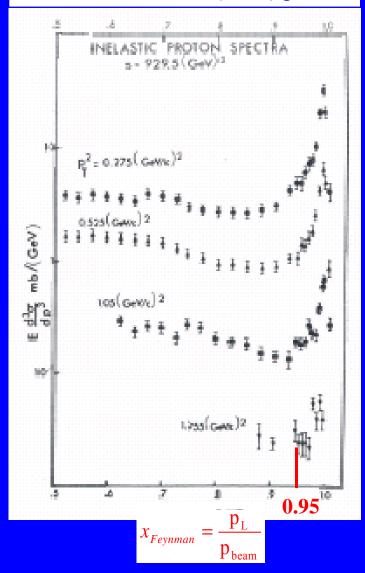
Meanwhile, back at the ISR in 1972 ...

Nobody knew what to do with complete multi-particle ($\sim 10+$) final states. Study "inclusive" particle production: pp $\rightarrow e, \mu, \pi, K, p \dots +$ "anything".

Muon Detector: Looking for W(\sim 3-4 GeV!) ... missed J/ψ Wide Angle Spectrometer: co-discovered high p_T (quark scattering) Small Angle Spectrometer: discovered high mass (10 GeV) diffraction

Small Angle Spectrometer: Forward proton spectra

$$x_{Feynman} = \frac{p_{L}}{p_{beam}}$$


Feynman scaling:

$$E \frac{d^3 \sigma}{dp^3} = f(x_F, p_T) \text{ not } \sqrt{s}$$

Discovery of high-x, scaling peak

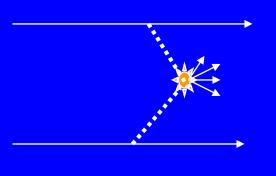
M up to about 14 GeV at ISR 440 GeV at Tevatron 3100 GeV at LHC

MGA et al., NP**B54** (1973) p.6



Central Diffractive Excitation

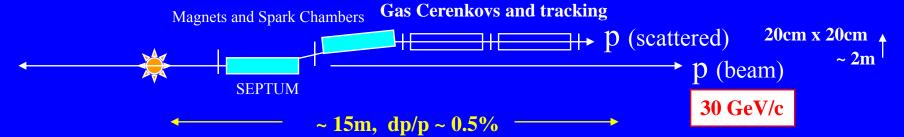
Theoretically, if:


happens, so should:

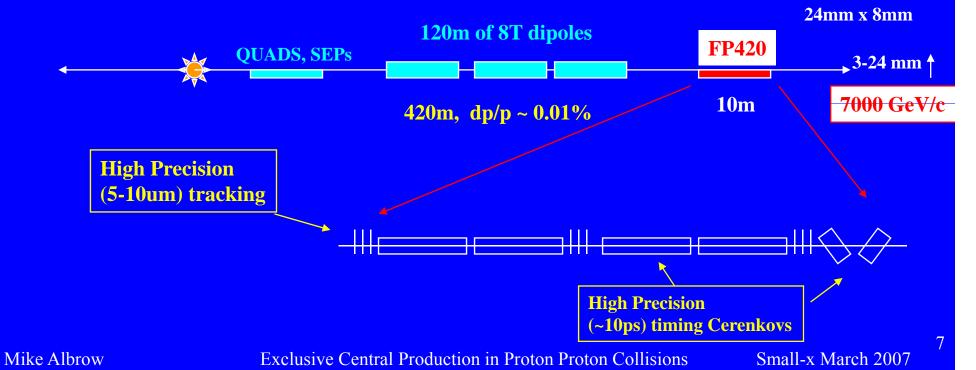
.. both protons coherently scattered

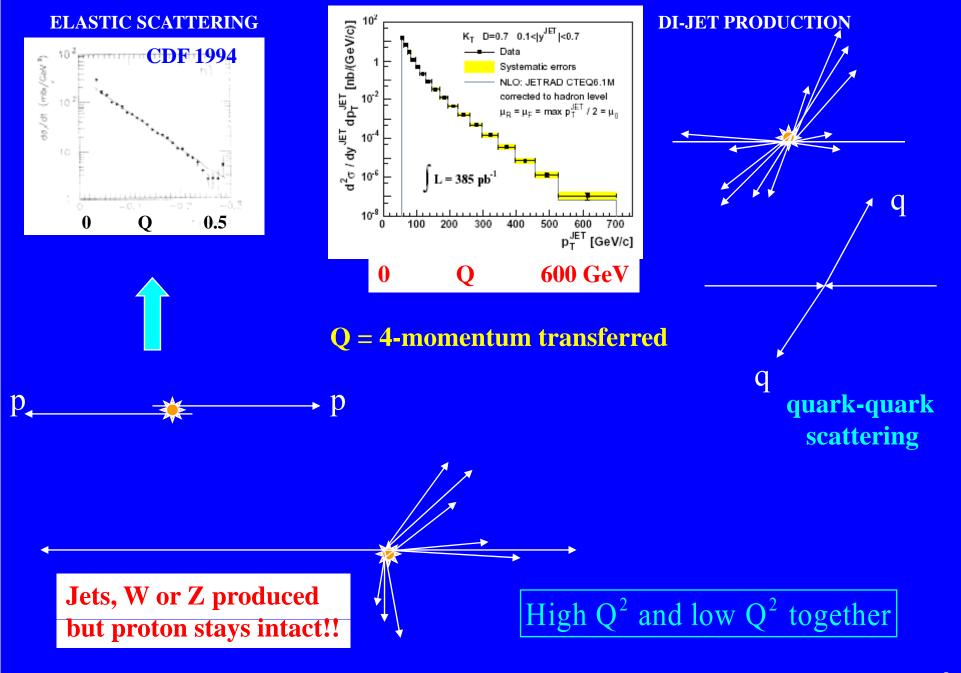
M up to about 3 GeV at ISR

100 GeV at Tevatron
700 GeV at LHC

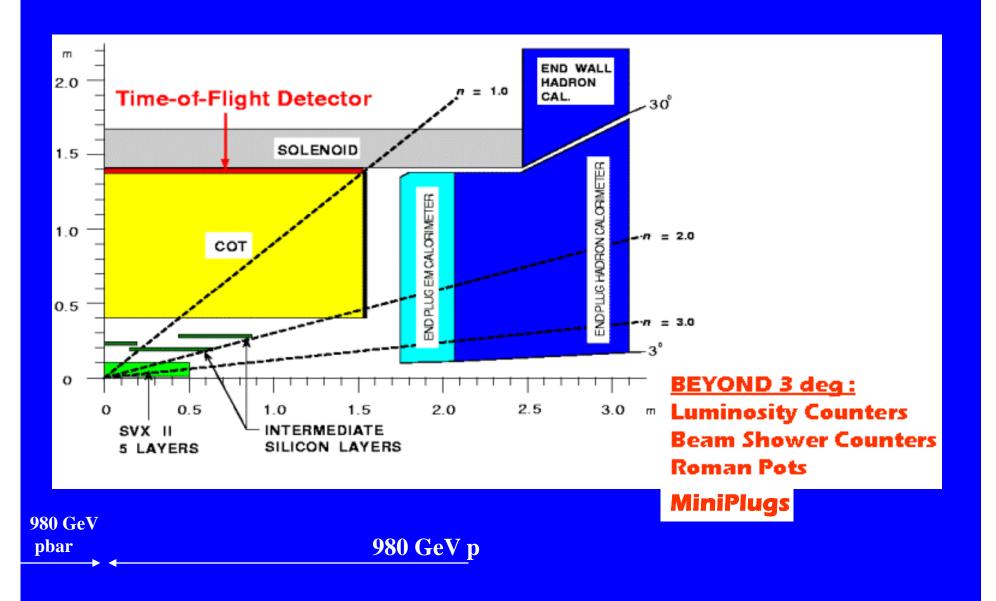

Exchanged 4-momentum must have no electromagnetic charge or strong charge (colour), spin >=1

 γ or g(+g,gg)Central state Quantum Numbers restricted

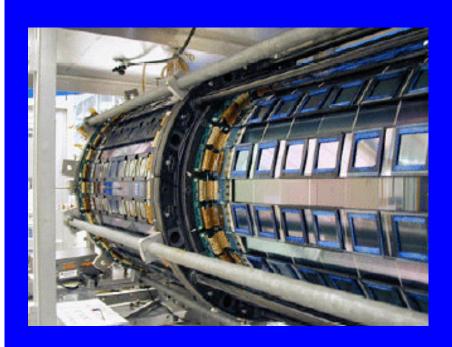

"Vacuum Excitation"


Forward Proton Spectrometers: ISR → LHC

ISR (1971)



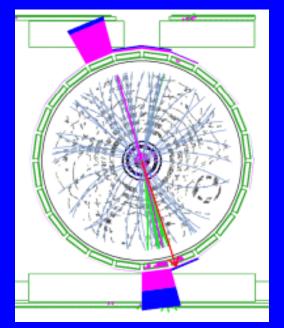
LHC (2009?)

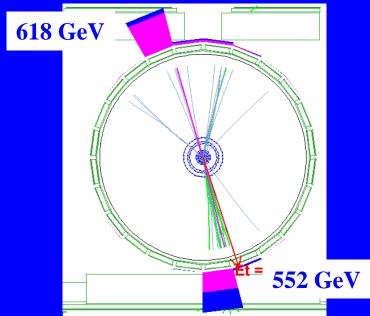


CDF Detector at Fermilab Tevatron

Central tracking: Silicon strips & Drift Chamber

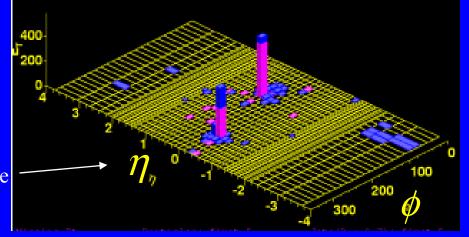
~ 720,000 strips, 25um with 50um readout


Surrounded by lead/iron scintillator sandwich calorimeter for energy measurement


Drift chamber
96 layers → 30,240 s.wires
40 um gold-plated tungsten
ADC and TDC each end
Resolution ~ 150 um/wire

Highest Energy Jets probe smallest distances

All hits/tracks

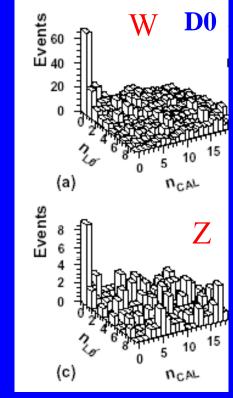


tracks pT > 2 GeV/c

$$\eta = -\ln \tan \left(\frac{\theta}{2}\right)$$

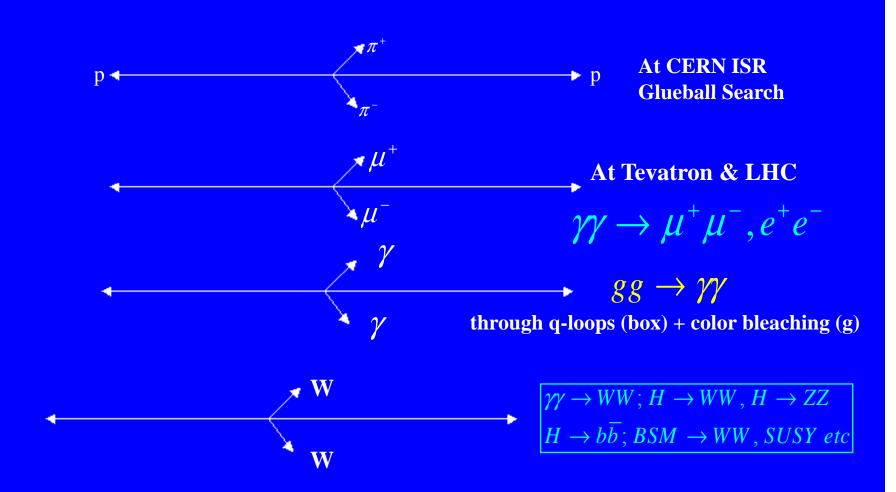
~log polar angle

~ 3×10⁻⁴ × proton size (quarks "point-like")


Diffractive W and Z Production

W produced but p "stays intact" CDF:

$$\frac{\text{Diff. W}}{\text{Non-Diff W}} = (1.15 \pm 0.55)\%$$


D0 sees diffractive W and Z all consistent with 1% diff./ND

$$\eta(LO) = 2.3 - 4.3$$
 $\eta(CAL) = 3.0 - 5.2$

Central Exclusive Production

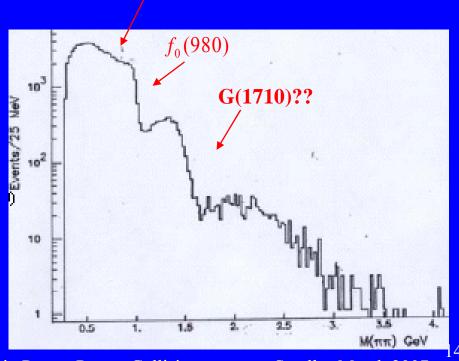
$pp \rightarrow p$ X p where X is a simple system completely measured

Low Mass Central Exclusive Production

ISR
$$\sqrt{s} = 63 \text{ GeV}$$

 $p \leftarrow \frac{\pi}{\pi}$ + nothing else

Search for "Glueballs" $\{gg\}$ as distinct from $\{q\overline{q}\}$


Structures not well understood beyond f(980).

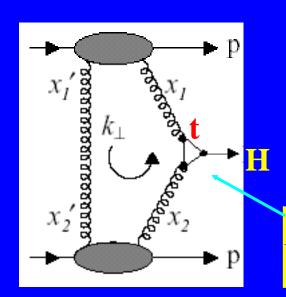
Not studied at higher \sqrt{s}

$$\alpha\alpha \rightarrow \alpha + \pi^{+}\pi^{-} + \alpha$$

coherence!

No ρ , broad $\sigma(600)$?

Central Exclusive Production of Higgs Bosons


Gluon-gluon fusion: main channel for H production.

Another gluon-exchange can cancel color, even leave p intact.

$$pp \rightarrow p + H + p$$

Theoretical uncertainties in cross section.

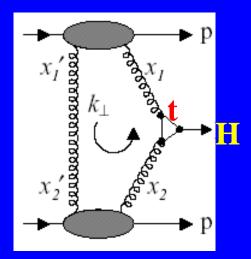
⇒Probably $\sigma(SMH) < 0.1$ fb at Tevatron, not detectable, but may be possible at LHC (higher L and σ = 1-10 fb?)

LHC (2-3 years) $\sim 30/\text{fb}$

Theory can be tested, low x gluonic features of proton measured with exclusive $\gamma\gamma$, χ_c^0 and χ_b^0 production.

u-loop : γγ c-loop : $χ_c^0$

b-loop: χ_b^0 t-loop: H


Hadrons with same quantum numbers as Higgs.

Central Exclusive Production of Higgs

Higgs has vacuum quantum numbers, vacuum has Higgs field. So pp \rightarrow p+H+p is possible in principle.

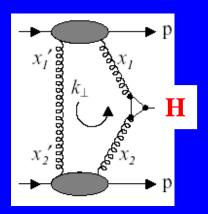
Allowed states:

 $J \ge 2$ strongly suppressed at small p angle (t)

If measure p's:

4-vectors

$$M_{CEN} = \sqrt{(p_1 + p_2 - p_3 - p_4)^2} \longrightarrow \sigma(M_H) \approx 2 \text{ GeV per event}$$
Even for $H \to W^+W^- \to l^{\pm}vJJ$

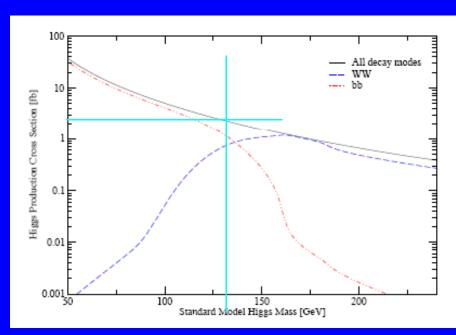

MGA+Rostovtsev: hep-ph/0009336

Aim: be limited by incoming beam momentum spread $\frac{O_p}{I} \approx 10^{-4} = 0.7 \text{ GeV}$ {& can even that be reduced?}

$$\frac{\sigma_p}{p} \approx 10^{-4} = 0.7 \text{ GeV}$$

What is exclusive H cross section?

$$\sigma[pp \rightarrow p + H + p](M_H), \sqrt{s} = 14 \text{ TeV}$$


Calculation involves:

gg \rightarrow H (perturbative, standard, NLO) Unintegrated gluon densities $g(x_i).g(x_i')$

Prob.(no other parton interaction) ("Gap survival")

Proton form factor

Prob.(no gluon radiation → no hadrons) *Sudakov Suppression*

Durham Gp: Khoze, Martin, Ryskin, Stirling

σ ~ 3 fb (M(H)=130 GeV)

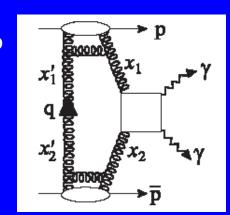
"factor ~ 3 uncertainty"

 \rightarrow 33 fb^-1 \rightarrow 100 Ae events (Ae = acceptance, efficiency)

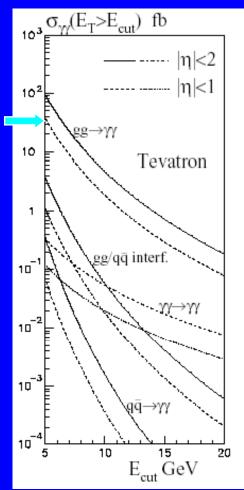
But other estimates differ by "large" amounts!

Need to calibrate theory!

Exclusive Theory Calibration: Exclusive 2-Photon


MGA et al. (2001) hep-ex/0511057

38 fb


Khoze, Martin and Ryskin, hep-ph/0111078, Eur.Phys.J. C23: 311 (2002) KMR+Stirling hep-ph/0409037

QCD diagram identical to pHp

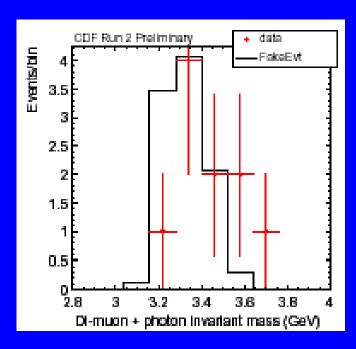
 $M(\gamma\gamma) \sim 10 - 20 \text{ GeV}$ $x_1, x_2 \text{ similar}, Q^2 \text{ lower}$ $top \rightarrow u, c \text{ (mainly)}$

Tevatron

~ 40 events per fb⁻¹ with $p_T(\gamma) > 5$ GeV/c & $|\eta| < 1.0$

Claim factor \sim 4 uncertainty; Correlated to p+H+p

 $\gamma\gamma \rightarrow \gamma\gamma \& q\overline{q} \rightarrow \gamma\gamma$ much smaller

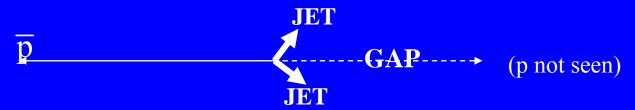

Exclusive χ_c search: $p \overline{p} \rightarrow p \quad \chi_c \quad \overline{p}$

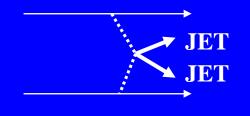
Predictions for Tevatron ~ 600 nb (~ 20 Hz!) Angela Wyatt study (but she left!)

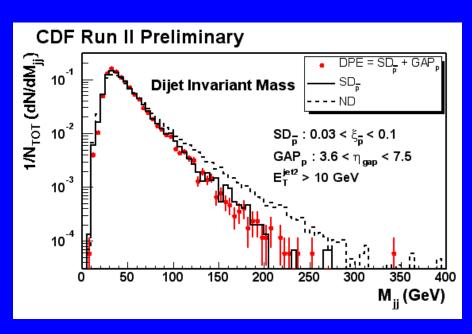
In reality: BR(
$$\chi_c^o \to J/\psi \gamma \to \mu^+ \mu^- \gamma$$
)

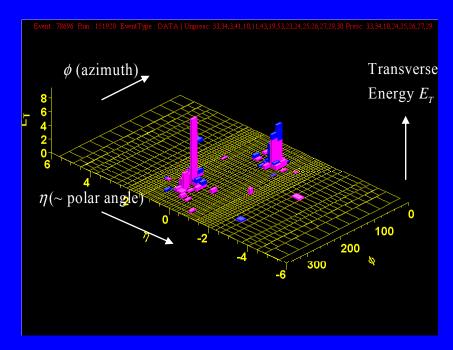
- \times no other interaction \times acceptance(trig)
- \Rightarrow few pb (1000's in 1 fb⁻¹)

Difficulty is soft photons, and "background" From photoproduction: $\gamma + IP \rightarrow J/\psi$



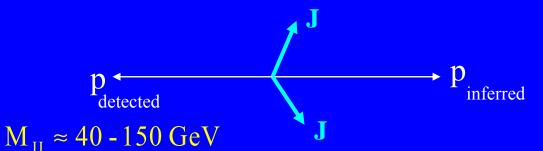

Candidate events


{Measuring forward p \rightarrow central quantum numbers 2+ forbidden at t=0 for $q\bar{q}$ state}


 $I^G J^P = 0^+ 0^+ \leftarrow$ Isotopic spin, spin, G-parity, parity same as Higgs boson

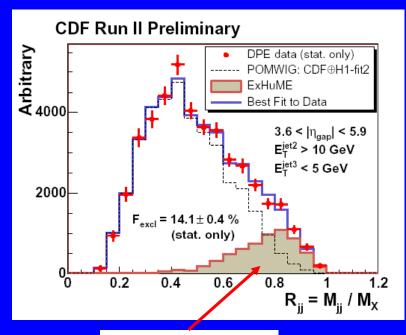
Double Diffractive Di-Jets in CDF

Jet <ET> spectra ~ same in SD and DPE


"Almost" exclusive di-jet, Two jets and nothing else

$$\frac{M_{JJ}}{M_{CEN}} > 0.8$$

CDF Search for Exclusive Dijets (2 central jets + "nothing")


Pc/incl

$$R_{JJ} = \frac{M_{JJ}}{M_X} \approx 1.0$$

CDF Run II Preliminary

 M_x = total central mass

DPE data (SVT)

Systematic Uncertainty

ExHuME: MC with exclusive di-jets.

Cross section comparison not yet done

Apparent b-jet suppression as they become exclusive ? (Theoretically → 0 as Rjj → 1, Jz=0 rule) Greatly reduces QCD background

Exclusive 2-photon Search in CDF

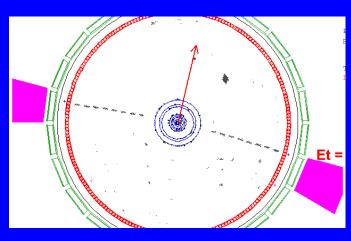
$$p\overline{p} \rightarrow p + \gamma \gamma + \overline{p}$$

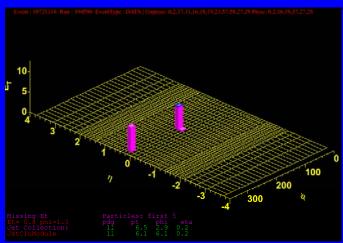
Cannot detect protons. Need to look for $\gamma\gamma$ + nothing. Trigger on 2 EM4 showers + forward BSC1veto. $(5.4 < |\eta| < 5.9)$ Require all calorimetry and Beam Shower Counters $(-7.4 < \eta < +7.4)$ in pedestals except 2 EM showers > 5 GeV. (1.2 mrad)

Can only use events with no other collisions in bunch crossing.

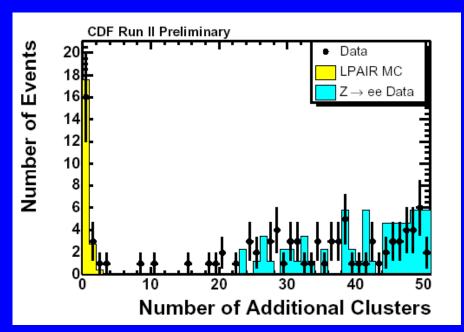
$$\rightarrow$$
 "exclusive efficiency" = 0.086

$$\sim 2.10^6$$
 triggers in 532 pb⁻¹delivered, $L_{effective(si)} = 46 \text{ pb}^{-1}$

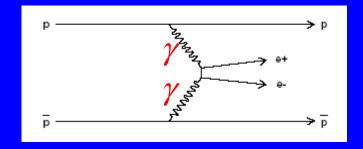

19 events have 2 EM showers with


$$E_T > 5 \text{ GeV}$$
 and $|\eta| < 2.0 + \text{nothing else}$

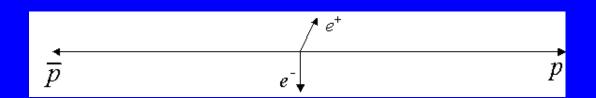
No track requirements yet ...


16 events were like this:

$$e^+e^-$$
: $\Delta \phi = 180^0 \pm 2^0$
 $M(e^+e^-)10 \rightarrow 38 \text{ GeV}$
 $\Delta p_T \text{ small } (\cong \text{ resolution})$



Different fits \rightarrow "exclusivity background" under 0 peak 0.3 ± 0.1



QED process: YY collisions!

Monte Carlos: LPAIR, GRAPE

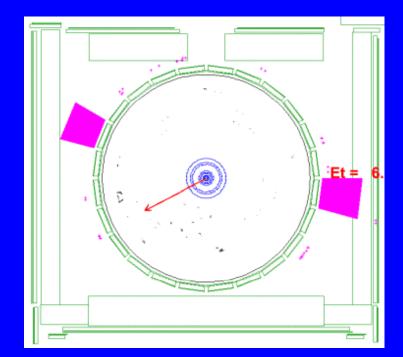
Observation of Exclusive Electron-Positron Production in Hadron-Hadron Collisions

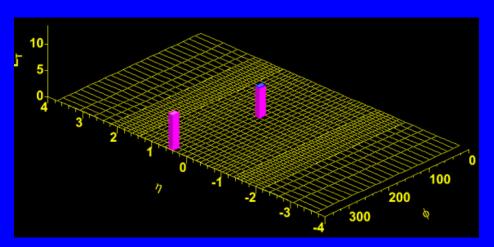
PRL 98, 112001 (2007) hep-ex/0611040

16 events observed
$$E_{\rm T}(e^{\pm}) > 5 \text{ GeV}; |\eta(e^{\pm})| < 2.0$$

Estimated background = 1.9 ± 0.3

(mostly p-dissociation) \Leftarrow all products $|\eta| > 7.4$

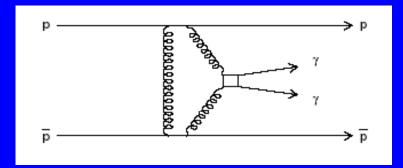

$$\sigma_{MEAS.} = 1.6^{+0.5}_{-0.3} \text{ (stat)} \pm 0.3 \text{ (syst) pb}$$


$$p\text{-value} = 1.3 \times 10^{-9} (\equiv 5.5\sigma)$$

QED: LPAIR Monte Carlo:
$$\sigma_{\text{QED}} = (1.711 \pm 0.008) \text{ pb}$$

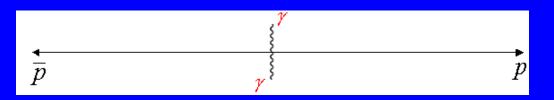
(Excellent agreement gives confidence in technique)

3 events were like this:



 $\gamma \gamma / \pi^o \pi^o$: $\Delta \phi > 175^0$ $M (\gamma \gamma / \pi^o \pi^o) 10 \rightarrow 12 \text{ GeV}$ $\Delta E_T \text{ small}$

QCD +**QED** process


$$gg \rightarrow \gamma \gamma$$

ExHuME Monte Carlo James Monk & Andy Pilkington (MCR)

Exclusive W Production in Hadron-Hadron Collisions

Draft with CDF

Exclusive $\gamma\gamma$ pairs

3 candidates observed $E_T(\gamma) > 5 \text{ GeV}; |\eta(\gamma)| < 1.0$

Actually 2 events are good $\gamma\gamma$ candidates and 1 is a good $\pi^0\pi^0$ candidate. (Remember $\pi^+\pi^-$ at ISR)

Results just "blessed" by CDF

Can the 3 candidates be exclusive $\pi^0 \pi^0$ or $\eta \eta$ rather than $\gamma \gamma$?

$$\gamma\pi,\gamma\eta$$
 are forbidden by C-parity $\pi\eta$ is forbidden by isospin

Theory (Durham):
$$\pi^0 \pi^0 / \gamma \gamma \approx 0.25$$
 and $\eta^0 \eta^0 / \gamma \gamma \approx 1$

We will give an upper limit on the $\gamma\gamma$ cross section, which is valid independent of the $\pi^0\pi^0$ and $\eta\eta$ background in the 3 candidates.

Note:
$$\sigma_{MEAS} \approx 2 \times 10^{-12} \sigma_{INEL}!$$

Conclusion: We have observed:

3 candidates for exclusive $(\gamma \gamma + \pi^0 \pi^0 + \eta \eta)$ production May be mixture

B/G =
$$0.09 \pm 0.04$$
; P(≥ 3) = $1.7 \times 10^{-4} \equiv 3.7 \sigma$
 $\sigma(\gamma\gamma) < 410 \text{ fb } (95\% \text{ c.l.})$

A, B favor $\gamma\gamma$ and C favors $\pi^0\pi^0$

If we assume that 2 of the 3 candidates are gamma-gamma events we obtain a cross section: $\sigma(2 \text{ events}) = (90^{+120}_{30} \pm 16) \text{ fb}$

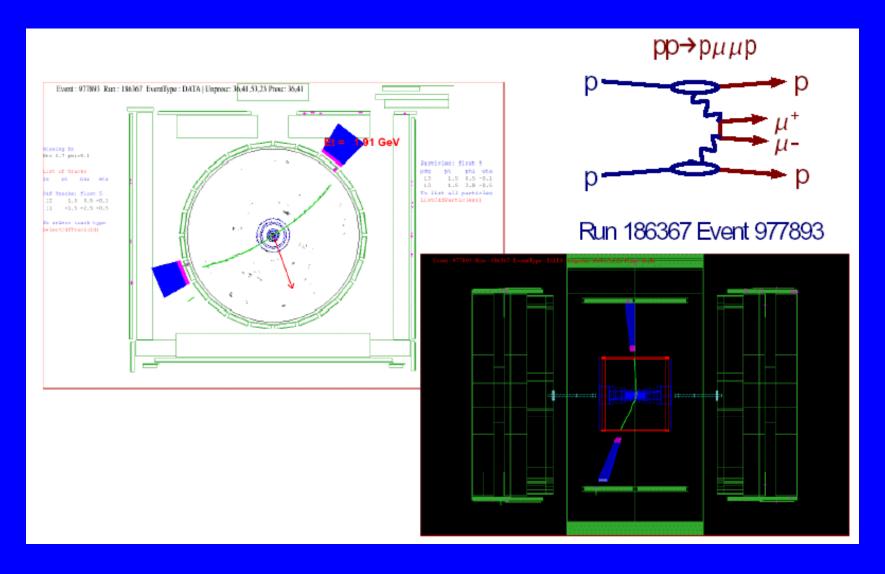
Durham Group Khoze, Martin, Ryskin & Stirling cf hep-ph/0507040 Eur.Phys.J C38 (2005) 475: 40 fb with factor 3 uncertainty

Existence of exclusive $\gamma\gamma$ implies that exclusive H must exist (if H exists)

Agreement with Durham group suggests H cross section at LHC in reach

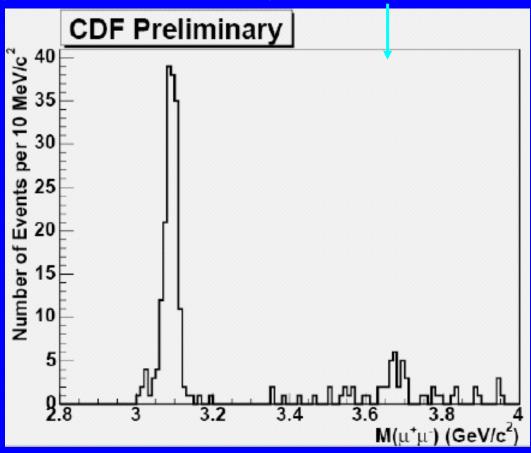
Central Exclusive $\mu^+\mu^-$ Production

Why interesting?


Among other things:

Two-photon production: $\gamma \gamma \rightarrow \mu^+ \mu^-$ continuum.

Cross section very well known (QED) so can calibrate LHC luminosity, if can do with pile-up.


Forward proton momenta precisely known: calibrate momentum scale of forward spectrometers.

We installed a trigger: μ + track + forward gaps (BSC1) Being studied. Have candidates:

Preliminary spectrum: Exclusive di-muon candidates

J/psi: photoproduction
(1st time in hadron-hadron) psi(2S)(3686)

Continuum (2-photon)

Acceptance rising strongly through M-range

Search for exclusive $\mu^+\mu^-$ in presence of pile-up.

Potential use as luminosity calibrator. (But can be done with lowish luminosity.)

Inclusive di-muon trigger (no gap requirement, no pre-scales)

$$p_{T}(\mu^{+}) = p_{T}(\mu^{-})$$

$$\Delta \phi(\mu^{+}\mu^{-}) = 180^{0}$$

$$n_{associated}(tracks) = 0$$

(because in 2-photon (Coulomb) process, p's have very small pT)

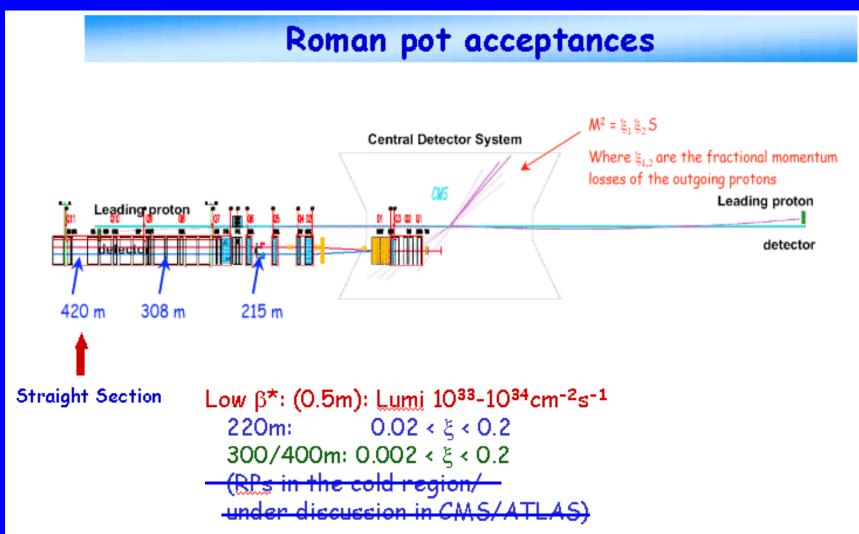
If see associated p (at LHC), know its momentum to < 10^-4 Calibrate forward proton spectrometers

FP420: Forward Protons 420m downstream of CMS & ATLAS

Hopefully both

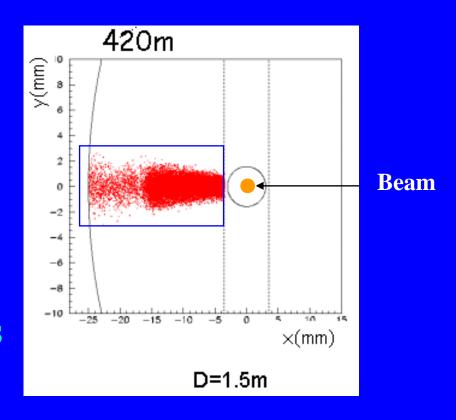
CMS: Inner Vacuum Tank insertion

420 & 220m


220 & 420m

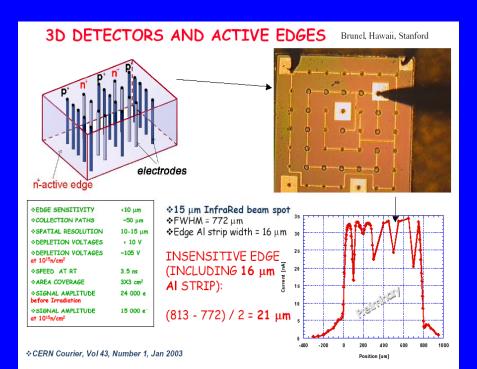
CMS

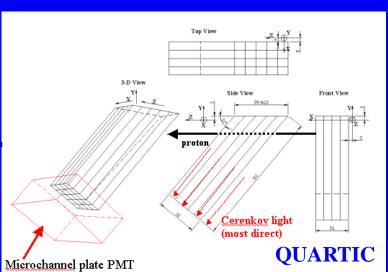
Very Forward Proton Detectors (& Momentum Measurement)

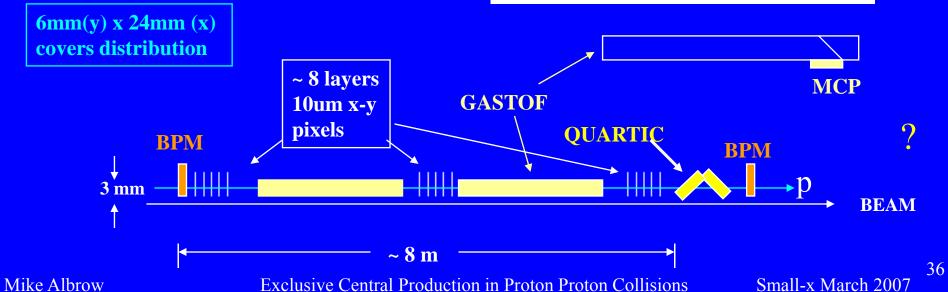

& FP420

Measure distance of track from beam (5-10 um) and slope (~5-10 um over 10 m) \rightarrow fractional momentum loss ξ

Protons, in x and y at detector Generated flat in $\ln \xi$, $\ln x$ Normal Low- β operation


Note: A detector 6mm(y) x 24mm (x) covers distribution.




3D Si Tracking, Cerenkov Fast Timing

 $\sigma_{\text{TOF}}(z) \approx 4.2 \rightarrow 2.1 \text{ mm}$ $\text{cf } \sigma_{\text{Z}}(\text{interactions}) \approx 52 \text{ mm}$ Rad hardness Edgelessness Speed, S/N Availability Enthusiasts!

Resolution

Fast Timing Counters: GASTOFs and QUARTICS

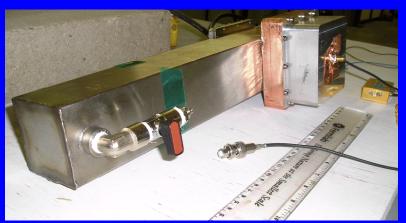
Pile-Up background: p's, JJ or WW from different collisions

Counters with ~ 10 ps timing resolution behind tracking

$$10 ps = 3 mm$$

$$\frac{3mm}{\sqrt{2}} = 2.1mm$$

- 1) Check both p's from same collision (reduce background)
- 2) Get z(vertex) to match with central track vertex
- 3) Tell what part of bunches interacting protons were (F-M-B)

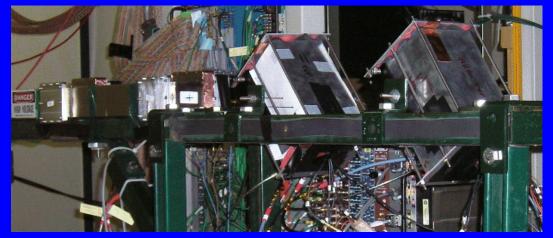

Likely solution:

Cerenkov light in gas or quartz (fused silica) bars → MCP-PMT (Micro-Channel Plate PMT) (or Si-PMT?) Also possible (?): 3D-silicon optimised for timing

Precision Timing: Testing GASTOF and QUARTIC Prototypes

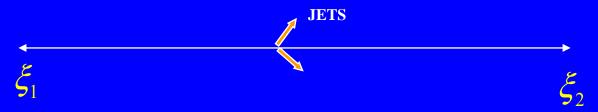
Had 1st round test beam studies at Fermilab. 2nd round Feb-March Results not yet final... need good tracking for x,y corrections (2mm = 10um)

GASTOF (U.Louvain) ... real is smaller



QUARTIC2

Test beam setup


$$M_{CEN} = \sqrt{(p_1 + p_2 - p_3 - p_4)^2}$$

Two jets' E_T are the same to ~ 1 GeV, $\Delta \phi = 180^{\circ}$ and, knowing that and η_1, η_2 and $\xi_1(220)$ in L1 trigger (fast look-up) can use correlation to reduce L1 trigger rate.

$$\xi = 1 - \frac{p_z(out)}{p_z(beam)}$$

(fractional momentum loss)

$$\xi_{1(2)} = \frac{1}{\sqrt{s}} \sum_{\text{jets}} E_{\text{Ti}} e^{+(-)\eta_i}$$

420m just too far for L1 trigger. 420 + 220 + Jet info.

What is H Signal:Background? (not pile-up)

$$H(120-135 \text{ GeV}) \rightarrow b\overline{b}$$

Inclusively, $gg \rightarrow b\overline{b}$ background overwhelming

Exclusively, $pp \rightarrow p + qq + p (q = quark jet)$

strongly suppressed at LO
$$\left(\sim \frac{M_q^2}{M_H^2}\right)$$
 by

spin selection rule $J_Z = 0$.

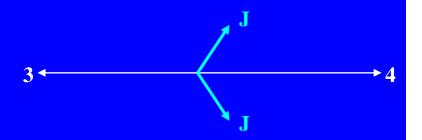
Most "exclusive dijets" are gg

Need b-tagging, then
$$\frac{S}{B}(SMH) \sim 3 \times \frac{1 \text{ GeV}}{\sigma(M)}$$

 $q\overline{q}$ dijets strongly suppressed

J = 1 forbidden, J=0 strongly favored

J = 0.2 discrimination possible


Trigger is issue:

Probably need asymmetric

220m + 420m and:

Eventual trigger upgrade??

$$H \rightarrow b\overline{b}, W^+W^-, ZZ$$

Kinematic constraints:

$$E_{T,1} \approx E_{T,2}; \ \phi_1 = -\phi_2$$

$$\xi_{3(4)} = \frac{1}{\sqrt{s}} \sum_{1,2} E_{T} e^{-(+)\eta}$$

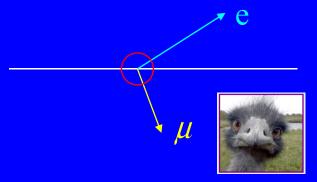
$$\left(\xi = 1 - \frac{p_{\text{out}}}{p_{\text{beam}}}\right)$$

What is Signal:Background? H(135-200) (not pile-up)

$$H(135-200 \text{ GeV}) \rightarrow W^+W^-$$

 $\sigma_{\text{incl}}(W^+W^- \text{ non-H}) \sim 100 \text{ pb}; \sigma(H) \sim 20 \text{ pb}$

& M(WW) resolution v.poor ($\nu(s)$ and/or jets)


Exclusive B/G is $\gamma\gamma \to W^+W^-$, $\sigma \sim 50$ fb, continuum

Mass resolution $\sigma_{\rm M}({\rm WW}^{(*)}) \sim 2~{\rm GeV}$ any decay

Exclusive $H \rightarrow ZZ$, negligible B/G

Examples: $WW \rightarrow lvlv$, l = e, μ NO OTHER TRACKS ON VERTEX! (But only 4.6% of WW)

$$H(160) \rightarrow W^+W^- \rightarrow p \ e^+\mu^- \notin_T \ p$$

 $MM^2 = (p_1 + p_2 - p_3 - p_4)^2 = M_H^2$

Always: $\sigma(M_{ww} \approx 2 \text{ GeV})!$

What is Signal:Background? H(135-200) → WW(*)

$WW \rightarrow lvJJ, l = e, \mu, \tau$

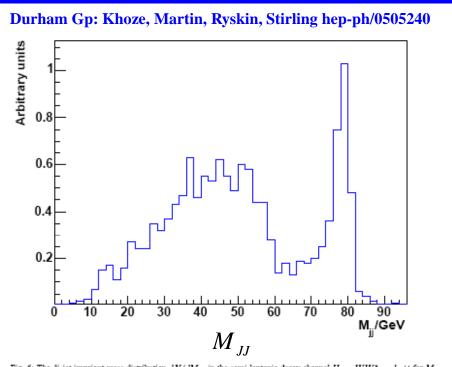
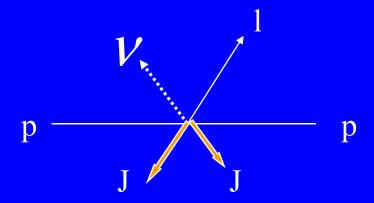



Fig. 6: The di-jet invariant mass distribution dN/dM_{jj} in the semi-leptonic decay channel $H \to WW^* \to l\nu jj$ for $M_H = 140$ GeV.

$$MM (12 - 34JJl) \approx 0(M_{\nu})$$

 $MM (12 - 34JJ) = M_W^{(*)} \text{ (even for } \tau \nu \text{)}$
 $M (JJ) = M_W^{(*)}$

Can use ~ 50% of WW (all but JJJJ)

 $H(180) \to ZZ \to l^+ l^- \nu \overline{\nu} \text{ (BR } \sim 10 \times l^+ l^- l^+ l^-)$ $MM (12 - 34l^+ l^-) = M (Z_{\nu \overline{\nu}}), \ \sigma_M \sim 2 \text{ GeV!}$

In WW/ZZ case, central trigger effective (420+420 OK)

Determining Quantum Numbers of Central State (H?)

Is it
$$J = 0$$
, $CP = ++?$

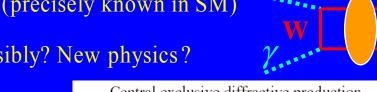
In gg \rightarrow X only CP = ++ is allowed. (a CP –ve A (MSSM) is highly suppressed)

gg \rightarrow vector (J = 1) forbidden, Yang's theorem.

J = 0, 2 can be distinguished by angular distributions

→ partial wave analysis. Can even see states hidden in overall M distribution!

Moments H(LM) of the $\cos(\vartheta)$ distributions \rightarrow M(J=0), M(J=2).

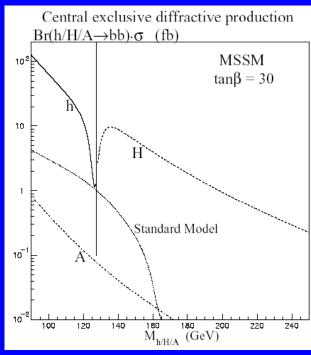

e.g. ISR/R807 glueball search in $pp \rightarrow p + \pi^+\pi^- + p$ NPB264 (1986) 154

Non-SM cases: no Higgs? MSSM Higgses?

- 1) No SMH? Can we exclude? Suppose measure 100 exclusive γγ in CMS. (~ 0.1 fb^-1 effective S.I.Lum) → predict p+SMH+p to ~ 20% Expect (say) 100 pHp events in 30 fb^-1, see < 50. Conclusion?
- 2) No SMH or MSSM-Hs? WW physics becomes very interesting!

$$pp \to p + W^+W^- + p \text{ via } \gamma\gamma \to W^+W^- \quad \sigma \approx 50 \text{fb (precisely known in SM)}$$

 W^+W^- Final State Interactions distort $\frac{d\sigma}{dM_{WW}}$, visibly? New physics?



Preview of ILC physics!

3) In case of SUSY, Forward p-tagging can be crucial! Cross section can be <u>much</u> higher than SMH. Decays to bb enhanced.

A(CP-ve) highly suppressed.

Kaidalov Khoze Martin Ryskin hep-ph/0307064

MSSM

Can have {h, A, H} close together in mass (few GeV) Hard to resolve by inclusive production.

Exclusive advantages: higher production than SM, A highly suppressed Excellent mass resolution could separate h and H (unique) Excellent mass resolution might even measure H widths (if ~ few GeV)

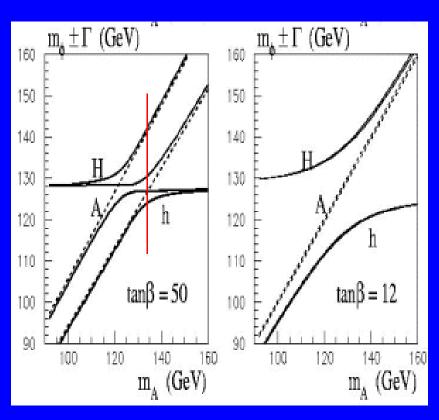
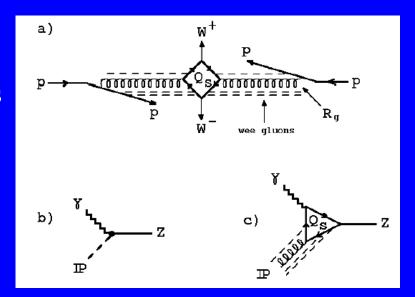


Figure 4: The hadronic level cross section $M^2 \frac{\partial^2 \sigma_{13}^{b_1}}{\partial y \partial M^2}(y=0)$ when the produced Higgs bosons decay into b quarks, calculated using CTEQ6M PDFs. Tri-mixing scenarios have been taken with $\Phi_3 = -90^\circ$ (solid lines) and $\Phi_3 = -10^\circ$ (dotted lines). The vertical lines indicate the three Higgs-boson pole-mass positions.

Durham Group (KMRS)


J.Ellis, J.S.Lee and A.Pilaftsis, PRD71:075007, hep-ph/0502251

BSM: The White Pomeron

Alan White (ANL)

BFKL Pomeron = 2 reggeized gluons / ladder White Pomeron = 1 reggeized gluon + sea wee g's

Asymptotic freedom → 16 color triplet q's
Only 6 known (d u s c b t)
But (!) 1 color sextet Q counts 5 times, so
{ud}+{cs}+{tb} + {UD} works!

 $\Pi = U\overline{D}$ etc, η_6 EWSB, role of Higgs "composite higgs"

Can be dark matter $(N = DDU \sim TeV)$

Pomeron couples strongly to WW through U,D loops

→ Anomalous (quasi-diffractive) production of WW, ZZ (not WZ) production at LHC (M(DPE@LHC) <~ 700 GeV). Also Z photo-production possible at LHC

Dramatic effects at LHC, especially in pp $\rightarrow p + WW/ZZ + p$

Status of FP420 R&D Project

LOI to LHCC July 2006 Plan on TDR → LHCC, CMS, ATLAS ~ May 2007. Install in 2009-2010.

Contents

1	Executi	ve	Summar;
---	---------	----	---------

2 Introduction to the FP420 R&D Collaboration

3 Introduction to Central Exclusive Processes 3.1 Advantages of central exclusive production.

	3.1.1 Missing mass measurement
	$3.1.2$. Quantum number filtering and determination $\ \ldots \ .$
	3.1.3 Background suppression, $J_Z=0$ rule
	3.1.4 Other kinematic constraints
3.2	Exclusive production of a Standard Model Higgs boson $\ . \ . \ .$
3.3	Exclusive production of a Supersymmetric Higgs bosons
3.4	Related exclusive processes
	3.4.1 χ_t and χ_b , J/ψ and Υ
	$3.4.2 - \gamma \gamma$ and $\pi^{\circ} \pi^{\circ}$
	3.4.3 Jet-Jet and $b\bar{b}$ di-jets

4 Two-Photon and Related Processes

4.1	Two-photon processes at LEP, HERA and Tevatron
4.2	Exclusive lepton pair production at LHC
	$4.2.1-e^+e^-$ cross sections and kinematics, triggering
	$4.2.2 - \mu^+\mu^-$ cross sections and kinematics, triggering.
	4.2.3 $-\tau^+\tau^-$ cross sections and kinematics, triggering
4.3	W^+W^- production in two-photon interactions
	4.3.1 Standard Model case
	4.3.2 Beyond the Standard Model case
4.4	Photoproduction

5 Proton Optics and Machine Constraints

	0.111 Inches Inc
5.2	The proposed detector station at 420m
5.3	The cryogenic by-pass
5.4	Measuring proton momenta through the lattice
5.5	Transfer matrices
5.6	Simulations of leading protons
5.7	Resolutions in momentum (and ξ, t and missing mass)

5.1.1 Beam halo and radiation levels at 220m.

6 Backgrounds

6.2	Luminosity dependent pile-up background $\ \ \ldots \ \ \ldots$		
6.3	Background from beam halo and upstream interactions $% \left(-1\right) =-1$		
6.4	Background reduction techniques		

6.1 Irreducible "single interaction" background

7 The Detector Stations at 420m.

	7.0.1	Beam halo and radiation levels at 420m	9.6.1 A	TLAS-Spec
7.1	The m	oving pipe design	9.6.2 C	MS-Specifi
	7.1.1	Precision mechanics and motion control 9.7	High Lev	el Trigger
7.2	Trackin	ng specifications)	
7.3	3-D sil	icon detectors	0	
	7.3.1	Performance in beam tests	0	
	7.3.2	Radiation Hardness	0	
	7.3.3	Alignment	0	
	7.3.4	Cooling)	
7.4	Beam	position monitors	0	
7.5	Fast T	iming	0	
	7.5.1	Timing Specifications	0	

http://www.fp420.com/

		7.5.2 GASTOFs: Gas Time of Flight detectors	10
		7.5.3 QUARTICs: QUARtz Timing Counters	10
		7.5.4 Performance in beam tests	10
		7.5.5 Reference time signal	10
	7.6	Interface to LHC issues	10
8	Full	I Event Simulations	11
	8.1	Event generators	11
	8.2	ATLAS detector simulation	11
	8.3	CMS detector simulation	11
9	Dat	a Acquisition and Triggering	11
	9.1	Tracking detector local electronics	11
	9.2	Timing detector local electronics	11
	9.3	Slow controls and monitoring	11
		9.3.1 Low Voltages	11
		9.3.2 High Voltages	11
		9.3.3 Temperatures	11
		9.3.4 Positions	11
	9.4	Local-Central communication	11
		9.4.1 Optical fiber communication	11
		9.4.2 Cables and Infrastructure in tunnel	12
	9.5	Central DAQ 9.7.1 ATLAS-Specific high level trigger 9.5.1 ATLAS-Spec	

9.5.2 CMS-Specifi

9.6 Level 1 Trigger . .

	ATLAS-Specific high level trigger	
9.7.2	CMS-Specific high level trigger	. 12
10 Detectors	s at 220m	13
10.1 New 2	220m detectors in CMS	. 13
10.2 New 2	220m detectors in ATLAS	. 13
11 December	I LOWEL A T. I	
12 Cost and	uction and Off-Line Analysis Budgets	13
12 Cost and		13
12 Cost and 12.1 Cryog	Budgets	13
12 Cost and 12.1 Cryog 12.2 Detec	Budgets genic by-pass and mechanics	13 13
12 Cost and 12.1 Cryog 12.2 Detec 12.2.1	Budgets genic by-pass and mechanics tors	13 13 13

4	Request to ATLAS, CMS and LHCC	14
	13.2 Installation Issues, and requests to CERN	13
	13.1 Further R&D planned	13
3	Time-Line	13
	12.4 Other Costs	13
	12.3 Electronics	13

New collaborators welcome!

Detectors: timing, tracking, BPMs, DAQ, Triggering. Simulations, pre-analysis... Small-x March 2007

Summary

Any states with vacuum quantum numbers and strong or electromagnetic couplings can be produced at LHC by

Central Exclusive Production

This includes <u>Higgs boson(s)</u>, <u>W-pairs</u>, lepton and photon pairs.

Cross section pp → p+SMH+p known to factor ~ 3 (~ 3 fb) (?)

If protons well measured, can get mass of central state to

~ 2 GeV per event, Quantum numbers (J, CP) and couplings to gg.

S:B can be good – excellent in BSM scenarios.

For good acceptance/resolution need both 220m and 420m detectors.

R&D on FP420: tiny but v.high precision tracking, timing, BPM

Best particle spectrometer ever, using part of LHC

We aim to propose this as upgrade to CMS (and ATLAS) in 2007

for installation in 2009-2010

PS →